Clark School Home UMD

ISR News Story

S.K. Gupta receives NSF grant for nanoassembly research

Professor S.K. Gupta (ME/ISR) is the principal investigator for a new National Science Foundation CDI-Type 1 grant, High-Performance Simulations and Interactive Visualization for Automated Nanoscale Assembly. The three-year, $550K grant will develop a fundamental understanding of the interaction of nanocomponents with trapping fields. Amitabh Varshney (CS) is the co-PI.

Assembling nanoscale components to make functional devices remains a grand challenge despite rapid advances in imaging, measurement, and fabrication at the nanoscale.

While manipulation techniques for nanocomponents are finally emerging, they currently lack automation. This seriously limits the rate at which new nanocomponent-based devices can be invented. Developing an understanding of the interaction of nanocomponents with trapping fields will aid the development of automated real-time planning algorithms.

Understanding different ways in which components can interact with the trap requires dense sampling of the planning parameter space using millions of computationally intensive simulation runs. The research will develop a GPU-based simulation infrastructure for simulating trap and nanocomponent interactions. In addition, algorithms for automatically constructing simplified assembly process models from simulation data will be developed. The researchers will develop visualization tools for enhancing the understanding of the nanoscale assembly processes, and identify and characterize real-time motion planning strategies for nanoscale assembly processes.

The research will lead to a reliable, efficient, and automated assembly process for fabricating nanocomponent-based devices. This assembly process will enable nanotechnology researchers to explore new design possibilities in nano electronics, nano photonics, and bio-inspired sensors. Automated assembly capability will also allow the cost-effective exploration of a large number of design options, accelerating discovery and invention. This should reduce the need for manual assembly operations and will make nanomanipulation significantly less labor-intensive, making the manufacturing of nanodevices more cost-competitive.

September 18, 2008

Prev   Next



Current Headlines

It’s not your ears, it’s your brain

NSF Awards $3.45M National Innovation Ecosystem Grant to University of Maryland

John S. Baras to be inducted into Clark School Innovation Hall of Fame

Simon delivers three invited lectures in China

Khaligh named area editor for IEEE Transactions on Vehicular Technology

Nau and colleagues publish new AI Planning book

Ott, Yorke, and Grebogi recognized by Thompson Reuters as 2016 Citation Laureates in Physics

Khaligh receives Junior Faculty Outstanding Research Award

Narayan, Zhou, Schlotfeldt, Strahan win ISR outstanding awards

Srivastava is PI; Jacob co-PI for NSF "Unified Framework for 3D CPU Co-Simulation" grant

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar