Clark School Home UMD

ISR News Story

Chiu, Reddy, Xian, Krishnaprasad and Moss publish in Journal of Experimental Biology

This schematic from the article shows sonar beam pattern reconstruction for one bat. The vocalizing bat (color black) produced one vocalization. Each gray vector shows the intensity of this sonar emission received by each microphone on
the array, and the direction of the sonar beam axis (thick black vector) indicates the direction of acoustic gaze. The sonar beam axis is the sum of these 16 intensity vectors. The tracking angle to the bat is the angle between the other bat and the sonar beam axis, while the tracking angle to the worm is the angle between the tethered mealworm and the sonar beam axis.
This schematic from the article shows sonar beam pattern reconstruction for one bat. The vocalizing bat (color black) produced one vocalization. Each gray vector shows the intensity of this sonar emission received by each microphone on the array, and the direction of the sonar beam axis (thick black vector) indicates the direction of acoustic gaze. The sonar beam axis is the sum of these 16 intensity vectors. The tracking angle to the bat is the angle between the other bat and the sonar beam axis, while the tracking angle to the worm is the angle between the tethered mealworm and the sonar beam axis.

A team led by ISR postdoctoral researcher Chen Chiu has published an article examining competition among bats in the October 2010 issue of the prestigious Journal of Experimental Biology.

“Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus” explores the strategies bats use to track and catch prey—and to track each other—when they are competing with other bats.

In addition to the lead author Chiu, the team included Puduru Viswanadha Reddy from the Department of Econometrics and Operations Research at Tilburg University in the Netherlands, Auditory Neuroethology Laboratory Research Assistant Wei Xian, Professor P.S. Krishnaprasad (ECE/ISR) and Professor Cynthia Moss (Psych/ISR).

Surprisingly, one of the findings was that as bats chase each other and perform maneuvers to gain advantage, a bat trailing another actually has the competitive advantage in capturing the prey. Read a short summary of the research at the Journal of Experimental Biology website. Or download the full article.

Related Articles:
ISR postdoc Chen Chiu wins outstanding paper prize
Alumnus Matteo Mischiati is lead author of sensorimotor control study in Nature
Foraging bats can warn each other to stay away from their dinners
Heavy media coverage for bat wing hair research findings
Tiny hairs on bats’ wings act as speedometers
Moss, Horiuchi receive $1.5 million NSF grant for complex settings research
Flocks and Form
Alumnus Fumin Zhang promoted to full professor at Georgia Tech
Alum Ram Iyer promoted to full professor at Texas Tech
Small collectives and nonlinear dynamics

September 30, 2010


Prev   Next

 

 

Current Headlines

Banis wins poster design award at Global Grand Challenges Summit

ISR faculty leading bio-inspired robotics and transportation electrification REUs

Alum Leonard Petnga to join University of Alabama Huntsville faculty

William Regli named sixth director of ISR

Smela named Clark School Associate Dean for Faculty Affairs and Graduate Programs

Ulukus is PI for new NSF information-theoretic physical layer security grant

ECE Ph.D. Student Mallik Wins Kulkarni Fellowship

John Baras receives AACC Richard E. Bellman Control Heritage Award

Nima Ghalichechian begins Ohio State tenure-track position 

UMD Takes Second Place in NASA RASC-AL Competition

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar