Clark School Home UMD

ISR News Story

Researchers publish human auditory system study in PLoS Biology

Participants listened to words (acoustic waveform, top left), while neural signals were recorded from cortical surface electrode arrays (top right, red circles) implanted over superior and middle temporal gyrus (STG, MTG). Speech-induced cortical field potentials (bottom right, gray curves) recorded at multiple electrode sites were used to fit multi-input, multi-output models for offline decoding. The models take as input time-varying neural signals at multiple electrodes and output a spectrogram consisting of time-varying spectral power across a range of acoustic frequencies (180–7,000 Hz, bottom left). To assess decoding accuracy, the reconstructed spectrogram is compared to the spectrogram of the original acoustic waveform. Photo courtesy PLoS Biology.
Participants listened to words (acoustic waveform, top left), while neural signals were recorded from cortical surface electrode arrays (top right, red circles) implanted over superior and middle temporal gyrus (STG, MTG). Speech-induced cortical field potentials (bottom right, gray curves) recorded at multiple electrode sites were used to fit multi-input, multi-output models for offline decoding. The models take as input time-varying neural signals at multiple electrodes and output a spectrogram consisting of time-varying spectral power across a range of acoustic frequencies (180–7,000 Hz, bottom left). To assess decoding accuracy, the reconstructed spectrogram is compared to the spectrogram of the original acoustic waveform. Photo courtesy PLoS Biology.

Professor Shihab Shamma (ECE/ISR), former ISR postdoctoral researcher Stephen David*, and alumnus Nima Mesgarani** (ECE Ph.D. 2008) are three of the authors of a new study on how the human auditory system processes speech published in the Jan. 31, 2012 edition of PLoS Biology.

”Reconstructing Speech from Human Auditory Cortex” details recent progress made in understanding the human brain’s computational mechanisms for decoding speech. The researchers took advantage of rare neurosurgical procedures for the treatment of epilepsy, in which neural activity is measured directly from the brain’s cortical surface—a unique opportunity for characterizing how the human brain performs speech recognition. The recordings helped researchers understand what speech sounds could be reconstructed, or decoded, from higher order brain areas in the human auditory system.

The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. The results provide insights into higher order neural speech processing and suggest it may be possible to readout intended speech directly from brain activity. Potential applications include devices for those who have lost the ability to speak through illness or injury.

Brian N. Pasley, Helen Wills Neuroscience Institute, University of California Berkeley is the paper’s lead author. In addition to the University of Maryland co-authors, additional co-authors include Robert Knight, University of California San Francisco and University of California Berkeley; Adeen Flinker, University of California Berkeley; Edward Chang, University of California San Francisco; and Nathan Crone, Johns Hopkins University.

* Stephen David is now an assistant professor at Oregon Health & Science University, where he heads the Laboratory of Brain, Hearing, and Behavior in the Oregon Hearing Research Center.

** Nima Mesgarani is currently a postdoctoral researcher in the Neurological Surgery Department of the University of California, San Francisco School of Medicine. He won ISR’s George Harhalakis Outstanding Systems Engineering Graduate Student Award in 2007.

| Read a story about this research in USA Today |

Related Articles:
Presacco, Heffner, Smith to represent Maryland at Universitas 21
Auditory researchers publish sensory processing research in PNAS
Shamma, Kanold receive DURIP funding
Article by auditory researchers appears in Nature Neuroscience
Alumna Mounya Elhilali wins NSF CAREER award
UMD neuroscience researchers publish in the journal Neuron
Yin, Fritz, Shamma publish neuroplasticity study in Journal of Neuroscience
Simon and Alumnus Ding Publish Research in NeuroImage
Depireux, Elhilali co-edit auditory cortex techniques handbook
Kanold study in Neuron: A short stay in darkness may heal hearing woes

February 2, 2012


Prev   Next

 

 

Current Headlines

Cleaveland, Marcus win NSF grant to develop models for cyber-physical systems

New NSF grant funds research to build network of tiny robots for bridge inspection

Reelin’ in a Whopper—A True Fish Tale

Beyond “Six Nines”: Ultra-enriched Silicon for Quantum Computing

Students Use UMD Supercomputer to Design, Test Materials

Lithium-ion battery research profiled in DOE newsletter

University of Maryland Opens Unmanned Aircraft Systems Test Site in Southern Maryland

Ephremides receives NSF grant to bridge wireless network theories

UMD Researchers Bridge Gap between Microelectronics, Biological Systems

Ephremides Wins IEEE MILCOM Lifetime Acheivement Award

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar