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System Modeling and Traceability

Applications of the Higraph Formalism

1. PROBLEM STATEMENT

Systems modeling is a fundamental component of the Systems Engineering process. Good

modeling techniques allow for the comprehensive representation, organization, design, and evalua-

tion of a system, from requirements, to structure, behavior, and beyond. Engineers are motivated

to learn and use system modeling techniques in the belief that they enable and improve communi-

cation and coordination among stakeholders, thereby maximizing the likelihood of the right system

being built correctly on the first try. Indeed, with a complete and correct system model in hand,

ideally, implementation should be as simple as building the system per the model blueprint, which

in turn, is represented through the use of system modeling languages. Unfortunately, this is where

the grand vision of system modeling and the reality of present-day commercial engineering projects

diverge. The problem is not that there are large flaws in current system modeling languages per se,

but that existing system modeling languages (and associated model-driven methods) are relatively

complex, and are difficult to use beyond the system modeling phase of the systems engineering

lifecycle. In commercial settings, modeling languages in the form of popular commercial tools (see,

for example, DOORS, SLATE and Visio [14, 22, 25]) are often forced into use by management on

engineering projects. Too often personnel without true systems engineering skills are relied upon

to use these tools, blindly, to create system models. If the underlying tools are implemented as

islands of automation (or semi-automation) and are not connected together in a way that allows

for flows of data/information among tools, then there is no automated way to create a trace from

a requirement, to a component, to a behavior, to a test case. Support for change management is

also weak due to the lack of a complete unified system model [2].
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1.1. Scope and Objectives

The hypothesis of our work is that these modeling limitations can be be mitigated through

the use of higraphs, a topovisual formalism introduced by David Harel in 1988 [10, 11]. To date, the

higraph formalism has been applied to a wide range of applications including statecharts in UML

(Unified Modeling Language) [26], expression of relationships in drawings [24] and urban forms

[6], formal specifications in software development [19, 20], component-based development of web

applications [29], and verification procedures in rule-based expert systems [20]. Higraphs have also

made their way into Headway Software’s reView, a tool for management of large software code-bases

(the source code, libraries, packages, etc..) [12]. The common thread among these applications is the

use of nodes to represent allowable system states, and edges to represent transitions between states

(system functions) and/or dependencies between states or viewpoints. Hierarchies can be shown

through enclosure; concurrent activities can be shown through orthogonality relationships. Because

systems engineering products and processes require many of the same characteristics, we surmise

that higraphs might be a suitable abstraction for representing dependencies and relationships among

multiple aspects of systems development models (e.g., hardware, software, electrical, mechanical

concerns). Indeed, it is our contention that higraph representations can compliment, and perhaps

even co-exist, with present-day UML and SysML representations of systems.

This paper begins with a detailed introduction to the mathematical formalities of higraphs

and directed acyclic graphs. Section 3 focuses on existing visual modeling languages, and examines

the goals, strengths, and weaknesses of the Unified Modeling Language (UML) [26] and the Systems

Modeling Language (SysML) [23, 24]. Section 4 covers the use of higraphs as a modeling tool for

system requirements, system structure, and system behavior. We show: (1) how some well-known

diagram types in UML have counterpart higraph representations, (2) how these models incorporate

hierarchy and orthogonality, and (3) how each model can be connected to the others in a useful (and
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formal) manner. To accommodate these demands, the basic mathematical definition of higraphs is

extended in Section 5. Finally, in Section 6 capabilities of the extended higraph model are examined

through model development for an office network computing system.

2. INTRODUCTION TO HIGRAPHS

2.1. Definition of Higraphs

A higraph is a mathematical graph extended to include notions of depth and orthogonality.

In other words [9]:

Higraph = Graph + Depth + Orthogonality (1)

We denote the term “graph” by G(V,E) where V is a set of vertices and E is a set of edges. The

edges have no points in common except those contained in V. A directed graph is one in which

the edges have direction – directed edges are called arcs (e.g., transitions in statechart diagrams).

An edge sequence between vertices v1 and v2 is a finite set of adjacent and not necessarily distinct

edges that are traversed in going from vertex v1 to vertex v2 [5, 8]. The left-most schematic in

Figure 1 shows, for example, a small mathematical graph that is generic in the sense that the

nodes and edges have arbitrary meaning. All that is defined here is that four nodes and three

edges make up this graph. The central node has some sort of relationship to the three other nodes

through the edges. The term “depth” in equation 1 can be thought of as a defined hierarchy,

and the term orthogonality can be thought of as a Cartesian product or partitioning. Orthogonal

states provide a natural mechanism for modeling of systems that contain disjoint but concurrent

sub-system developments and/or concurrent component behaviors. Higraphs also incorporate Euler

Circles (or Venn Diagrams) to define the “enclosure, intersection, and exclusion” elements. Harel
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Figure 1: Fundamental elements in the definition of higraphs (left figure – basic graph structure;
center figure – venn diagram; right figure – graph with blobs).
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Figure 2: Visualization of hierarchy, orthogonality and linking relationships in higraphs.

[11] refers to these low-level atomic elements as blobs. The center schematic of Figure 1 shows, for

example, a Venn diagram with relationships among three sets A, B, and C. Each set is define by

its enclosures. Where set A and set B intersect, we see “A & B,” and this implies the exclusion

of set C from this space. In the right-most schematic of Figure 1, a graph structure is defined

through connectivity relationships among the four blobs. Each blob has some sort of relationship

(connectivity) to the central blob, Blob A.

2.2. Visualization of Relationships

A hierarchical relationship is defined by placing one blob inside another – see, for example,
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the left-hand schematic in Figure 2. Higraph edges represent relationships among system entities

(e.g., physical connections, logical connections, and so forth). An edge can connect any node to

any other node, even across hierarchies. The center schematic in Figure 2 shows, for example, an

edge between blobs A and B, an edge from blob B to the node surrounding blobs C and D, and a

single edge from the lower node (containing blobs C and D) to the upper node (containing blobs A

and B). When the head of an edge (i.e., the arrowhead) terminates at a node, communication to all

nodes and blobs within that node is implied. As we will soon see below, this notational mechanism

allows for considerable simplification of complex systems.

Orthogonality concerns will be shown as a dashed line within a higraph. The right-most

schematic of Figure 2 shows, for example, a team-based design where requirements are organized

according to domain of expertise. Within Component1, two orthogonal regions (i.e., Power Speci-

fications and Physical Specifications) are defined. Current draw, input voltage, width, and weight

are all “lower level” specifications of the “higher level” Component1. defined within Component1.

2.3 Mathematical Definition

The basic mathematical definition of a higraph can be summarized as follows [9]:

• B is the set of blobs [nodes], b, that make up a higraph

• E is the set of edges, e, that make up a higraph

• ρ is the hierarchy function

• Π is the orthogonality (or partitioning function)

The quadruple (B, E, ρ, Π) defines a higraph H Harel provides the lowest level definitions of the

hierarchy and partitioning functions. Applying these definitions to the higraph shown in Figure 3
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Figure 3: Example higraph for math modeling.

yields the following equations:

1. B = { a, b, c, d, e, f, g, h, i, j, k, l, m, n, o }

2. E = { (i, h), (b, j), (l, c) }

e(l, c) = { (l, f), (l, e) }

3. ρ(H) =
∑

ρ(b ∈ B)

a. ρ(a) = {b, c, h, j}

b. ρ(b) = {d, e}

c. ρ(c) = {e, f}

d. ρ(g) = {h, i}

e. ρ(j) = {k, l,m, n, o}
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f. ρ(d) = ρ(e) = ρ(f) = ρ(h) = ρ(h) = ρ(k) = ρ(l) = ρ(m) = ρ(n) = ρ(o) = 0

4. Π(H) =
∑

πm (b ∈ B)

a. π1(a) = {b, c, h}

b. π2(a) = {j}

c. π1(j) = {k, l, n}

d. π2(j) = {n, o}

e. π1(b) = π1(c) = π1(d) = π1(e) = π1(f) = π1(g) = π1(h) = π1(i) = π1(k) = π1(l) =

π1(m) = π1(n) = π1(o) = 0

Higraphs are topovisual formalisms, meaning that non-metric topological connectedness is impor-

tant, as opposed to the size and physical distance between nodes in a higraph [17].

XOR Decomposition. Harel defines the concept of XOR decomposition as it relates to DAGs

as: “If a and b are non-intersecting and are contained in c, and c contains no other blobs, then c

is the XOR of a and b; and dually, if a and b intersect and their intersection contains blob a and

none other, the c is also the XOR of a and b.”

Directed Acyclic Graphs and Higraphs. As defined by the National Institutes of Standards

and Technology [4], a directed acyclic graph (DAG) is a directed graph with no path that starts

and ends at the same vertex. A DAG can be systematically derived from the higraph quadruple via

appropriate algorithms. Conversely, by swapping nodes for blobs, adding areas of enclosure, and

then removing directed edges between the blobs (i.e., applying XOR decomposition) DAGs can be

converted to higraphs. See, for example, Figure 4.
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Figure 4: Step-by-step development of a higraph from a directed graph.
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Figure 5: Top-down and bottom-up XOR decomposition of a DAG.

A configuration is defined as the set of nodes corresponding to the vertices constituting a

legal trace of the [DAG] higraph [9]. The legal trace will be the result of some rule or command

that causes the trace. In Figure 3 there are two valid traces that will return nodes n and o:

(A → J → N) and (A → J → O). The command that executes this trace would be to find all

components in the second orthogonal region of j. As we will soon see in much greater detail, by

qualitatively or quantitatively defining n, o, j, and the meaning of the orthogonality in j, this trace

will present the user with a unique view of the system.

2.4. Systems Engineering Application of Higraphs

Requirements change often throughout the course of engineering projects, and while ex-
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isting software applications (e.g., DOORS, Rational) allow for the maintenance of system require-

ments, what is really needed is an effective way of determining exactly what impact changing a

requirement (e.g., amount of power available to a system suddenly changes) has on the system in

terms of system structure and system behavior. At both the system and subsystem levels, ques-

tions of this type are resolved by evaluating a trace from the new/modified requirement to all of

the affected components (attributes and behaviors). If the total amount of power available to the

entire system is modified, then a trace through the higraph would follow all applicable levels of

derived requirements and system structure hierarchy to identify and “roll-up” all power specifica-

tions for the system (as currently designed). This is where the close relationship between higraphs

and DAGs comes into play – with the latter in place, appropriate rules (or search criteria) can be

applied to traversals of the higraph structure to retrieve the required content.

As illustrated in Figure 5, XOR decomposition allows for top-down and bottom-up repre-

sentation of systems organization. With respect to visualization concerns, the hierarchical nature

of higraphs allows for higher or lower levels of detail to be shown as needed. Moreover, by virtue of

the many types of edges allowed in the higraph formalism (e.g., requirement assignment, allocation

of behavior, complies with, satisfies, etc.), systematic tracing of the higraph edges will reveal much

information about the validity of the system design. For instance edge inspection will ensure:

1. All requirements (requirement nodes) can be traced to a system structure node (system compo-

nent) or system behavior node (system behavior/function). If gaps exist, some requirements

may not be met by the current system design.

2. All system behavior nodes (system behaviors/functions) are can be traced to a system struc-

ture node (system component). This ensures correct functional allocation; all behaviors are

allocated to a specific component function.

3. No system structure or behavior nodes exist that can not be traced to a requirement, thereby



10

eliminating “gold plating,” or the inclusion of components or capabilities not required by the

specification.

4. The system structure is an instance of the domain structure (for normal, non- innovative,

systems). This ensures that what you will build is in line with existing principals (e.g.,

physical laws). Likewise, ensure system behaviors comply with domain behaviors.

3. RELATED SYSTEM MODELING LANGUAGES

3.1. Capabilities and Strengths of UML and SysML

The goals of the Unified Modeling Language (UML) and the System Modeling Language

(SysML) are to provide users with a ready-to-use, expressive visual modeling language (notation)

so they can describe and exchange meaningful models [21]. Most engineers use UML informally –

that is, diagrams are sketched as abstractions of a system description. Semi-informal uses of UML

aim to create a one-to-one correspondence between UML and the system being described.

UML has evolved through two versions since the mid-1990s. UML 2, formalized in 2005,

is defined by the list of diagrams shown in the upper half of Table 1. Use case diagrams express

required system functionality. Class diagrams express relationships among components in the

system structure. Statechart and activity diagrams show two viewpoints of system behaviors.

The remaining four diagrams summarize the mapping of behavior fragments onto structure, and

details of their implementation. By adding communications, timing, and interaction overview

diagrams, UML 2 makes significant improvements to the ways in which flows of information can

be documented. The new Parts, Ports, and Connectors allow for a decomposition of systems into

subsystems, components, parts, and so forth. This hierarchical representation is crucial to the

modeling and evaluation of real-life systems [27].
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======================================================================================

Part 1. Diagrams in UML 2

======================================================================================

Structure Diagrams Behavior Diagrams

Class Diagram Activity Diagram

Component Diagram Use Case Diagram

Object Diagram State Machine Diagram

Composite Structure Diagram Interaction Diagrams

Package Diagram Sequence Diagram

Deployment Diagram Communications Diagram

Timing Diagram

Interaction Overview Diagram

======================================================================================

Part 2. Diagrams in SysML

======================================================================================

Structure Diagrams Behavior Diagrams

Block Diagram Activity Diagram

Block Definition Diagram (extends UML Activity Diagram)

(extends UML Class Diagram) Use Case Diagram

Internal Block Diagram State Machine Diagram

(extends UML Composite Sequence Diagram

Structure Diagram)

Parametric Constraint Diagram Cross-Cutting Diagrams

Parametric Definition Diagram Allocation Diagram

Parametric Use Diagram Package Diagram

(extends UML Package Diagram)

Requirement Diagram

======================================================================================

Table 1: Types of diagrams in UML2 and SysML. (1) Structure and behavior diagrams in UML 2;
(2) Structure, behavior, and cross-cutting diagrams in SysML.

SysML builds upon Versions 1 and 2 of UML, aiming to provide a visual notation for the

development and evaluation of systems composed of both hardware and software. Development on

Systems Modeling Language (SysML) began in 2003, and in 2005 the alpha spec was published

[24]. SysML supports the specification, analysis, design, verification and validation of a broad range

of systems and systems-of-systems. These systems may include hardware, software, information,

processes, personnel, and facilities. As shown in the lower half of Table 1, the SysML diagram

types are organized into three sections; diagrams for modeling system structure, for modeling

system behavior, and those that cut across viewpoints. The new parametric diagram follows the

graphical conventions of a UML internal structure diagram showing a collaboration [24]. Parametric

constraints can be used in tradeoff studies to show what happens to one (internal) characteristic of
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a block, when characteristics in another block are changed. Cross-cutting diagrams get their name

from the nature of the information contained in each – in other words, these diagrams show how a

particular concern (requirement) cuts across the structural and behavioral domains. Compared to

UML, SysML offers the following new features:

1. Block Stereotypes. The SysML Block Stereotype is based on the UML concept of composite

structures. Blocks can have internal features (attributes, operations) and can own ports. The

extension of UML ports in SysML as flowports provides a for more complete system model

in which blocks can be connected (physically and/or logically) to other blocks.

2. Allocations. SysML extends the UML trace comment with their new allocation property.

Functional allocation is the assignment of functions (requirements, specifications, behaviors,

etc.) to system components. Support for functional allocations is needed especially in the

development of larger systems where design and implementation may not occur at the same

place or time. UML versions 1 and 2 make little reference to functional allocation (aside from

swimlanes in an Activity diagram).

3. Requirements Modeling. SysML provides modeling constructs to represent requirements

and relate them to other modeling [system] elements [23]. SysML introduces an actual require-

ments node which contains information about requirements such as identifier, text, source, and

method of verification. These requirements nodes can be used in Block Definition Diagrams

(SysML version of a UML class diagram) to show a hierarchy of requirements. Requirements

can also be mapped to other elements by derivation, verification, and satisfaction paths (e.g.,

a diagram can show how a specific requirement is assigned to a component in the system

structure.)
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3.2. Weaknesses of UML and SysML

The following quote from Berkenkotter [3] captures perhaps the most significant weakness

of UML: “One of the most frequently discussed weaknesses of UML 1.4 is its usability as it consists

of an overwhelming number of diagrams and elements. While diagrams may represent different

views on a system, there is no mechanism to define the interconnections or dependencies among

the diagrams describing a system.” In other words, there are too many places to capture information

(in the large number of available diagrams), and too few ways to show relationships between the

diagrams. This has not changed with UML 2. From a systems engineering perspective, little

effort is given to requirements modeling, functional allocation and domain specific (customized)

viewpoints. To be fair, this is done in part, to keep the focus of UML remaining on software and

real-time software systems.

UML 2 provides little support for requirements definition and traceability. In an effort to

mitigate this deficiency, Letelier [13] documents an entire requirements traceability meta-model.

This meta-model works within the specifications of UML to not only show requirements traceability,

but traceability throughout the rest of the system. This contribution is important because it

highlights the lack of support in UML for functional allocation at a system level. Letelier also

extends UML to include an “assignedTo” stereotype which can be used in Requirements Allocation

activities (assigning a requirement to a component or behavior) within a UML model.

While SysML makes significant improvements on UML in terms of modeling traditional

systems engineering processes, there are a few areas of weakness in the SysML alpha release:

1. Weak Support for Diagram Connectivity. Something that is not addressed in the SysML

specification is the idea of interconnections between diagrams. SysML is much better than

UML at showing multiple ideas on a single diagram (i.e. a component in a structure diagram
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with its parent requirement tag and test case tag). However, an alternative and potentially

better implementation would allow links from a requirements diagram to a structure diagram–

instead of manually placing a <<requirements>> comment in a structure diagram. By

allowing links between diagrams, as a higraph model allows, you would minimize the total

number of complete diagrams, but could keep any number of relations.

2. Weak Support for Allocations. As discussed earlier, there is a strong effort to model

allocations in SysML. However, while the notion is fundamentally correct (as documented in

the SysML specification), there seem to be no rules on allocations. In other words, how do

we know if the <<allocate>> tag is correct? Although there always must be reliance on

the human creating model, under this specification, an engineer could conceivably allocate a

behavior to a requirement (instead of allocating the requirement to a behavior), or allocate

five behaviors to a Block (structure) that does not have sufficient attributes or functions to

support those behaviors.

3. Weak Support for Hierarchy Among Allocations. To complicate matters, while SysML

specifies hierarchical relationships among structure, behaviors (black box versus white box),

and requirements, there is no clear definition of hierarchy among allocations. For instance,

requirements can be allocated to sub-components, but it is not clear how those allocations

are dealt with if there is a change to a higher-level component. This may have been over-

looked because in software, inheritance and encapsulation mechanisms can be relied upon to

propagate changes from a class to its lower-level sub-classes. However, in other engineering

applications (i.e. physical integrations) there needs to be a way in the model to ensure that

when the dimensions of a physical component changes (high level change), the dimensions of

sub-components stay within specification (leads to low level change).

4. Weak Mathematical Foundation of UML/SysML. UML and SysML are both defined via

their meta-models; that is a meta-model for what kinds of diagrams will be supported, and the
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features within each type of diagram. The meta-model is enough information for computer

vendors to: (1) implement software that will support he construction of diagrams to describe

engineering systems (e.g., Microsoft Visio, Rational Rose), and (2) develop languages for the

exchange of UML/SysML data/information among tools (e.g., XMI and AP233) [16, 18]. The

principal problem with meta-models, versus a mathematical foundation, is that the former

provides only weak enforcement of relationships among system entities. As a result, software

tools like Microsoft Visio, allow a systems engineer to create UML diagrams that don’t make

any sense with respect to real-world entities.

Higraph models have the benefit of being defined by a mathematical formula, thereby ensuring

that all relations between requirements, structure, and behavior entities are formalized. These

relationships must be honored for the model to be valid. We also assert that by forcing directional

allocations (i.e. requirements to components, behaviors to components) to the lowest level possible,

not only will clarity of decision making in systems engineering be improved, but it will also allow

for early validation of system correctness. System design rules could be created that only allow

certain types of edges (for example, allocations) to connect a requirement to a behavior, or connect

a behavior to a function in a system structure component. The follow-up enforcement of rules for

allocations (edge connectivity in higraphs) provides a basis for traceability-enabled error checking

within a system model. For example, all edges could be examined to ensure their end-points are

compatible (e.g., a requirement to a component attribute, a behavior to a component function) and

complete (e.g., all requirements have edges to either a behavior or function).

4. SYSTEMS ENGINEERING MODELING WITH HIGRAPHS

Now that we have examined existing system modeling languages, and proposed ways for

improvement through the use of higraphs, we will show how the higraph formalism can be applied
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Use Case 2
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Figure 6: Pathway from operations concept to models of behavior/structure to requirements

to the representation and organization of system modeling entities (i.e., requirements, structure,

and behavior), and the traditional diagrams that describe them. Sections 4.1 through 4.4 follow

the development process shown in Figure 6. System behavior/functionality is defined by use cases.

Fragments of required behavior are defined using activity and sequence diagrams. Most of the

requirements correspond to constraints on performance, interface, and economic concerns that an

implementation would need to satisfy. Section 4.6, in particular, describes how higraphs can link

components from higraphs together to produce flows of design information generated during the

system development.

4.1. Use Case Modeling

Use case diagrams show what actions external users (e.g., users, operators, maintainers,

etc.) can perform using the system. By replacing the stick-figure icons representing actors with

the less aesthetically pleasing Higraph nodes, traditional use case diagrams can be converted to

higraph use case diagrams. See, for example, Figure 7.
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Figure 7: ATM use case diagram and counterpart higraph representation.
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Figure 8: System requirements.
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4.2. Requirements Modeling

To model system requirements using higraphs we will define how the graph elements can

be used. The nodes in a requirements higraph will represent individual requirements (whatever the

domain). All the node has to capture is the text of the requirement. The node (it may be best

to think of a node as the instance of a class in an object oriented paradigm) could have as many

text fields as necessary (e.g., number, textual description, priority, owner/stakeholder)). Multiple

levels of requirements may be represented by a hierarchy of nodes. Various interpretations in the

edges are possible – for example, “parent” and “child” requirements, high-level requirements and

low level requirements, explicit requirements and derived requirements.

Requirements are commonly organized into tree (and graph) hierarchies, especially for team

based design [1]. But this is not the only possibility. Another logical organization of requirements

is by domain. These domains may represent different types of requirements (e.g., physical specifica-

tions, electrical specifications, mechanical specifications), requirements from different stakeholders,

or may represent requirements from outside of the technical realm (technical specifications, project

cost requirements, project schedule requirements, project staffing requirements). Sometimes do-

main organization will overlap; for example, when requirements are common to multiple domains

and/or they represent the interface between domains. Introducing orthogonality to the require-

ments higraph allows for the logical and visual separation of requirements from different domains.

Orthogonality is a feature of higraphs that can be used to define, separate, and logically

group domain requirements. Consider, an example, where power and physical requirements are

organized into a higraph, as shown in the upper half of Figure 8. Required electrical performance

of the engineering system is covered with three requirements. Requirements 1.0 and 2.0 are ex-

plicit requirements; requirement 1.1 is derived from requirement 1.0. Notice how the hierarchy of

requirements is implied without the use of edges. The corresponding DAG for this organization of
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requirements is shown in the lower half of Figure 8. When an orthogonality is shown in a DAG,

the DAG takes on an and/or construct. The orthogonal relationship between Power Requirements

and Physical Requirements is represented as an “or”, but the other (hierarchical) relationships are

shown as “ands.” Harel creates this theory in reference [9].

4.3. System Functionality and Behavior

Activity diagrams and sequence diagrams are both ideal mechanisms for visualizing frag-

ments of system functionality. Activity diagrams, with their activities (nodes) and transitions

(edges) can easily be modeled as a higraph. Decision elements are supported by a specific type of

node. Parallel behaviors are supported by orthogonally divided activities. Figure 9 shows a simple

example taken from the automobile domain. Likewise, sequence diagrams which show a sequence of

events over time, can be modeled using higraphs. See, for example, Figure 10. To do this, we have

adapted a concept described in Minas [15]. Note that messages (edges) originate from traditional

structure object nodes (driver, door, door lock), but they must pass through a “time” node (with

an attribute counting time) before arriving at another structure node.

Higraph Modeling of System Behavior. Detailed models of system behavior emanate from

synthesis and organization (sequences, loops, hierarchies, concurrencies) of behavior fragments. By

paying attention to the grouping of these states (represented by nodes or blobs), behavior models

can remain in proportion to the size of the system structure model. Edges are events, internal or

external, that cause the system to change states. Figure 11 shows, for example, three concurrent

behaviors – transmission, heat, and lighting systems – in a modern automobile. For the heat and

lighting systems, only the top level of behavior is shown. The transmission system is presented with

two levels of detail. Each orthogonal region has a distinct initial state. Changes in system state

(e.g., the transmission moves from drive to neutral) are triggered by external events. Internal events
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Turn steering wheel

Deaccelerate before turn Switch on turn signal

Identify turn

Switch on turn signalDeaccelerate before turn

Prior to turn 

Identify turn

Turn steering wheel

Accelerate to speed

Figure 9: Activity diagram and equivalent higraph representation for turning a car.
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Time 1: Attempt to
open door.

Time 5: Attempt to
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Time 3: Unlock door

unlocked.
Time 4: Door is

Equivalent higraph representation

Figure 10: Sequence diagram and equivalent higraph representation for entering a car.
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Figure 11: Higraph system behavior diagram automobile.

correspond to behaviors defined within the nodes in the system structure model. External events

should flow from use cases. Edges can also be labeled with values that are the result of behaviors

that occur within a state (node). A single edge can represent a transition that affects any number

of states. Since nodes (states) can be grouped so they share common edges (transitions), when a

component is added to the system, it can be grouped so the total number of states does not increase

exponentially.

4.4. System Structure (and System-Level Design)

By design, system structure modeling with higraphs is very similar to system structure

modeling with UML and SysML. For both UML and SysML, the primary artifact of the system

structure is the class diagram. UML class diagrams and SysML block diagrams show a hierarchy of

classes/blocks, each with attributes and behaviors, and rules for assembly. The latter can involve

composition, aggregation, multiplicity, and generalizations (among others). The classes/blocks and
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their hierarchical arrangement define the structure of a system.

In a higraph model of system structure, the nodes represent classes, attributes, and func-

tions, and edges show association (or other general relationships) between classes. Attributes and

behaviors are defined within class nodes. The hierarchical arrangement of nodes in a system struc-

ture diagram represents a class hierarchy and shows aggregation and composition relationships.

Aggregation can be thought of as a weak “has-a” relationship between classes. The relationship is

weak in the sense that when the parent class is deleted, the sub class(es) will still exist. Compo-

sition, on the other hand, is a strong “has-a” relationship where if the parent class is deleted, the

sub-class(es) will not exist. See reference [28] for a complete UML Glossary. Orthogonal regions

can separate classes that aggregate or compose a parent class. And finally, in a higraph model of

system structure, edges show generalization, representing an “is a” relationship between classes.

Inheritance of attributes and functions would follow these edges.

Example. UML Based Structure Model of an ATM. A key advantage of higraphs is the ease

with which varying amounts of detail can be shown. Figure 12 shows three views of a system-level

design for an ATM machine. The top-left schematic shows a top-level higraph representation for an

ATM system structure composed of hardware and software classes. A detailed view of the attributes

and functions for the hardware and software is shown on the top right-hand side. Additional details

of the ATM software implementation (i.e., Customer Verification Software) are shown in the lower-

most schematic. Nodes at the bottom of the diagram (at the end of the open, unidirectional arrow)

are generalizations of the ATM Hardware parent class (or ATM Software class parent). As such,

these child classes inherit all attributes and functions that exist in the parent class, yet may have

their own unique attributes and functions.

Because the UML class diagram (and equivalent Higraph diagram) shows component at-

tributes and functions, it can be thought of as a system design model – not just a system structure
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Figure 12: High-level, detailed, and software inheritance views of system structure and hard-
ware/software system breakdown for an ATM Machine (Adapted from Austin, 2002).
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model. Individual attributes and functions are defined within individual nodes, and are arranged

hierarchically within the class to which they belong. Even within the attributes region of the ATM

Hardware class, two orthogonal regions are shown. This represents physical and logical attributes,

both of which compose the attributes for the ATM hardware class.

4.5. Modeling Domain Requirements, Structure and Behavior

While the modeling of domain rules is established and mature, to do so with a higraph

representation is new and novel. Higraphs deviate from UML and SysML in their ability to model

requirements, rules, and domain knowledge (e.g., relevant principals of science such as electro-

magnetic fields equations for a communications system) relevant to the development of models for

system behavior and system structure.

4.6. System-Level Modeling and Connectivity

Because higraph models allow for arbitrary connections among elements, their primary

strength lies in explicit support for traceability (via edges) between models of system requirements,

system structure, and system behavior. Indeed, although each of aspects may be defined in their

own higraph model, the formalism allows for their linking into one large higraph, thus creating a

true system model.

Consider, for example, the high-level connectivity of requirements, structure, and behavior

higraph models shown Figure 13. The system requirements higraph model is partitioned into three

orthogonal regions: one for physical requirements, a second for functional requirements, and a third

for interface requirements. Since we have chosen to separate physical and functional requirements

into different orthogonal regions (a logical separation in this case), we require an “interface” through

which these requirements could connect to each other. By design, the interface requirements node
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Domain Rules

Interface Requirements

Physical Requirements Functional Requirements

Associate with Functional Requirements Associate with Physical Requirements
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Complies With ... Complies With ...
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Figure 13: Higraph-based requirements, system model, and framework for domain rule checking.
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============================================================================================

Requirements Model Structure Model Behavior Model

============================================================================================

Nodes System Requirements Component Attributes System States

Component Functions

--------------------------------------------------------------------------------------------

Edges Assignment of a requirement Inheritance Transitions between states.

to system component. Assignment of behavior

Assignment of a requirement to system component.

to system behaviors.

--------------------------------------------------------------------------------------------

Hierarchy Requirements Allocation of an Behavior hierarchy.

Hierarchy attribute to component.

Allocation of a function

to a component.

--------------------------------------------------------------------------------------------

Orthogonality Logical partition Composition Concurrent

of requirements Aggregation behavior

============================================================================================

Table 2: Summary of higraph element definitions.

spans between the physical requirements and functional requirements, and any edges would have

to pass through a node in the interface requirements area to go from physical to functional (or

vice versa). Edges connecting the three higraphs show what pieces of the system structure satisfy

specific physical requirements, and what system behaviors satisfy specific functional requirements.

Finally, the lower half of Figure 13 shows how models of system structure are linked to domain rules

(physical realities), and how domain behaviors comply with domain rules (functional realities).

5. EXTENDED MATHEMATICAL AND LOGICAL MODELING

When equation 1 is applied to the higraph representation of an actual system, the result

is a DAG for the system representation. From a systems engineering perspective, however, the

formulation is missing specific details for how fragments of behavior and attributes of system

structure map onto the DAG. Therefore, in this section, we extend equation 1 to include assignment

of types to nodes and edges in higraphs, and definitions to hierarchies and orthogonalities. Table

2 contains a summary of the extended higraph element definitions.
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Nomenclature. Let B and E be the sets of nodes and edges that make up a higraph. We

will define B to be made up of B1 (set of all system requirement nodes), B2 (set of all system

component nodes), and B3 (set of all system behavior nodes). Lower level details are represented

through extension of the subscript notation. For instance, B2 may be defined as being made up

of B2−1 and B2−2 (set of all system component attribute nodes, and set of all system component

function nodes, respectively). So, B = (B1, B2, B3) where B2 = (B2−1, B2−2).

Higraph edges may represent (but are not limited to) the following: (1) Assignment of

Requirements, (2) Assignment of a requirement to a component, (3) Assignment of a requirement

to a behavior, (4) Assignment of a behavior to a component (Functional allocation), (5) Inheritance

between system components, and (6) A transition from one system state to another, corresponding

to a behavior. We will define E to be made up of E1 (set of all requirement assignments), E2 (set

of all functional allocations), and E3 (set of all behavior transitions). Further, E1 may be defined

as being made up of E1−1 and E1−2 (set of all requirements assigned to system components, and

set of all requirements assigned to system behaviors, respectively). So, E = (E1, E2, E3) where

E1 = (E1−1, E1−2).

Hierarchy in higraphs might represent (but is not limited to) the following: (1) Derived

Requirements, (2) System Component Specification, (3) Allocation of an attributes to a component,

(4) Allocation of a function to a component, (5) High level or low level system behaviors. If ρ is the

set of hierarchies that make up a higraph, we will define ρ to be made up of ρ1 (set of all derived

requirements), ρ2 (set of all component specifications), and ρ3 (varying levels of system behaviors).

Further, ρ2 may be defined as being made up of ρ2−1 and ρ2−2 (set of all requirements assigned

to system components, and set of all requirements assigned to system behaviors, respectively). So,

ρ = (ρ1, ρ2, ρ3) where ρ2 = (ρ2−1, ρ2−2).

Orthogonality in higraphs may represent (but are not limited to) the following: (1) Logical
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partitioning of requirements (e.g., physical requirements, functional requirements); (2) Structural

Relationships (e.g., composition and aggregation), and (3) Concurrent System Behaviors. If Π

is the set of orthogonalities that make up a higraph, we will define Π to be made up of Π1 (set

of requirement partitions), Π2 (set of all structural relationships), and Π3 (set of all concurrent

system behaviors). Further, Π1 may be defined as being made up of Π1−1 and Π1−2 (set of all

physical requirements, and set of all functional requirements, respectively), and Π2 may be defined

as being made up of Π2−1 and Π2−2 (set of all composition relationships, and set of all aggregation

relationships, respectively). So, Π=(Π1,Π2,Π3) where Π1 = (Π1−1,Π1−2) and Π2 = (Π2−1,Π2−2).

6. HIGRAPH MODELING OF AN OFFICE COMPUTING NETWORK

In this section capabilities of the extended higraph model are examined through the model

development of an office network computing system. The model development is simplified by

assuming that the network is already in place – therefore, the system requirements and components

are also in place. The principal goals of the example are to demonstrate that the office computing

network system can be represented in higraph form, which in turn, can be used to respond to

queries and changes to system requirements. The second important purpose is to demonstrate

partial formulation of the math model from which pseudo-queries of the system higraph model can

be performed.

6.1. System Requirements Model

The requirements model contains 36 requirements. Complete details may be found in the

MS Thesis of Fogarty [7]. All requirements have the following information associated with them:

unique requirement number (the structure of which dictates a requirement hierarchy), requirement

area (structure, behavioral, cost, power, etc.), requirement type (explicit or derived), requirement

owner (corporate, finance, engineering, IT, security), and finally the requirement text. Figure 14
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shows the implementation of a typical requirement node.

Behavior requirements are captured and organized into a two-level graph of use case di-

agrams (or a use case higraph), as illustrated in Figure 15. By organizing the required system

functionality into a hierarchy of higraphs, each level of presentation is considerably simpler than

if we attempt to show all aspects of the functionality in a single diagram. To simplify the inter-

pretation of requirements and assignment of requirements to project developers (or other project

teams), high-level requirements are organized into four areas – structural, cost, power and behavior

requirements – as shown in Figure 16. Detailed structural requirements are shown in the lower

higraph. Figure 16 also shows a separate set of domain requirements – their purpose is to represent

existing rules that need to be satisfied by the (network domain) system, unless otherwise noted.

6.2. System Structure and System Behavior

Figure 18 shows a higraph representation of the system structure model expanded into

three levels of detail. The highest level of abstraction simply shows that the system structure

will be composed of hardware and software (they are placed in orthogonal regions since they

are fundamentally different types of components). The first expansion of detail focuses on the

specification of hardware and software attributes and functions. Finally, the system hardware class

is inherited by Computer, Network, Printer, and Microphone nodes. Each of these extensions will

inherit attributes and functions from the “System Hardware” class and add attributes and functions

of their own (e.g., see the details shown in the Computer class). Thus, higraphs are used to show

inheritance in an object oriented manner. To complete the system structure model, we create an

implementation view (again represented as a higraph) showing the specific hardware and software

components used in this system. See Figure 17. Edges in this case show multiplicities, that is the

number of a given component in relation to another component in the system.
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Requirement Node

The system shall cost less than $300k in 
initial setup costs.

Cost

1.2.1 Explicit Finance

Figure 14: A typical requirement node in the networked office higraph model.
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Figure 15: Functional specification for the networked office including system-level use cases, power
On use case, and run applications use case.
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The system shall support 100 users.

Structural Requirements

System

Structural Requirements
The system shall use a client/server architecture.

Cost Requirements
The system shall be cost effective.

Power Requirements
The system shall consume less than 17,000 Watts.

Behavioral  Requirements
Required functionality is as detailed in the use cases.

Application Requirements

User Requirements

Security Requirements
The system shall allow security features.

Storage Requirements
The system shall provide storage for user data.

The system shall operate on a TCP/IP network.

Network Requirements

The system shall support application software.

The system shall use a client/server architectuure.

The system shall provide an office network for running work related applications.

Domain Requirements

Max.distance of 100 m between components

CAT5 Copper Network Cable

Figure 16: Networked office: higraph hierarchy of system and structural requirements.
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Figure 19: Higraph model of networked office behavior (optimal edges).

System

Cost Requirements

Behavioral Requirements

Structural Requirements

See use cases

Power Requirements

System Use Cases

System Actor

Power On

Power Off

User

Run Applications

Run Security

Administrator
Network

Adminstrator

Figure 20: System higraph model: behavior requirements association with use cases.
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At the highest level of abstraction, and as shown in Figure 19, behavior of the office network

can be modeled as transitions among three states: Off, On, and Running. The system can be turned

off at any point – this is represented by edges from all of the other states to the System Off state.

The System Running state is defined by concurrent behaviors for applications running and security

running. An important detail is the the edges between the “System On” and “System Running”

states. For security features to be running, only the server and network need be on. However, in

order for applications to run, the workstation, server, and network must all be on.

6.3. Structural Requirements Traceability

To this point we have presented higraphs that represent a substantial portion of system

requirements, system structure, and system behavior. Now we will show examples of connectivity,

via edges, for allocation of requirements to component attributes and system behaviors, alloca-

tion of system behaviors to component functions, and traces from domain requirements to system

requirements.

Figure 20 shows the association between the system’s behavior requirements and the system

use case higraph. Figure 21 shows the allocation of the system cost requirement to attributes in

system structure componentssystem hardware components and system software components in this

case. It would be generated on the fly in response to the query “Show all system attributes that

satisfy the system cost requirements.” What we see, then, is that every hardware and software

component has an attribute that must contribute to the satisfaction of a system cost requirement.

A third important category of traceability occur with the linking of system requirements to domain

requirements (i.e., a system cannot work until the system requirements have satisfied the relevant

domain requirements) Figure 22 illustrates a scenario where requirements deal with the physical

limitations of a network operating at 100Mbps. In general, a certain type of network cable, CAT5,
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Figure 21: Higraph model of cost requirements allocation.
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Figure 22: Domain requirements allocation.
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System On
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Figure 23: System higraph model for use-case to system behavior traceability.

must be used in such a network. Further, this cable has a physical limitation of roughly 100 meters

over which it can transport a signal. These domain requirements exist regardless of the system

requirements. Since this system has a requirement to operate at 100Mbps, the domain requirements

become applicable, and must trace to system requirements. Figure 22 shows this trace, as well as

the allocation of these system requirements to system component attributes. The relevant query

might ask “Show all relationships with system network requirements?” We see there is a connection

from a network requirement (not specified by any domain requirements) to the Router component’s

WAN speed attribute.

6.4. Behavioral Requirements Traceability

Tracing behavior requirements to system states is only part of the design process. System

behaviors that cause transitions into and out of system states have to be allocated to functions in

system components. Like structure requirements and component attributes, behavior requirements

trace through system behaviors to component functions, as illustrated in Figure 23. A more com-

prehensive example is shown in Figure 24. All of the functions that cause transitions into states

in the “Email Running” behavior diagram must correspond to component functions in the system
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structure model. Functions are allocated to the email software, POP3 software, and SMTP soft-

ware components. It is important to note the direction of the colored edges. The edge comes from

a system behavior (which causes a transition to a required system state) to a function in a system

component. Also, the edges from the email node to the POP3 and SMTP nodes imply inheritance

(not allocation). This would be specified through a user’s definition of edges used in the system

higraph model. The Compose, Read, Receive, and Send e-mail behaviors are allocated to system

component functions, but the StartApplication() behaviors remain unallocated. An appropriate

query can establish these links, as shown in the upper half of Figure 24.

6.5. Mathematical and Logical Model

Sections 6.1-6.4 have focused on higraphs as a mechanism for visually conveying informa-

tion. However, the real power of the higraph system model comes from the higraph quadruple

H = (B,E, ρ,Π). After the requirements, structure, and behavior models exist and are connected,

a good way to begin construction of the math model is to define all of the possible meanings behind

each node, edge, hierarchy, and orthogonal region. Tables 3 through 6 show the nodes, edges,

hierarchy classifications, and use of orthogonalization to represent the system model. Each table

row defines a set corresponding to a particular logical organization. For instance, each node in

any part of the Office Network higraph will fall into one of these sets. The set B1−2−1−2 (system

behavior requirements) consists of four nodes: Power On, Power Off, Run Applications, and Run

Security. When the hierarchy portion of the model is defined (see details below), any nodes that

fall under these four would also make up the set B1−2−1−2.

Table 4 shows a list of all of the logical definitions applied to edges. Again, each row in the

table defines the logical sets of edges that make up the office network higraph model. For instance,

the set E6 (Satisfaction of a Domain Requirement by a System Requirement) consists of the three

edges shown in Figure 22 that domain requirements to network requirements.
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Area Higraph Nodes (B) Symbol

Requirements Requirements higraph B1

Structure requirements higraph B1−1

Requirements number B1−1−1

Requirements area B1−1−2

Requirements type B1−1−3

Requirements text B1−1−4

Requirements owner B1−1−5

Behavior requirements higraph B1−2

Use cases B1−2−1

Actors B1−2−1−1

System behavior requirements B1−2−1−2

Structure Structure higraph B2

Components B2−1

Attributes B2−1−1

Functions B2−1−2

Instances B2−2

Behavior Behavior higraph B3

System states B3−1

Table 3: Office Network Higraph Model Node Definitions

A set by itself is not terribly helpful. Even if all nodes are defined and grouped according

to Table 3, we still need to know where they fall in the higraph. These details are obtained from

Tables 5 and 6, which specify the hierarchy and orthogonality organization of the higraph. As

a case in point, ρ3 (Association of Attributes with a Component) for the hardware component

would be a set of three nodes (nodes of type Attribute – B2−1−1): power consumption, cost,

commercial availability. An example of a hierarchy set is Π1 (requirements domain), which consists

of four nodes: structural requirements, cost requirements, power requirements, and behavioral
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Area Higraph edges (E) Symbol

Requirements Allocation of a user to a behavior E1

Structure Inheritance E2

Multiplicity association E3

Behavior State transition E4

System level Assignment E5

Assignment of a structure requirement to a component attribute E5−1

Assignment of a behavior requirement to a use case E5−2

Assignment of a use case to a system state E5−3

Assignment of a state transition to a component function E5−4

Satisfaction of a domain requirement by a system requirement E6

Table 4: Office Network Higraph Model Edge Definitions

Area Higraph hierarchy (ρ) Symbol

Requirements Requirements hierarchy ρ1

Use case hierarchy ρ2

Structure Association of attributes with a component. ρ3

Association of functions with a component. ρ4

Behavior Behavior hierarchy (states/substates). ρ5

Table 5: Office Network Higraph Model Hierarchy Definitions

Area Higraph orthogonality (Π) Symbol

Requirements Requirements domain Π1

Structure Hardware component or software component. Π2

Component attribute for component function. Π3

Behavior Allowable concurrent behavior. Π4

Table 6: Office Network Higraph Model Orthogonality Definitions
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requirements. Of course, to know how anything relates to anything else in the system, we also need

to know the set of edges.

6.6. Using the Office Network Higraph Model

A strength of the higraph model is the ability to query it to create custom views, elicit very

specific information, or discover certain relationships among system requirements, behaviors, and

components. These queries are really queries of the higraph quadruple stored within the higraph

tables. Suppose, for example, that our requirement to interface the office network with a T3 WAN

link was changed to interface with a higher speed STM1 WAN link. What would the impact to

the system be? We would query the model to find what relationships exist that can be traced

to the requirement node B1−1 (The system shall interface with a T3 WAN link). To do this, we

would query the Edges set for any occurrence of B1−1 (The system shall interface with a T3 WAN

link). From our higraph equation, and from Figure 22 we determine that there exists an edge, E5−1

[B1−1 (The system shall interface with a T3 WAN link), B2−1−1 (WAN Speed)]. The query would

then trace up through the hierarchy to find what component the B2−1−1 (WAN Speed) attribute

is allocated to.

How would the query know to perform this second trace to find an affected component?

It’s because the edge we found, E5−1, has a meaning of “Assignment of a Structure Requirement to

a Component Attribute.” Moving up through the hierarchy from B2−1−1 (WAN Speed) the query

would find that B2−1−1 (WAN Speed) belongs to the set ρ3 (Router) = [B2−1−1 (WAN Speed),

B2−1−1 (i.e., no of WAN Ports)]. We now know that we have to modify the router component to

change the WAN speed to meet the new requirement. Once we modify/replace the Router com-

ponent with one that meets this new STM1 WAN requirement, we would continue with trace that

examines all edges coming from the router component to ensure no other requirements, structures,
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or behaviors have been adversely affected by our change. Such a trace would reveal, among other

things, that we must remain within power and cost budgets. Does our new component satisfy

these? The next trace to find all cost and power attributes from components within the system,

sum them respectively, and evaluate those totals against the system requirements will provide us

the answer.

There are, of course, an almost infinite number of possibilities for queries against the system

higraph model. In an industrial setting, many queries would result from changed requirements, but

others may result from stakeholder information requests (e.g., finance wants to know what the

total cost of the system is) or equipment obsolescence (e.g., a certain software package has reached

its end of life). Once implemented in software, the series of traces and evaluations to provide the

results of a query will be as automated as possible based on the user defined tables for nodes, edges,

hierarchy, and orthogonality, and changes users make to the. In this manner, the higraph model

servers not only to present information, but to show and validate how the system is put together.

7. CONCLUSIONS AND FUTURE WORK

Higraphs are a useful tool for organizing and connecting data and information generated

during the system engineering lifecycle. They can be defined mathematically and logically, which

clears any ambiguities from the system model, as well as allows for the system model to be “smart”

in the way it responds to queries for specific information. The data that is presented as a result

of a query on the system model can be used by system engineers to make knowledgeable design,

implementation, operational, and support decisions for the system. Unfortunately, these benefits

do not come without costs. Because components from anywhere in a system model can have a

relationship (connection) to components anywhere else in that system model, higraph models can

quickly become very detailed, presenting engineers with too much data and information to work
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with simultaneously at any one time. For a given higraph, the process of arranging the nodes

and edges in a visual layout that maximizes communication of information to an end-user is far

from trivial. Harel says of this issue [9]: “In practice, overlaps should probably be used somewhat

sparingly, as overly overlapping blobs might detract from the clarity of the total diagram.” Still this

solves only part of the problem. To mitigate the possibility of overwhelming the end user, there must

be a filter (or abstraction tool) that mines the higraph and presents only the desired information

to the end-user in response to specific queries. In other words, in order for such a methodology and

tool to be useful in industry, higraph modeling languages must be able to interface with a software

tool to perform this filtering.

Looking forward, any software tool that implements higraphs would, at a minimum, have to

allow the following tasks: (1) Create a system requirements higraph from user inputs, (2) Create a

system structure higraph from user inputs, (3) Create a system behavior higraph from user inputs,

(4) Allow the user to define types of nodes, edges, hierarchies, and orthogonalities, and (5) Allow

the user to connect nodes via edges. Generating these viewpoints is a matter of following a select

group of edges from specific nodes in the higraph. Suppose, for example, that an engineer needs

to find all requirements associated with a specific system component, He/she only needs to trace

all “requirements” emanating coming from the component node in the higraph. Likewise, the costs

associated with a specific subsystem can be retrieved by pulling all of the cost attributes from

the components that make up this subsystem. The interfaces available to create and define these

things could vary. User inputs could come from XML forms, spreadsheets, text files, or developed

graphical user interfaces (GUI’s). Translation rules could be applied to import existing artifacts

(e.g., class diagrams, statecharts, etc.) into a new higraph model. Transformation tools like XSLT

[30] could conceivably be used to automatically generate UML/SysML diagrams – thus, a software

environment where higraphs and UML/SysML representations coexist certainly seems feasible. To

the extent possible, another software tool could automate the translation of UML/SysML diagrams
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to Higraphs, and vice versa. Finally, there is also a need to understand how notions of time can

be added to the higraph framework. There is need to examine how best to depict information on a

traditional sequence diagram, where lifelines are used to show time progression. This area is covered

by UML and SysML, but is only briefly examined here. In addition to a lifeline feature, we may

be able to come up with a new equation to add to the higraph quadruple (making it a quintuple?)

that shows timing. This equation might outline what events must occur in what sequence.
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