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Abstract: Artificial intelligence is set to transform the next generation of intelligent buildings through
the application of information and semantic data models and machine learning algorithms. Semantic
data models enable the understanding of real-world data for building automation, integration
and control applications. This article explored the use of semantic models, a subfield of artificial
intelligence, for knowledge representation and reasoning (KRR) across a wide variety of applications
in building control, automation and analytics. These KRR-enabled applications include context-aware
control of mechanical systems, building energy auditing and commissioning, indoor air monitoring,
fault detection and diagnostics (FDD) of mechanical equipment and systems and building-to-grid
integration. To this end, this work employed the Apache Jena Application Programming Interface
(API) to develop KRR and integrate it with some domain-specific ontologies expressed in the Resource
Description Framework (RDF) and Web Ontology Language (OWL). The ontology-driven rules were
represented using Jena rule formalisms to enable the inference of implicit information from data
asserted in the ontologies. Moreover, SPARQL (SPARQL Query Language for RDF) was used to
query the knowledge graph and obtain useful information for a variety of building applications.
This approach enhances building analytics through multi-domain knowledge integration; spatial
and temporal reasoning for monitoring building operations, and control systems and devices; and
the performance of compliance checking. We show that existing studies have not leveraged state-
of-the-art ontologies to infer information from different domains. While the proposed semantic
infrastructure and methods in this study demonstrated benefits for different building applications
applicable to mechanical systems, the approach also has great potential for lighting, shading and
security applications. Multi-domain knowledge integration that includes spatial and temporal
reasoning allows the optimization of the performance of building equipment and systems.

Keywords: building management system; context-aware control; knowledge representation and
reasoning; intelligent buildings; Web Ontology Language

1. Introduction

Modern buildings are complex multi-disciplinary systems that need to operate in
an efficient and sustainable manner. To formally reason about building performance and
sustainability, underlying models need to include material and geometry properties as well
as their dependencies. Notions of sustainability evolve from processes that seek to incorpo-
rate and evaluate a broad range of stakeholder and operator concerns over the complete
building system lifecycle. Given the growing necessity of the design of sustainable build-
ings, and in support of these ends, we seek data-driven approaches to the measurement
of performance in the building environment and identification of trends and patterns in
behavior. Long-term solutions need to account for the unique physical, economic and social

Sustainability 2022, 14, 5810. https://doi.org/10.3390/su14105810 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14105810
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-3064-825X
https://doi.org/10.3390/su14105810
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14105810?type=check_update&version=1


Sustainability 2022, 14, 5810 2 of 18

characteristics of individual buildings and building systems. A key challenge in develop-
ing the required capability is finding new ways to work with interacting and interlinked
domains that span the building enclosure, mechanical equipment systems and services,
stakeholders (e.g., owners, facility managers) and occupants. Unfortunately, state-of-the-art
procedures in building control, operation and system simulation fall short in their ability
to represent and reason with the knowledge of the interlinked and interacting building
domains. This knowledge can be as explicit as the representation of well-known facts
but can also include knowledge derived implicitly through chains of reasoning spanning
multiple domains.

The World Wide Web is expected to use the Semantic Web to enable a pathway for
machine-to-machine interaction and the development of enhanced knowledge-based appli-
cations. Ontologies are an essential concept of the Semantic Web. An ontology is a formal
and explicit representation of data that conceptualizes information in a particular domain
for consistent definition and access [1]. Knowledge graphs are created when ontologies
are populated with data points (individuals). During the past twenty years, Semantic
Web technologies [2,3] and associated knowledge representation languages and tools have
matured to the point that it is now feasible to consider their use in applications beyond
those normally associated with computer science. One such opportunity is assistance in
the design and operation of large-scale building systems. To this end, a recent study [4]
reviewed the state-of-the-art ontologies that can be used for smart and ongoing commission-
ing (e.g., SAREF, ifcOWL, SEAS). The review was based on common data types used (e.g.,
energy use, maintenance, building systems and components), and applications (e.g., fault
detection and diagnostics), building performance improvement and performance indicator
calculations since 2014. This study suggested that future research directions include the
identification of data types, assessment of ontology performance and creation of open-
source approaches. A second recent study [5] proposed a conceptual system architecture
for semantic data mining and linked data for a system that generates recommendations for
performance-oriented design in architecture, engineering and construction. Themes that
emerge from the literature include the following: (i) semantic queries can enable access to
knowledge graphs; (ii) traditional data mining techniques can allow sensor data mining;
(iii) the use of a linked building data graph empowers semantic data mining; and (iv)
the use of pattern matching in combination with Resource Description Framework (RDF)
stream processing can occur with RDF graph mining [5].

Another set of studies have focused on the investigation and development of ontology-
based approaches to building automation systems (BASs) [6–11]. This body of work concludes
that a significant barrier to the deployment of many building analytics applications—fault
detection and diagnostics (FDD), tools for system-scale optimization, automation-assisted
commissioning tools—is the mundane, error-prone process of mapping the building au-
tomation system data points to the applicable software tools. These observations point to
a strong need for a new generation of software tools that incorporate and work with on-
tologies and semantic graphs representing equipment, sensors and actuators in a machine-
readable format. As an illustration of what is possible, one study used ontologies as a
generic application model to facilitate the integration of heterogeneous building automa-
tion networks [9]. Their model combined a classical data-driven energy analysis with a
knowledge-driven energy analysis through ontologies and rulesets. Their analysis utilized
information collected from building automation devices and inferred energy inefficien-
cies based on the state of those devices and user behavior. In a similar effort, One study
proposed an ontology development process and the delivery of an intelligent multi-agent
software framework (OntoFM), both designed to support the real-time monitoring of build-
ing conditions [6]. Their multi-domain framework weaves together building, sensor and
supporting ontologies (i.e., mereology and topology ontologies) to support real-time knowl-
edge querying of the underlying multi-agent framework. A third example introduced
an ontology and associated data models to represent and incorporate layers of data from
multiple domains, including occupants, indoor and outdoor environmental conditions,
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control systems and devices, equipment and energy flows [10]. The goal of their study
was to facilitate the collection, storage, sharing and analysis of monitored data spanning
building automation, facility management, building diagnostics and building performance
simulation. Another study proposed a building management system architecture using
ontologies and inferencing engines to gather sensor and equipment state data, decide the
status of control commands and operate building systems [7]. Collectively, these studies
demonstrate the effectiveness and promise of ontology-based approaches in controlling the
behavior of building systems.

1.1. Proposed Approach: Data, Information, Knowledge and Wisdom

We envision the widespread use of data-driven approaches to building performance
analysis and the identification of behavioral trends and patterns in buildings. For this vision
to work, there needs to be a well-defined pathway from raw building data to decision
making supported by the formal use of analytics. It is important to note that present-
day data-driven approaches use the data without any intuition; knowledge-based (i.e.,
ontology-driven) approaches, on the other hand, account for the context of the data. The
four key concepts of the proposed approach are data, information (context), knowledge
and wisdom (analytics). These concepts are the elements from Ackoff’s data-information-
knowledge-wisdom pyramid [12] and have been highlighted in many publications [13].
Briefly, data are the product of observations. Information is the processed data. Knowledge
further refines information by making the transformation of information into facts possible.
Wisdom is the ability to see the long-term consequences of any act.

To demonstrate the use of the four key concepts in the proposed knowledge-based
approach, Figure 1 shows the relationships between data, information, knowledge and
wisdom for a fault detection application. It demonstrates how wisdom can help in trou-
bleshooting the airside of forced air heating, ventilating and air conditioning (HVAC)
equipment. Forced air HVAC systems usually utilize air filters to protect equipment and
improve indoor air quality [14]. After the manufacturer’s recommended number of hours
of operation, clogged or loaded filters can lead to a significant reduction in the airflow
rate and energy efficiency of the system. Without filter replacement, especially during the
summer and winter seasons, there is the possibility of equipment damage with continued
operation [15].

Figure 1. Knowledge-based fault detection of a forced air HVAC system with a clogged filter: (a) data,
(b) information, (c) knowledge and (d) wisdom.
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Figure 1a shows the “data” for this example—numeric values with no labels, quantity
type or units (e.g., 25, 28). Information is created when the raw data are processed and
structured, which in this case means the assignment of temperature units to the raw data
values of 25 and 28. Additionally, notice that, at this stage, different entity types can
be represented symbolically by different colored shapes. Knowledge representation (see
Figure 1c) entails encapsulating the properties (i.e., isolated information) into concepts
(i.e., dotted shapes) of the domain and describing how those concepts are related (gray
connection lines). These relationships can indicate, for example, that Fan A serves Room
A. Wisdom is gained through evaluation and rule checking about relationships in the
knowledge base (i.e., see orange connection lines, Figure 1d). In this case, for example, the
wisdom reveals the setpoint in Room A is not being met due to a clogged filter.

1.2. Scope and Objectives

Our work is motivated by the tenet that semantic-based frameworks offer a multiplicity
of benefits including, but not limited to, an automated pathway from data to wisdom,
coupled with support for big data representation and reasoning operations. The fields of
big data and data-driven decision making have transformed high-performance building
operations by offering meaningful insight into building conditions and equipment health
and behavior. As such, semantic frameworks of the type proposed can support emerging
applications of BASs, such as the ability to understand, reuse and expand underlying
knowledge. The proposed approach leverages the Description Logic (DL) for implementing
sequences of operation (SOOs) across a variety of building systems (e.g., HVAC, lighting).
Further, it serves as a gateway to smart buildings (and cities) supported by the Internet of
Things (IoT). Thus, the goals of this paper are three-fold:

1. To demonstrate the application of formal information models and knowledge struc-
tures that represent the underlying knowledge bases of building systems;

2. To present a roadmap for integration of ontologies and rulesets with advanced control
strategies and state-of-the-art system simulation models;

3. To reuse and expand existing building domain-specific and foundational ontologies
(i.e., Time and QUDT) for different building applications.

The remainder of this paper proceeds as follows: Section 2 introduces and describes
Semantic Web technologies. Collections of ontologies that enable the proposed approach
are covered in Section 3. Methods and a range of building applications (e.g., detection and
diagnostic analysis of faults) are introduced in Sections 4 and 5, respectively. This paper
concludes with Sections 6 and 7.

2. Semantic Web Technologies

The goal of the Semantic Web is to give information a well-defined meaning, thereby
creating a pathway for machine-to-machine interaction and automated services based on
descriptions of semantics [2]. The Semantic Web Technology Layer Cake (see Figure 2)
illustrates the technical infrastructure that accomplishes these purposes. The lower layers
support addressing resources on the Web and linking documents. For example, Extended
Markup Language (XML) is designed for storing and transferring data into tree structures.
Unfortunately, tree structures are incapable of integrating data from multiple sources. To
overcome this problem, RDF is a framework that can represent data resources on the
Web in graph structures; now, XML documents from multiple sources can be gathered
and integrated into a graph format. One shortcoming of RDF is that it has no semantic
restrictions, and any statement that follows the triple structure is valid. This makes it
possible to assert statements in the model that are semantically wrong. An RDF Schema
(RDF-S) takes a step toward solving this problem by providing the basic vocabulary for
RDF statements and the constructs to create hierarchies of classes and properties.
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Figure 2. Technologies in the Semantic Web Layer Cake (figure is redrawn from [1]).

The Web Ontology Language (OWL) is a description logic-based (DL-based) mathe-
matical theory language with the highest level of expressivity for constructing ontologies.
OWL enhances expressiveness and support for richer property declarations (e.g., transi-
tivity), class property restrictions (e.g., someValuesFrom), quality cardinality restrictions
(e.g., owl:maxCardinality), equality between classes (e.g., sameAs) and relations between
classes (complementOf) [16]. These additional capabilities allow software applications to
use reasoning to infer new facts (triples) from existing ones with first-order logic (FOL) as a
mathematical foundation.

As mentioned in Section 1, in addition to ontologies, Semantic Web standards also
support languages for describing ontology-driven rules (i.e., mechanisms to infer data)
and queries (i.e., mechanisms to access data). For example, the shapes constraint language
(SHACL) and SPARQL are semantic rule and query languages for ontologies, respectively.
SHACL is a relatively recent W3C (World Wide Web Consortium) recommendation for
defining constraints that can be validated against RDF graphs. The interactions between
SHACL and other Semantic Web technologies are a matter of ongoing research [17]. The
higher layers of the Semantic Web infrastructure include the mechanisms to ensure the
proof and trustworthiness of models. Trust ensures that the source is trustworthy, and
proof checks that the data come from the original source [18].

3. State-of-the-Art Building Ontologies

This section provides an overview of state-of-the-art ontologies (many still being
actively developed and extended) that can be used to enhance building automation,
data integration, analytics and decision making. The ontologies reviewed include: (i)
SAREF4BLDG, (ii) RealEstateCore, (iii) SOSA (Sensor Observation Sampling Actuation),
(iv) QUDT (Quantity, Unit, Datatype), (v) Brick Schema, (vi) BOT (Building Topology
Ontology) and (vii) Time. Some of these ontologies are designed specifically for buildings,
i.e., Brick, while the others, such as the Time and QUDT ontologies, represent foundational
concepts that apply to multiple domains. Table 1 summarizes these ontologies.
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Table 1. A summary of existing ontologies that can be used within the building domain.

Name Ontology Description URLs to the Ontologies

SAREF4BLDG An ontology pattern for systems,
connections and connection points

https://saref.etsi.org/saref4bldg
(accessed on 1 November 2021)

RealEstateCore An ontology for smart buildings, based
on established practices in real estate

https://w3id.org/rec/full/ (accessed on
1 November 2021)

SOSA (Sensor Observation Sampling
Actuation)

Semantic description of sensors and
observations

https://www.w3.org/TR/vocab-ssn/
(accessed on 1 November 2021)

QUDT (Quantity, Unit, Datatype) Semantic description of units of measure,
quantity type, dimensions and data types

http://qudt.org/2.1/schema/qudt
(accessed on 1 November 2021)

Brick Schema
Semantic description of physical, logical
and virtual assets in buildings and the

relationships between them

https://brickschema.org/schema/Brick
(accessed on 1 November 2021)

BOT (Building Topology Ontology) Semantic description of concepts in
buildings such as sites, zones and rooms

https://w3c-lbd-cg.github.io/lbd/bot/
(accessed on 1 November 2021)

Time Ontology Semantic description of time https://www.w3.org/TR/owl-time
(accessed on 1 November 2021)

RealEstateCore is an ontology for smart buildings derived from established practices
in real estate and construction. It provides building owners and operators a platform for the
management, storage and sharing of building data. RealEstateCore is a modular ontology,
that is, a collection of data schemas that describe concepts and relations for the data related
to modeling buildings and building systems, or that are sourced from such systems [19].

SAREF4BLDG was developed based on the Industry Foundation Classes (IFC) stan-
dard for building information and topology. The scope of this extension includes concepts
around devices and appliances and their location within the building [20].

The SOSA ontology is a lightweight semantic core module that specifies the semantics
of sensors, observations, samplers and actuators. A more expressive extension module is
called the SSN ontology (Semantic Sensor Network). The combined SOSA/SSN model
provides a semantic description of systems of sensors and actuators, observations, measure-
ment procedures, the subjects and their properties being observed or acted upon, samples
and the process of sampling [21]. SOSA and SSN are now widely accepted as standards
and are W3C recommendations.

QUDT is a semantic model for the various Quantity, Unit and Datatype standards.
Operations supported by this model include: mechanisms for conversion between single
and complex unit types, dimensional analysis of equations, determination of equivalent
units in different systems of units and determination of equivalent quantity types in
different systems of quantities [22].

Brick Schema is a collection of semantic representations for the physical, logical and
virtual assets in buildings. The Brick Schema defines a concrete ontology for sensors, sub-
systems and relationships among them. Moreover, it enables cross-vendor representation
of the various subsystems in modern buildings in the different domains of HVAC, lighting,
fire and security [23]. One study tested Brick for building management systems (BMSs)
in six diverse buildings with sensors and equipment from different vendors [24]. The test
coverage systematically included a range of completeness and expressiveness criteria to
represent all metadata information (e.g., location of sensors, type contained in the build-
ing’s BMS) and capture all important relationships between data points (e.g., explicit or
implicit) mentioned in a building BMS.

BOT is a core ontology for describing the topological concepts of a building. It is a
minimal ontology for defining relationships between the sub-components of a building but
can be extended with more domain-specific ontologies [25]. For example, EEPSA (Energy
Efficiency Prediction Semantic Assistant) takes advantage of Semantic Web technologies to
represent knowledge in the domain of energy efficiency and thermal comfort in buildings.
This approach allows for the customization of ontologies for similar problems in different

https://saref.etsi.org/saref4bldg
https://w3id.org/rec/full/
https://www.w3.org/TR/vocab-ssn/
http://qudt.org/2.1/schema/qudt
https://brickschema.org/schema/Brick
https://w3c-lbd-cg.github.io/lbd/bot/
https://www.w3.org/TR/owl-time
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types of buildings. The EEPSA and BOT ontologies were tested for an office building and a
farm building to help with knowledge discovery in databases (KDD) [26,27].

Mechanisms for the representation of points, intervals of time and time-based reason-
ing are handled by the cross-disciplinary Time ontology and backend supporting rules
and software. The Time ontology encapsulates a semantic definition of time (e.g., instance,
interval), temporal properties (e.g., begins, ends) and relationships among them. To support
time-based reasoning, the model stores the topological (ordering) relationships among
instants and intervals, and information about the temporal position including date–time
information. This collection of features is a key enabler of building analytics working with
time series data [28]. One study used the Time ontology in their framework to support
decision making in cyber-physical systems (CPSs) [29].

A few recent studies have focused on the use of the ifcOWL ontology, which is the
transformation of the IFC schema to an OWL representation (i.e., ifcOWL is the OWL
representation of the IFC schema). The IFC standard is designed to represent building
architecture and construction data [30]. In one study, ifcOwl was used to query a wall panel
production model (e.g., activity sequence and cost estimation) [31], and in other studies, it
was used to modify an existing geometry model [32,33]. Another study employed the IFC
model to convert building data into a node2vec graph model designed to capture semantic
similarities among different building components [34]. Raghavi and Gowtham summarized
current efforts to integrate the BIM (building information model) with external domain
querying and reasoning systems to retrieve details of a building from the underlying
building model [35]. The goal of the work was to make the IFC model available to domains
other than architecture, construction and engineering. As a case in point, SimpleBIM is an
open BIM-ifc application that is designed to extract information from ifcOWL to enrich
BIM models [36].

These state-of-the-art ontologies can be leveraged to develop an integrated roadmap.
The survey in [27] reviewed and compared existing ontologies for observation and sensing
using a set of competency questions to verify the models in a simple use case. Ontologies
were selected based on factors such as online availability, existing metadata and documen-
tation. Many of the ontologies covered in the review are well established and actively
maintained by important consortia: ifcOWL [33] of BuildingSMART, BOT [25] of the W3C
Linked Building Data community group, SAREF4BLDG of ETSI SmartM2M and Brick. The
authors in [37] proposed an alignment of BOT to five domain ontologies: SAREF, ifcOWL,
Brick, DogOnt, ThinkHome. Consequently, this study used a framework to integrate
different ontologies from different domains for knowledge representation and to develop
rulesets across domains to perform reasoning.

Project Haystack was initially proposed as a tagging system to capture metrology
building information in a lightweight strategy [38]. In the work documented in [39], the
authors argued for a formal semantic model by identifying a family of inherent inter-
pretability and consistency issues in the tagging model that emerge due to the lack of a
formal definition in Project Haystack. It is important to note that Haystack 4 implements a
graph model to store the Haystack tags within Haystack systems [40].

To summarize, the smart building domain spans concepts that include devices, obser-
vations, occupants, building physical information and units of measurements. While some
ongoing studies in the AEC and facilities management (FM) communities focus on the use
of a specific ontology to capture knowledge for a specific use case, others determine the
correspondence between the concepts of different ontologies for alignment or matching.

The focus of the state-of-the-art literature is on using the ontologies as a taxonomy
that can replace semantic tagging. However, the current literature does not explore how
the represented knowledge and reasoning capabilities can be used as powerful tools for
different building applications. Understanding the relationship between the heterogeneous
data from different domains is one of the key aspects of enhancing design, maintenance and
other building analytics applications, including, but not limited to, HVAC, lighting, access
control, shading devices, FDD and IAQ monitoring. Existing knowledge gaps from this
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literature review indicate that, first, in most cases, only one or a limited number of domain-
specific ontologies have been used to represent the data. This is partly because there are
many overlapping and often conflicting concepts in the different ontologies requiring
alignment between the concepts of the ontologies. Second, the studies did not focus on
how these ontologies and the reasoning and querying capabilities can assist or enhance
a variety of building applications. This paper explored how knowledge graphs can be
used to integrate data from multiple sources to enhance semantic definitions, FDD, spatial
reasoning, temporal reasoning, asset management and maintenance and context-aware
control. While this paper primarily demonstrates the proof of concepts for HVAC systems,
these enhancements are applicable to other building domains. To address the issues from
the identified knowledge gaps, the semantic framework aims to:

• Serve as conceptual modeling for buildings and their systems;
• Provide easier data interoperability at a semantic level from multiple domains (i.e.,

occupant, building, weather, equipment);
• Enable the reuse of existing best practice schemas and standards.

4. Proposed Semantic Infrastructure and Methods

The examples in this work utilize proposed languages from W3C standards for con-
structing, constraining and querying the ontologies for different building applications.
From a productivity standpoint, these standards are designed to enhance the heterogeneous
data in such a way that they can be used for effective discovery, automation, integration
and reuse across multiple domains in various building applications.

To achieve these purposes, the proposed semantic infrastructure is organized into three
layers: (1) ontology—represents a snippet of the domain knowledge, including the relevant
concepts and their relationships; (2) rules—represent the mechanisms to formally infer new
information based on the existing data across multiple domains; and (3) queries—enable
the retrieval of both explicitly and implicitly derived information. The framework employs
Apache Jena—referred to simply as Jena [41]—for ontology creation and reuse. Jena is
an open-source Java [42] framework for creating Semantic Web applications. It supports
forward chaining and back chaining rule engines and is targeted mainly at RDF process-
ing. Therefore, in this work, RDF was used to describe the ontology, and Jena was used
to describe the rules. Furthermore, SPARQL was used to express queries against our
model [43].

This work leveraged some of the existing building ontologies discussed in Section 3
to represent knowledge across different domains of the building (i.e., sensors, equipment,
spaces, occupancy). The goal is to demonstrate that these multi-domain semantic models
simplify deployment in building control, analytics, automation and integration applications
while also lowering operational costs. We consider the following definitions:

• Facts are logical statements that specify the relationships between properties and/or
classes in the domain.

• Rules are mechanisms that allow for the specification of additional logical constraints.
They explain the conditions under which new implicit knowledge can be derived from
existing facts that are stored in the ontology, such as “if <Axiom conditions> then
<Axiom consequence>”.

• The reasoner is an algorithm that infers logic by executing rules. The reasoner infers
implicit knowledge from explicit knowledge. In building applications, the reasoner
can serve as the building analytics (wisdom).

Figure 3 illustrates the proposed framework for KRR in building applications. In
this framework, there is a central core piece that encapsulates concepts and properties
that do not exist in existing ontologies. For the proposed framework, the Core Ontology
stores concepts and their associated properties for geometry and times series equipment
properties that are not part of the Brick model. Then, with the Core Ontology in place,
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ontology-driven rules and software support for graph queries are developed to support
the building application services shown along the top of Figure 3.

Figure 3. The proposed framework for knowledge representation and reasoning for building applications.

The core ontology namespace imports the concepts from two different classes of
ontologies. One class represents the application-specific ontologies that are well established
and maintained within the building domain. The second class is composed of more general,
domain-independent ontologies, such as those for Time and Units. In this framework,
concepts about building equipment and building subsystems are imported from the Brick
ontology, while the concepts required for sensing, observation and actuation are borrowed
from the SOSA ontology. The BOT ontology provides concepts relevant for describing
building topology (i.e., zone containment, or adjacency). Lastly, the required concepts
for building spaces and the location of equipment within those spaces come from the
SAREF4BLDG ontology.

5. Building Applications

The semantic infrastructure framework and methods specified in Sections 3 and 4
allow for inferencing new statements from existing data in the multi-domain ontologies.
Semantic Web features and language capabilities provide the foundation for representing
knowledge bases (e.g., physical building information, HVAC equipment, indoor conditions)
and reasoning over that knowledge to detect faults and systematically verify hypotheses
through the evaluation of supporting evidence. To demonstrate the effectiveness of the
proposed methods, this section deploys KRR for case study problems chosen from different
building applications to demonstrate event-driven, spatial and temporal reasoning, behav-
ior modeling of component dynamics and modeling of HVAC components in buildings
with ontologies (e.g., Jena) and rules (e.g., Jena rules). The applications presented in this
paper are:

1. Semantic Definitions: The examples demonstrate proper use of semantic definitions
to represent a supply air temperature sensor and a downstream temperature sensor,
and to locate the draw-through fan in the system.

2. Fault Detection and Diagnostics: The examples demonstrate the use of a seman-
tic framework for event-based fault detection and diagnostics that mimics human
thinking in detecting a fault and diagnosing the underlying causes. One example
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demonstrates the detection of a faulty valve. A second example shows anomaly
detection triggered by sensor readings falling outside an acceptable range.

3. Spatial Reasoning: Buildings typically require a significant amount of spatial reason-
ing to identify spaces, zones, regions, connections and relationships among connec-
tions and regions. The examples presented here demonstrate the use of inference
to identify neighboring zones and determine the location of sensors relative to the
regions and zones in which they are embedded.

4. Temporal Reasoning: Temporal representation and reasoning capabilities play a cen-
tral role in reasoning about temporal variations in building occupancy and operational
scheduling.

5. Asset Management and Maintenance: Maintenance management tracks the device
and equipment to make important decisions for improving the performance and
efficiency of the device. The example provided in this section describes a mechanism
to keep track of resources that are due for maintenance service.

6. Context-Aware Control: Context-aware control sits on a layer above rule-based, model-
based and data-driven control. This strategy considers the context that the equipment
or the space is being used for in making decisions. The example implements a portion
of the sequence of operations for a garage space.

5.1. Semantic Representation

To demonstrate semantic representation, this section shows three different usecases
focused on defining and identifying supply air temperature sensors in two examples and
also identifying the location of a supply air fan in an air duct system.

5.1.1. Supply Air Temperature Sensor

Table 2 lays out a simple definition of a supply air temperature sensor. As the example
shows, if there is an air temperature sensor that is connected to an AHU (air handling
unit) and a VAV (variable air volume) box, it is marked as a supply air temperature sensor.
These semantic definitions, if used properly, can reduce the size of the model because a
specific categorization, such as supply air temperature sensor, is not needed. Note that the
“hasPoint” property is from the Brick ontology.

Table 2. A rule example on defining the supply air temperature.

@prefix ns: <http://example.org/ex#>.
@prefix brick: <https://brickschema.org/schema/1.1/Brick#>.
@prefix xs: <http://www.w3.org/2001/XMLSchema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Definition of Supply Air Temperature Sensor
[SupplyAir: (?ahu rdf:type brick:AHU)(?vav rdf:type brick:VAV)(?satv rdf:type
ns:Air_Temperature_Sensor)

(?sata rdf:type ns:Air_Temperature_Sensor)
(?vav brick:hasPoint ?satv)(?ahu brick:hasPoint ?sata) equal(?satv,?sata)->
(?sata ns:isSupplyAir “true”ˆˆxs:boolean) print(‘Supply temperature’, ?sata)]

5.1.2. Downstream Temperature Sensor

Figure 4 illustrates an air duct example with different components such as heating and
cooling coils, supply and return air fans, dampers, sensors, humidifier, and filters. A human
expert can look at the schematic and deduce that there is a Tempertature-Sensor_1 exactly
downstream of a HeatingCoil_1. As Table 3 shows, the ontology al-lows querying the
model to obtain the result of TempeSensor1. The select statement chooses all temperature
sensors that have a measurementLocation in the duct of HeatingCoil_1. As the figure
shows, in an air duct system, there are usually several sensors, including temperature,
differential pressure and/or airflow stations, Carbon Dioxide (CO2) and smoke detector
and utilization of the ontology for the model repre-sentation provides a unique solution to
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simplify the entire knowledge representation and reasoning of different systems. Interested
readers are encouraged to look at the ASHRAE Guideline 36 for additional examples of
different air duct systems [44].
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Table 3. A SPARQL query on finding defining the supply air temperature sensor after the heating
coil.

SELECT ?downStream
WHERE{
BIND(:heatingCoil1> AS ?d)
{
?d s223:hasConnectionPoint ?cp1.
?cp1 a s223:OutletConnectionPoint.
?cp1 s223:connectsThrough ?downcon.
?downStream a s223:TempSensor.
?downStream s223:hasMeasurementLocation ?downcon.
}
Result:
[downstream]
ex:TemperatureSensor1

5.1.3. Draw-through Fan

In many applications such as FDD, commissioning and maintenance, it is important to
know the sequence of the equipment after the system configuration. As a case, the supply
fan can be placed before the cooling coil, which is the blow-through configuration, or
after the cooling coil, which is the draw-through configuration shown in Figure 4. Having
a semantic model of this system, we can query the model to see whether or not it is a
draw-through system. Table 4 depicts a query that asks the model if the cooling coil is
connected to (draw-through) or connected from a fan (blow-through).
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Table 4. A rule example on identifying the location of the fan in the system.

ASK
WHERE {
?d a:Coil.
?d:hasRole role:Cooling.
?d:connectedTo* ?fan.
?fan a:Fan.
}
Result:
true

ASK
WHERE {
?d a:Coil.
?d:hasRole role:Cooling.
?d:connectedFrom* ?fan.
?fan a:Fan.
}
Result:
False

The three examples mentioned in this section show how semantic definitions could be
used in different building applications.

5.2. Fault Detection and Diagnostics

Table 5 contains two examples of the application of reasoning to FDD: (1) detect a
cooling coil valve leak when the valve is shut but the supply temperature is lower than the
mixed air temperature, and (2) recognize that a sensor reading is greater than its maximum
reading limit. These rules use concepts from the SOSA and Brick ontologies. The SOSA
ontology associates a sensor with an observation. An observation has a Feature of Interest:
e.g., a zone, a result, e.g., 24 degrees Celsius and a time associated with the observation. One
feature of Jena rules is built-in functions such as compare(), used in this example. Jena rules
employ built-in functions to perform more complex actions than simple triple operations.

Table 5. Two examples of rules in an FDD application.

@prefix ns: <http://example.org/ex#>.
@prefix sosa: <http://www.w3.org/ns/sosa#>.
@prefix brick: <https://brickschema.org/schema/1.1/Brick#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix qudt: <http://qudt.org/1.1/schema/qudt#>.

// Detect a cooling coil valve leak
[(?ahu rdf:type brick:AHU) (?ahu brick:hasPoint ?v) (?ahu brick:hasPoint ?s1) (?ahu brick:hasPoint ?s2)
(?v rdf:type brick:Cooling_Valve) (?v ns:isShutOff true) (?s1 rdf:type
brick:Mixed_Air_Temperature_Sensor)
(?s2 rdf:type brick:Supply_Air_Temperature_Sensor) (?s1 sosa:madeObservation?ob1) (?s2
sosa:madeObservation ?ob2) compare(?ob1,?ob2,?c) equal(?c,”2”ˆˆxs:int)
-> RaiseAlarm (”Alarm Valve is Leaking”) ]

// Detect a faulty sensor
[(?z sosa:isFeatureOfInterestOf ?ob)(?s rdf:type ns:Air_Temperature_Sensor)
(?s ns:maxRange ?max) (?s sosa:madeObservation ?ob) (?ob sosa:resultTime ?t) (?ob sosa:hasResult ?r) (?r
sosa:hasSimpleResult ?sr) (?r rdf:type qudt:Quantity) (?r qudt:unit ?u) equal(‘DEG_F’,?u)
ge(?sr,?maxRange) -> RaiseAlarm (”Sensor Reading Greater than Maximum Possible Value”) ]

Built-in functions can be invoked in the head of forward rules. As a case, com-
pare(?ob1,?ob2,c) performs a comparison based on the values of the observations, ?ob1 and
?ob2, and returns 1, 2 or 0 if the first, second or none of the input parameters are greater
than the other.

5.3. Spatial Reasoning

Formal approaches to spatial reasoning are concerned with inference on points, lines
and regions and their connectivity. The mathematical foundations for reasoning with
spatial elements—points, lines and regions—are covered by the region connection cal-
culus [45]. From a computational standpoint, the Java Topology Suite (JTS) provides a
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robust implementation of two-dimensional spatial concepts and supports spatial reasoning
procedures [46].

Figure 5 is an abbreviated view of the prototype ontology and associated data and
object properties for the representation of a two-dimensional spatial geometry. To facilitate
the implementation of our software prototype, specific types of geometries (e.g., polygon,
multipoint) mirror the class structure found in the JTS. The high-level class AbstractGe-
ometry contains a datatype property, hasGeometry, which stores a string representation
of the JTS geometry. The string representation of the geometry acts as input to algorithms
for analysis of the two-dimensional geometry. To see how this works in practice, the first
rule in Table 6 systematically infers if two HVAC_Zone individuals are adjacent. The
second rule identifies if a sensor is inside a zone based on its location. This is possible
because Brick concepts such as HVAC_Zone and Sensor have been extended to have the
hasGeometry property. The built-in functions getAdjacency() and getPointInPolygon()
evaluate the geometric relationship between pairs of spatial entities (e.g., to determine
if a point is contained within a polygon or if two polygons are adjacent). The results of
reasoning procedures are saved regions of the semantic model (i.e., namespaces) that follow
terms from the Brick and SAREF4Building ontologies.

Figure 5. High-level ontology for a two-dimensional geometry and associated data and object
properties [47].

Table 6. Two examples of spatial reasoning.

@prefix ns: <http://example.org/ex#>.
@prefix brick: <https://brickschema.org/schema/1.1/Brick#>.
@prefix bot: < http://www.w3id.org/bot/bot.ttl#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix s4bldg: <https://saref.etsi.org/saref4bldg/>.

// Identify Adjacent Zones:
[(?r1 rdf:type brick:HVAC_Zone) (?r1 ns:hasGeometry ?r1jts)(?r2 rdf:type brick:HVAC_Zone)(?r2
ns:hasGeometry ?r2jts) getAdjacency(?r2jts,?r1jts,?t) equal(?t,”true”ˆˆxs:boolean) -> (?r1
bot:adjacentZone ?r2)]

// Locate a Sensor in a Zone:
[(?r1 rdf:type brick:HVAC_Zone) (?r1 ns:hasGeometry ?r1jts) (?satv rdf:type
ns:Air_Temperature_Sensor)(?satv ns:hasGeometry ?sajts) getPointInPolygon(?sajts,?r1jts, ?t)-> (?satv
s4bldg:isContainedIn ?r1)]

A natural extension of this capability is built-in functions that can work with libraries
for representation and reasoning and advanced 3D geometries (e.g., scan-to-graph [48]
or Linked Data-based BIM [49]). While this study used JTS, the long-term goal for this
framework is to also consider more robust building geometry models such as IFC, BIM [50]
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and Green Building XML (gbXML) [51] to expand our knowledge representation, querying
and reasoning capabilities.

5.4. Temporal Reasoning

Formal approaches to temporal reasoning are concerned with the evaluation of rela-
tionships among entities of time. There are four time concepts that support ontological
representations of time in engineering based on the temporal theories identified in [52]:
(1) time interval, (2) time duration, (3) time point and (4) time dimension. The OWL-Time
ontology uses instant and interval as foundational temporal entities [28]. Table 7 shows
two examples of temporal reasoning. The first rule indicates if two intervals meet (i.e.,
when the first interval ends, the second one begins). This reasoning can be used in different
applications within the building domain. For example, this rule can ensure that the interval
for preconditioning a building happens before the interval when the building is occupied.
The second rule implies that if a time instant is between the beginning and the end of an
interval, that instant is inside the interval. This rule also has implications for different
building applications, such as the case of time-of-use utility programs to identify if the time
of consumption is during the peak time of day. In the operation of buildings, temporal
reasoning is a key aspect to understand the interaction of occupants, equipment, systems
and other building components. This example is a proof of concept on how temporal
reasoning could be used in building applications.

Table 7. Two examples of temporal reasoning.

@prefix time: <https://www.w3.org/TR/owl-time#>.

// When Two Intervals Meet
[(?x rdf:type time:TimeInterval) (?y rdf:type time:TimeInterval) (?x time:endsAt ?t) (?y time:beginsAt ?t)
->(?x time:intMeets ?y) ]

// When an Instant Falls in an Interval
[isInInterval: (?x rdf:type time:Interval) (?y rdf:type time:Instant) (?x time:hasBeginning ?t1) (?x
time:hasEnd ?t2) lessThan (?t1, ?t2) (?y time:inXSDDateTimeStamp ?t3) lessThan(?t1,?t3)
greaterThan(?t2,?t3) -> (?y time:inside ?x) ]

5.5. Asset Management and Maintenance

Building equipment and systems usually have a typical life expectancy, which is an
important factor for facility managers in terms of asset management and maintenance.
For example, most major HVAC equipment has a life expectancy of 20 to 25 years [53].
During the operation of a building, facility managers need to understand and plan for the
replacement of equipment and systems. This example demonstrates the benefits of using
KRR for asset management and maintenance. Table 8 shows how the facility manager can
identify the valves that are due for service or replacement.

Table 8. An example of asset management and maintenance.

@prefix ns: <http://example.org/ex#>.
@prefix brick: <https://brickschema.org/schema/1.1/Brick#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

(?valve rdf:type brick:Valve) (?valve ns:hasReplacementTime ?rt1) (?valve ns:hasRunTime ?rt2)
greaterThan(?rt2,?rt1) -> (?valve:dueForService true)

5.6. Context-Aware Control

By taking context into account, context-aware control promises a richer and more cus-
tomized way of controlling building spaces. As an example, the rule in Table 9 implements
a segment of the sequence of operations for controlling an underground parking garage
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using a carbon monoxide (CO) linear demand control strategy [54]. This is a practical
example that shows how context-aware control could support building managers. In this
strategy, the exhaust fans operate at 25% of their full capacities when the average CO
concentration in the parking garage is less than 10 ppmv. After the average CO concentra-
tion in the parking garage increases above 10 ppm, the fans gradually increase capacity
by 3% for every additional 1 ppm of average CO concentration, operating at maximum
speed (100%) when the CO concentrations are 35 ppm or higher. While this example shows
demand-controlled ventilation based on CO, similar approaches could be used for other
ventilation strategies in buildings using KRR.

Table 9. An example of context-aware control.

@prefix ns: <http://example.org/ex#>.
@prefix brick: <https://brickschema.org/schema/1.1/Brick#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix s4bldg: <https://saref.etsi.org/saref4bldg/>.
@prefix qudt: <http://www.ontology-of-units-of-measure.org/resource/om-2/partsPerMillion>

// Utilize the Demand Control Ventilation
(?s rdf:type s4bldg:BuildingSpace) (?ef rdf:type brick:Exhaust_Fan)(?ef brick:hasPoint ?exfc)(?s ns:usage
“parking garage”) (?cs rdf:type ns:CO_Sensor)(?s s4bldg:contains ?ct) (?s sosa:madeObservation ?ob) (?ob
sosa:hasResult ?r) (?r sosa:hasSimpleResult ?sr) (?r qudt:unit ?u) equal(‘ppm’,?u) ge(?sr,35) -> (?exft
ns:hasValue 100)

6. Discussion

This paper has shown that while many state-of-the-art domain ontologies have a
role to play in the semantic modeling of building operations, present-day practice is to
develop ontologies and rules for specific AEC and FM domains and use cases. Too often,
these ontologies are not developed from an ontology design pattern perspective, and with
support for integration and alignment in mind. As a result, we are still a long way from
the sustainable design and operation of building systems. Solutions to this problem are
complicated by the diversity of perspectives needed to achieve a long-term balance in
the three E’s of efficiency, economy and equity. We surmise that in the long term, the
development of a comprehensive, unified ontology for all aspects of buildings will be
challenging and most likely fail. In a first step to working around this difficulty, this
work explored an alternative approach where domain-specific and upper ontologies are
combined (integrated) for specific building applications.

An underlying tenet of our modeling work is that a wide range of building system
applications can benefit from the deployment of KRR. For example, to implement the
SOO of building mechanical systems or implement commissioning guidelines, ASHRAE
Guideline 36 [44] can be translated to ontology-driven rulesets. KRR also has implications
for the U.S. Department of Energy’s Building Energy Data Exchange Specification (BEDES)
that includes a dictionary of terms and definitions applicable to tools and activities to track
building energy data and assist building stakeholders [55]. Although there have been
technological advances to modernize building control, operation and simulation systems,
the topics and solutions covered in this paper have received less attention and have rarely
been adopted in the building industry for reasons including the lack of a generic interlinked
descriptive framework model that would ease the deployment of the framework in different
buildings and building applications with minor adoption costs.

Several efforts are underway to advance the state-of-the-art capability for ontologies
and data models in building applications. One such effort is the new ASHRAE proposed
standard committee, SSPC 223P, which stems from BACnet SI-WG and was formed to
develop a standard semantic model that would formally define the required knowledge
concepts and a methodology to apply those concepts to create interoperable, machine-
understandable semantic models that represent building system information for use in
analytics, automation and control [56].
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Overall, although recent studies discussed in this work have sought to address the
development and utilization of a semantic framework for buildings through integration of
existing metadata schemes, the literature lacks a uniform schema for representing metadata
in buildings and providing core ontologies that define the fundamental concepts and
their relationships.

7. Conclusions

This paper proposes a semantic infrastructure and methods that leverage W3C (World
Wide Web Consortium) standards to construct, constrain and query the ontologies for
different building applications and integrate concepts from various models. Semantic
Web technologies enable sharing, accessing and integrating building data in a machine-
understandable format. The power of precise semantics captured in the ontologies elimi-
nates ambiguity in the model. Moreover, the formal logic foundation allows for inference to
extract new information. While there are existing domain-specific ontologies that represent
the knowledge needed for smart buildings, major setbacks have limited the use of them
in different building applications due to: (i) large and complex bodies of terminology
that are not easy to use and (ii) many overlapping and often conflicting concepts in the
different ontologies. Since much of the existing literature focuses on a limited number of
ontologies for knowledge representation, this study proposes a semantic infrastructure and
methods to leverage existing domain-specific ontologies for various building applications.
As a case in point, we used BOT (Building Topology Ontology) for knowledge represen-
tation of building topology, QUDT (Quantity, Unit, Datatype) for units of measurement,
SAREF4BLDG (Smart Appliances REFerence) for building systems and spaces and Brick for
building equipment. To demonstrate the proposed semantic infrastructure and methods,
we implemented specific semantic rules to describe inference mechanisms for building
applications ranging from semantic representation, fault detection and diagnostics, spatial
reasoning, temporal reasoning, asset management and maintenance and context-aware
control. While the examples target building mechanical systems, a similar approach could
be used for other building applications such as lighting, shading devices and building
security. The next step in this work is to deploy the approach to different building systems,
including a multi-domain building system, as well as deploying knowledge representation
and reasoning for different building applications in a real building using real data.
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