Clark School Home UMD

ISR News Story

New Battery Research Highlighted by Discovery News, Nanowerk

Research from two papers authored by University of Maryland faculty, staff and students that explain how the tobacco mosaic virus (TMV) can be used as a template to construct powerful, inexpensive, micro-scale lithium ion batteries has been featured on Discovery News and Nanowerk, the most popular nanotechnology industry news web site.

The papers, "Virus-Enabled Silicon Anode for Lithium-Ion Batteries" (published in ACS Nano) and "A Patterned Silicon Anode Fabricatied by Electrodeposition of Si on a Virus Enabled 3-Dimensional Current Collector" forthcoming in Advanced Functional Materials), were authored by professors James Culver (Plant Sciences and affiliate, Graduate Program in Bioengineering [BioE]), Reza Ghodssi (Electrical and Computer Engineering; Director, Institute for Systems Research; affiliate, BioE), and Chunsheng Wang (Chemical and Biomolecular Engineering [ChBE]); postdoctoral research associates Adam Brown (Institute for Bioscience and Biotechnology Research) and Juchen Guo (ChBE); and graduate students Konstantions Gerasopoulos (Materials Science and Engineering) and Xilin Chen (ChBE).

The research demonstrates how the rod-shaped tobacco mosaic virus can be genetically engineered to self-assemble into structures used as a template which, when coated with silicon and nickel ions, form a dense forest of nanowires standing on end that can be used as a high surface area anode for a battery. These tiny components could be used to power a variety of devices, are biorenewable, and are relatively easy and inexpensive to create. The technology is easily scaled for manufacturing. TMV harmless to humans, and what is used in the creation of the anodes is rendered inert by the process.

The group envisions the technology being implemented in everything from consumer electronics to highly portable power supplies and on-chip power sources for sensors and other security devices.

Learn More:

Discovery News: "Virus-Built Wearable Batteries Could Power Military" »
Nanowerk: "Virus-enabled fabrication of stable silicon anodes for lithium-ion batteries" »
Visit Dr. Ghodssi's web site »
Visit Dr. Wang's web site »

Related Articles:
Gerasopoulos Wins Dean's Doctoral Research Award
Gerasopoulos Wins MSE Graduate Research Award
Graduate Student Delivers Micro/Nano Seminar at MIT
Sangwook Chu wins UMD GRID best poster award
Ekaterina Pomerantseva to join Drexel University faculty
Ghodssi gives invited talk at Bio-Inspired Engineering International Symposium
Tobacco mosaic virus battery research to star in NSF video
Clark School researchers figure prominently in atomic layer deposition story
The Diamondback features story on Tobacco Mosaic Virus battery research

September 7, 2010

Prev   Next



Current Headlines

It’s not your ears, it’s your brain

NSF Awards $3.45M National Innovation Ecosystem Grant to University of Maryland

John S. Baras to be inducted into Clark School Innovation Hall of Fame

Simon delivers three invited lectures in China

Khaligh named area editor for IEEE Transactions on Vehicular Technology

Nau and colleagues publish new AI Planning book

Ott, Yorke, and Grebogi recognized by Thompson Reuters as 2016 Citation Laureates in Physics

Khaligh receives Junior Faculty Outstanding Research Award

Narayan, Zhou, Schlotfeldt, Strahan win ISR outstanding awards

Srivastava is PI; Jacob co-PI for NSF "Unified Framework for 3D CPU Co-Simulation" grant

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar