Machine Learning with WEKA

Eibe Frank

Department of Computer Science, University of Waikato, New Zealand

- WEKA: A Machine Learning Toolkit
- The Explorer
 - Classification and Regression
 - Clustering
 - Association Rules
 - Attribute Selection
 - Data Visualization
- The Experimenter
- The Knowledge Flow GUI
- Conclusions

WEKA: the bird

Copyright: Martin Kramer (mkramer@wxs.nl)

WEKA: the software

- Machine learning/data mining software written in Java (distributed under the GNU Public License)
- Used for research, education, and applications
- Complements "Data Mining" by Witten & Frank
- Main features:
 - Comprehensive set of data pre-processing tools, learning algorithms and evaluation methods
 - Graphical user interfaces (incl. data visualization)
 - Environment for comparing learning algorithms

WEKA: versions

- There are several versions of WEKA:
 - As of Feb 2020 the stable version is 3.8.4 and that is the one you should be using/
- These slides, which are from an old tutorial, are based on WEKA 3.3
 - Dr. Weiss has added some notes for significant differences, but for the most part things have not changed that much.

Weka Documentation

- You can go to the main Weka page and then click on documentation and then download the full manual for 3.8.3
 - https://www.cs.waikato.ac.nz/ml/weka/documentation.html

WEKA only deals with "flat" files

@relation heart-disease-simplified

@attribute age numeric
@attribute sex { female, male}
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}
@attribute cholesterol numeric
@attribute exercise_induced_angina { no, yes}
@attribute class { present, not_present}

@data

63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present

. . .

WEKA only deals with "flat" files

numeric attribute @attribute age numeric nominal attribute @attribute sex { female, male} @attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina} @attribute cholesterol numeric @attribute exercise_induced_angina { no, yes} @attribute class { present, not_present}

@data 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non anginal,?,no,not present

@relation heart-disease-simplified

. . .

10/18/20

10/18/20

10/18/20

Explorer: pre-processing the data

- Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary
- Data can also be read from a URL or from an SQL database (using JDBC)
- Pre-processing tools in WEKA are called "filters"
- WEKA contains filters for:
 - Discretization, normalization, resampling, attribute selection, transforming and combining attributes, ...

00	Weka Knowledge Explorer									
	Preprocess Classify Cluster	Associate Select attributes	Visualize							
Open file	Open URL Op	en DB Undo	Save							
Filter Choose None			Apply							
Current relation Relation: None Instances: None	Attributes: None	Selected attribute Name: None Missing: None Distir	Type: None nct: None Unique: None							
Attributes]								
			Visualize All							
Status										
Welcome to the Wek	a Knowledge Explorer									

Reading in the Iris Dataset

- The tutorial accesses a copy of the iris dataset
 - The file is probably already on your machine. Most likely it is in a data directory where the program resides, such as C:/Program Files/Weka-3-8-4/data. Otherwise search for iris.arff and use that directory; otherwise download it from the Internet:

* https://storm.cis.fordham.edu/~gweiss/data-mining/weka-data/iris.arff

- Download it using "Open File" or "Open URL"
 - There are other datasets in the same directory either on your machine or the URL

* https://storm.cis.fordham.edu/~gweiss/data-mining/datasets.html

Non-Arff File Types

- By default WEKA expects ARFF format (".arff")
- If you select the "Open File", you will see you can change to other file types
 - ◆ C4.5 (for the old C4.5 decision tree learner format)
 - ♦ .csv files
 - ★ You can read in data from .csv files
- For your course projects you may need to use csv
 - Note that without the arff header you will not get meaningful variable names, but for .csv if you include variable names the tool will use those

Welcome to the Weka Knowledge Explorer

Log

OK

0		Weka Knowledge Explorer									
		Preprocess	Classify	Cluster	Associate	Select attributes	Visualize				
Op	oen file		en URL		Open DB	Undo		Save			
Filter											
Choos	e None							Apply			
Current re	ation				Selected	attribute					
Relatio Instanc	on: iris es: 150	At	ttributes: 5		Nam Missin	ne: class ng: 0 (0%) Disti	nct: 3	Type: Nominal Unique: 0 (0%)			
Attributes						Label		Count			
No. 1 3 4 5	sepallengt sepalwidth petallength petalwidth class	Na n	me		Colour	osa sicolor ginica	50 50	Visualize All			
Status							C				
OK								LUG			

0		Weka Knowledge Explorer										
		Preprocess	Classify	Cluster	Associate	Select attributes	Visualize					
Ot	pen file		en URL		Open DB	Undo		Save				
Filter												
Choos	eNone							Apply				
Current re	elation				Selected	attribute						
Relation Instance	on: iris es: 150	At	ttributes: 5		Nam Missin	Name: class Type: Nomin Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)						
Attributes						Label Count						
No.	l sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class	n n	me		Colour	osa sicolor ginica r: class (Nom)	50 50 50	Visualize All				
Status							6					
OK							C	Log XU				

1000

18 17 16 14

10

2

Discretization

- The next few slides involve discretizing features. There are major changes between Weka 3.6 & 3.8
 - In 3.8 the discretize tool is under supervised attributes
 - The options are very different and apparently the tool is smarter and hence you do not need to set as many options. With 3.8 one need not set the number of bins or the type of discretization

Log

x 0

Status -OK

Log 🧨

x 0

Status -OK

Log

x 0

000	Weka Knowledge Explorer								
	Preprocess Classify	y Cluster Associa	ate Select attributes	Visualize					
Open file	Open URL	Open DB	. Undo		Save				
Filter									
Choose Discretiz	ze -B 10 -R first-last	😑 🖯 🔿 🛛 wek	a.gui.GenericObjectEdito	r	Apply				
Current relation Relation: iris Instances: 150 Attributes	Attributes:	About An instance filter that of attributes in the datase	vised.attribute.Discretize discretizes a range of numeri at into nominal attributes.	c More	: Numeric : 10 (7%) e				
No. 1 sepallength	Name h	attributeIndices	first-last		1				
3 petallength	1	bins	10						
4 petalwidth 5 class		findNumBins	False	•					
		invertSelection	False	;	Visualize All				
		makeBinary	False	÷					
		useEqualFrequency	False	•					
		Open	Save OK	Cancel)				
		11	2 0 0 3 4	3.95	10 2 ⁴ 6.9				
Status									
OK				Log	X U				

000	Weka Knowledge Explorer								
	Preprocess Classify	y Cluster Associa	ate Select attributes	Visualize					
Open file	Open URL	Open DB.			Save				
Filter									
Choose Discretiz	ze -B 10 -R first-last	😑 🖯 🖯 🛛 wek	a.gui.GenericObjectEdito	r	Apply				
Current relation Relation: iris Instances: 150 Attributes	Attributes:	About An instance filter that of attributes in the datase	vised.attribute.Discretize discretizes a range of numeri et into nominal attributes.	c More	: Numeric : 10 (7%) e				
No. 1 sepallength	Name	attributeIndices	first-last		1				
3 petallength	1	bins	10						
4 petalwidth 5 class		findNumBins	False	•					
		invertSelection	False	÷	Visualize All				
		makeBinary	False	÷					
		useEqualFrequency	True	•					
		Open	Save OK	Cancel)				
		11	2 0 0 3 4	3.95	10 2 4 6.9				
Status									
OK				Log	X . X U				

0				Weka Knowledge Explorer										
		Preprocess	Classify	Cluster	Associa	ate	Select	attribu	ites	Visu	alize			
	oen file	Оре	n URL		Open DB			U	Indo				Save	\supset
Filter	Discrotio	P 10 P fir	et lact		weka	a.gui.(Generia	Obiec	tEdito	or			Annhy	
Choose Discretize -B 10 -R first-last Current relation Relation: iris Instances: 150 Attributes:			weka.filters.unsupervised.attribute.Discretize About An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes.						: Numeric : 10 (7%)					
No.	L sepallength	Nan	me	attribut	eIndices	first	-last							
3	petallength	l.			bins	10								
5	class			find	NumBins	Fal	se					÷		
				invertS	election	Fal	se					÷	Visualize A	
				ma	keBinary	Fal	se					÷		
				useEqualFr	equency	Tru	ie					¢		
				Open		Save		0	К		Cano	el	10	
					1		2 0	0 3	4	3.95			2 4	6.9
Status														
OK											0	Log	A	xυ

Explorer: building "classifiers"

- Classifiers in WEKA are models for predicting nominal or numeric quantities
- Implemented learning schemes include:
 - Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes' nets, ...
- "Meta"-classifiers include:
 - Bagging, boosting, stacking, error-correcting output codes, locally weighted learning, ...
Lets start fresh without discretization

Go back to the preprocess tab and reopen the iris data set and then lets use that. Do it now.

	Preprocess	Classify	Cluster	Associate	Select attributes	Visualize	
Classifier							
Choose ZeroR							
Test options		Clas	ssifier output				
Use training set							
Supplied test set	t Set						
Cross-validation	n Folds 10						
Percentage split	% 66						
More or	tions						
(Nom) class		•					
Start	Stop						
Result list (right-click for	options)						

00

Weka Knowledge Explorer

Preprocess Classify Cluster Associate Select attributes Visualize

Log

	·	 	
Classifier			
Choose ZeroR			
Test options	Classifier output		
O Use training set			
O Supplied test set Set			
Cross-validation Folds 10			
O Percentage split % 66			
More options			
(Nom) class			
Start Stop			
Result list (right-click for options)			
Status			

000

Weka Knowledge Explorer

Preprocess	Classify	Cluster	Associate	Select attributes	Visualize	
Classifier						
📁 weka						
📃 🔻 📁 classifiers						
👕 🕨 📁 bayes		ifier output	l			
functions						
► 📁 lazy						
🕨 📁 meta						
▶ 📁 misc						
V P trees						
► Desision Stree						
Decisionstump						
148						
/ ► 🖾 Imt						
▶ 📁 m5						
RandomForest						
RandomTree						
REPTree						
UserClassifier						
Image: Second						
1						
Status						
ОК					C	Log 💉 🗴 0

Status	-
ОК	

ОК

ОК

x 0

	Preprocess	Classify	Cluster	Associate	Select attributes	Visualize	
Classifier							
Choose J48 -C	0.25 -M 2						
Test options		Cla	ssifier output	· · · · · · · · · · · · · · · · · · ·			
🔘 Use training set							
O Supplied test se	t Set						
O Cross-validation	n Folds 10		00	🖯 Classifie	er evaluation opt		
• Percentage split	% 66		🗹 Out	put model			
More of	ptions		🗹 Out	put per-clas	s stats		
(Nom) class		•	🗌 Out	put entropy	evaluation measu	res	
Start	Stop		🗹 Out	put confusio	on matrix		
Result list (right-click fo	r options)		🗹 Stor	re prediction	s for visualization	1	
			🗌 Out	put text pre	dictions on test se	et	
			Cos	t-sensitive	evaluation Set		
			Randon	n seed for X\	/al / % Split 1		
					ОК	\supset	

😑 🖯 🌔 Classifier evaluation opt	
Output model	
🗹 Output per-class stats	
Output entropy evaluation measures	
Output confusion matrix	
Store predictions for visualization	
Output text predictions on test set	
Cost-sensitive evaluation Set	
Random seed for XVal / % Split 1	
ОК	

Select attributes

Visualize

Associate

ОК

x 0

Select attributes Visualize

Log

Preprocess Classify Cluster Associate Classifier 148 -C 0.25 -M 2 Choose) Test options Classifier output -Use training set === Run information === Supplied test set Set... weka.classifiers.trees.j48.J48 -C 0.25 -M 2 Scheme: Relation: iris Cross-validation Folds 10 Instances: 150 Attributes: 5 Percentage split % 66 (\bullet) sepallength sepalwidth More options... petallength petalwidth class + (Nom) class split 66% train, remainder test Test mode: === Classifier model (full training set) === Stop Start J48 pruned tree Result list (right-click for options) 11:49:05 - trees.j48.J48 petalwidth <= 0.6: Iris-setosa (50.0) petalwidth > 0.6 petalwidth <= 1.7 petallength <= 4.9: Iris-versicolor (48.0/1.0) petallength > 4.9petalwidth <= 1.5: Iris-virginica (3.0) petalwidth > 1.5: Iris-versicolor (3.0/1.0) petalwidth > 1.7: Iris-virginica (46.0/1.0) * Number of Leaves : 5

Status

Select attributes Visualize

Log

Cluster Preprocess Classify Associate Classifier 148 -C 0.25 -M 2 Choose) Test options Classifier output -Use training set === Run information === Supplied test set Set... weka.classifiers.trees.j48.J48 -C 0.25 -M 2 Scheme: Relation: iris Cross-validation Folds 10 Instances: 150 Attributes: 5 Percentage split % 66 (\bullet) sepallength sepalwidth More options... petallength petalwidth class + (Nom) class split 66% train, remainder test Test mode: === Classifier model (full training set) === Stop Start J48 pruned tree Result list (right-click for options) 11:49:05 - trees.j48.J48 petalwidth <= 0.6: Iris-setosa (50.0) petalwidth > 0.6 petalwidth <= 1.7 petallength <= 4.9: Iris-versicolor (48.0/1.0) petallength > 4.9petalwidth <= 1.5: Iris-virginica (3.0) petalwidth > 1.5: Iris-versicolor (3.0/1.0) petalwidth > 1.7: Iris-virginica (46.0/1.0) ۰ ¥ Number of Leaves : 5

Status

Select attributes

Log

Preprocess Classify Cluster Associate Visualize Classifier Choose | 148 - C 0.25 - M 2 Test options Classifier output -Use training set (\cdot) Time taken to build model: 0.24 seconds Supplied test set Set.... === Evaluation on test split === === Summary === Cross-validation Folds 10 66 \odot Percentage split % 96.0784 % Correctly Classified Instances 49 Incorrectly Classified Instances 3.9216 % 2 More options... Kappa statistic 0.9408 Mean absolute error 0.0396 Root mean squared error 0.1579 + (Nom) class Relative absolute error 8.8979 % Root relative squared error 33.4091 % Total Number of Instances 51 Stop Start === Detailed Accuracy By Class === Result list (right-click for options) TP Rate FP Rate Precision Recall F-Measure Class 11:49:05 - trees.j48.J48 1 0 1 1 1 Iris-setosa 0.063 0.905 0.95 Iris-versicolor 1 1 0.882 0.882 0 1 0.938 Iris-virginica === Confusion Matrix === <-- classified as а C 15 0 0 | a = Iris-setosa 0 19 0 | b = Iris-versicolor 0 2 15 | c = Iris-virginica ¥

Status

×0

Log

	Preprocess	Classify	Cluster	Associate	Select attrib	outes \	/isualize		
Classifier									
Choose J48 -C	0.25 -M 2								
Test options		Classifi	er output						
🔘 Use training set		Time	aken to b	uild model:	0 24 seconds				0
O Supplied test se	t Set		Fusluation on tost chlit						
O Cross-validation	n Folds 10	=== St	mmary ===	on cesc spir	6				
Percentage split	% 66	Correc	tly Class ectly Class	ified Instan ssified Inst	ces ances	49 2		96.0784 % 3.9216 %	
More opt	ions	Mean a Root r	statistic absolute e mean square	rror ed error		0.9408 0.0396 0.1579			
(Nom) class		Relati	ve absoluterelative s	te error quared error		8.8979 33.4091	% %		
Start	Stop	Total	Number of	Instances		51			
Result list (right-click for	r options) ———	De	stalled AC	curacy by CI	ass				
11:49:05 – trees.j48	.J48	TP Rat 1 1 0.88	e FP Ra 0 0.0 82 0	te Precisi 1 63 0.90 1	on Recall 1 5 1 0.882	F-Measu: 1 0.95 0.93	re Clas Iris Iris 8 Iris	ss -setosa s-versicolor s-virginica	
		=== Co	onfusion M	atrix ===					
Right o	lick on this	a h 15 (0 19 0 2	0 c < 0 0 a 9 0 b 2 15 c	classified = Iris-setos = Iris-versi = Iris-virgi	as a color nica				
Status									

	Preprocess	Classify	Cluster	Associate	Select	attributes	Visualiz	ze	
Classifier									
Choose J48 -C	0.25 -M 2								
Test options		Classif	ier output						
🔘 Use training set									6
O Supplied test set	t Set	Time	taken to b	unid model:	0.24 sec	onds			
O Cross-validation	n Folds 10	=== S	ummary ===	ou cesc spir					
Percentage split	% 66	Corre	ctly Class	ified Instan	ces	49		96.0784 %	
More opt	ions) Incor Kappa Mean	statistic absolute e	ssified Inst	ances	2 0.94 0.03	108	3.9216 %	
(Nom) class		Root Relat	mean squar ive absolu	ed error te error		0.15 8.89	79 79 %		
Start Carlos	Stop	Root Total	relative s Number of etailed Ac	quared error Instances curacy By Cla	ass ===	33.40 51	91 %		Π
Result list (right-click for	Vie	ew in main	window		Rec	all F-Mea	sure C	lass	
11:49:05 - trees.j48	J48 Vie	ew in separ	rate windo	w	1	1	I:	ris-setosa	
	Sav	ve result b	uffer		0.	882 0.	938 I:	ris-versicolor ris-virginica	
	Loa	ad model							
	Sa	ve model							
	Re	-evaluate	model on o	current test s	et				
	Vis	ualize clas	ssifer error	s					-
	Vis	sualize tree	9						•
Status	Vis	sualize ma	rgin curve						
ОК	Vis	sualize thre	eshold cur	ve			(Log 🗸	x 0
	Vis	sualize cos	t curve						

Select attributes Visualize

Log

x 0

E

Weka Knowledge Explorer

	Preprocess	Classify	Cluster	Associate	Select attri	butes	Visualize		
Classifier									
Choose J48 -C	0.25 –M 2								
Test options		Classif	ier output						
O Use training set		Time	taken to b	uild model:	0.24 second	s			Ô
Supplied test set	set) E	valuation	on test spli	t ===				
O Cross-validation	Folds 10	=== S	ummary ===	on cope opri					
💿 Percentage split	% 66	Corre	ctly Class	ified Instan	ces	49		96.0784 %	1111
More opti	More options More options More options More options Mean absolute error				ances	2 0.940 0.039	08 96	3.9216 %	
(Nom) class		Relat	ive absolu	ed error te error		8.89	79 % 79 %		
Start	Stop	Total	Number of	Instances	ass ===	51	91 6		
Result list (right-click for	options)	in main wi	ndow	001001 01 01					
11:49:05 - trees.j48.	J48 View i Save i	in separate result buff	er window		Recall 1 1 0.882	F-Meas 1 0.9 0.9	sure Cla Iri 95 Iri 938 Iri	ss s-setosa s-versicolor s-virginica	
	Load Save Re-ev	model model valuate mo	del on cur	rent test set					
	Visua Visua	lize classif lize tree	er errors		lor ca				4
Status OK	Visua Visua Visua	lize margir lize thresh lize cost ci	n curve old curve		•		C	Log	r. x 0

Visualizing Errors

- In the next slide the x-axis is the petallength and the y-axis is the petalwidth and the class is shown by colors and the errors by boxes
 - In my run of Weka 3.8, it looked very different but that was because the x and y axes were set to the different things. If this happens manually select the x and y values to petallength and width

Associate Select attributes Visualize

Log

x 0

Status

Select attributes

Log

Preprocess Classify Cluster Associate Visualize Classifier Choose | 148 - C 0.25 - M 2 Test options Classifier output -Use training set (\cdot) Time taken to build model: 0.24 seconds Supplied test set Set.... === Evaluation on test split === === Summary === Cross-validation Folds 10 66 \odot Percentage split % 96.0784 % Correctly Classified Instances 49 Incorrectly Classified Instances 3.9216 % 2 More options... Kappa statistic 0.9408 Mean absolute error 0.0396 Root mean squared error 0.1579 + (Nom) class Relative absolute error 8.8979 % Root relative squared error 33.4091 % Total Number of Instances 51 Stop Start === Detailed Accuracy By Class === Result list (right-click for options) TP Rate FP Rate Precision Recall F-Measure Class 11:49:05 - trees.j48.J48 1 0 1 1 1 Iris-setosa 0.063 0.905 0.95 Iris-versicolor 1 1 0.882 0.882 0 1 0.938 Iris-virginica === Confusion Matrix === <-- classified as а C 15 0 0 | a = Iris-setosa 0 19 0 | b = Iris-versicolor 0 2 15 | c = Iris-virginica ¥

Status

 $\mathbf{0}$

Weka Knowledge Explorer

Preprocess Classify Cluster Associate Select attribu

utes	Visua	lize
utes	visua	120

×0

Log

Classifier			
Choose J48 -C 0.25 -M 2			
Test options	Classifier output		
O Use training set	Time taken to build model: 0.24 secon	ade.	0
O Supplied test set Set	Time caken to build model: 0.24 secon	103	
O Cross-validation Folds 10	=== Evaluation on test split === === Summary ===		
Percentage split % 66	Correctly Classified Instances	49 96.0784 %	
More options	Incorrectly Classified Instances Kappa statistic Mean absolute error	2 3.9216 % 0.9408 0.0396	
(Nom) class	Root mean squared error Relative absolute error Root relative squared error Total Number of Instances	0.1579 8.8979 % 33.4091 %	
Start Stop	=== Detailed Accuracy By Class ===	51	
Result list (right-click for options)	becarred Accuracy by crass		
11:49:05 - trees.j48.J48	TP Rate FP Rate Precision Recal 1 0 1 1 1 0.063 0.905 1 0.882 0 1 0.88	11 F-Measure Class 1 Iris-setosa 0.95 Iris-versicolor 32 0.938 Iris-virginica	
	a b c < classified as 15 0 0 a = Iris-setosa 0 19 0 b = Iris-versicolor 0 2 15 c = Iris-virginica		

Status-

 $\mathbf{0}$

Weka Knowledge Explorer

Classify Cluster Associate Select attributes Visualiza

×0

Log

	Preprocess	Classify	Cluster	Associate	Select attrib	outes Vi	isualize			
Classifier										
河 weka										
classifiers										
▶ 🗊 bayes			output							
v 🗊 functions							0			
LeastMe	dSq		iken to b	uild model:	0.24 seconds					
LinearRe	gression		luation	on test spli	t ===					
Logistic			mary ===							
🔻 🧊 neural			ly Class	ified Instan	ces	49		96.0784 %		
Neur	alNetwork		ectly Cla	ssified Inst	ances	2		3.9216 %		
► 📁 pace			statistic			0.9408				
🕒 🕨 📄 support	Vector		an squar	ed error		0.1579				
SimpleLi	nearRegression		re absolu	te error		8.8979 %				
SimpleLo	ogistic		lative s	quared error		33.4091 %				
VotedPer	rceptron		unber or	Thatances		51				
Winnow			ailed Ac	curacy By Cl	ass ===					
1 🕨 🧊 lazy			FP Ra	te Precisi	on Recall	F-Measur	e Clas	s		
🕨 🕨 🧊 meta			0	1	1	1	Iris	-setosa		
🕨 🧊 misc			0.0	63 0.90	5 1	0.95	Iris	-versicolor		
Itrees			. 0	1	0.882	0.938	Iris	-virginica		
🕨 🧊 rules			fusion M	atrix ===						
				alogaified						
		15 0) 0 a:	= Iris-setos	as					
		0 19	0 b	= Iris-versi	color				<u> </u>	
		0 2	2 15 c	= Iris-virgi	nica				*	
pr									Lain)	

Status-

Preprocess Classify Cluster Associate Select attributes Visualize

- × 0

Log

	· 1									
Classifier										
Choose NeuralNetwork -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a										
Test options	Classifie	er output								
O Use training set			**** ******					6		
	=== Ev	=== Evaluation on test split ===								
O Supplied test set Set	=== Su	mmary ===								
Cross-validation Folds 10	Correc	tly Class	ified Instan	ces	49		96.0784 %			
Percentage split % 66	Incorr	ectly Cla	ssified Inst	ances	2		3.9216 %			
	Kappa	statistic			0.9408					
More options	Root m	ean squar	ed error		0.1579					
	Relati	ve absolu	te error		8.8979	8				
(Nam) alass	Root r	elative s	quared error		33.4091	8				
(NOM) class	Total	Number of	Instances		51					
Start Stop	=== De	tailed Ac	curacy By Cl	ass ===						
-Result list (right-click for options)	TP Rat	e FP Ra	te Precisi	on Recall	F-Measur	e Clas	S			
Result inst (ingrit-circk for options)	1	0	1	1	1	Iris	-setosa			
11:49:05 – trees.j48.J48	1	0.0	63 0.90	5 1	0.95	Iris	-versicolor			
	0.88	2 0	1	0.882	0.938	Iris	-virginica			
	=== Confusion Matrix ===									
	a b c < classified as									
	15 U U a = Iris-setosa									
	0 2 15 c = Iris-virginica									
								Ŧ		
1	1							Lai		

Status

Select attributes Visualize

Log

Preprocess Classify Cluster Associate Classifier NeuralNetwork -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a Choose Test options Classifier output -Use training set === Evaluation on test split === Supplied test set Set.... === Summary === Cross-validation Folds 10 Correctly Classified Instances 49 96.0784 % Incorrectly Classified Instances 3.9216 % 2 66 \odot Percentage split % 0.9408 Kappa statistic Mean absolute error 0.0396 More options... Root mean squared error 0.1579 Relative absolute error 8.8979 % Root relative squared error 33.4091 % + (Nom) class Total Number of Instances 51 === Detailed Accuracy By Class === Stop Start TP Rate FP Rate Precision Recall F-Measure Class Result list (right-click to options) Iris-setosa 1 0 1 1 1 11:49:05 - trees.j48.J48 0.063 0.905 0.95 Iris-versicolor 1 1 0.882 0.882 0 1 0.938 Iris-virginica === Confusion Matrix === b c <-- classified as а 15 0 0 | a = Iris-setosa 0 19 0 | b = Iris-versicolor 0 2 15 | c = Iris-virginica ¥

Status

Select attributes Visualize

Log

Preprocess Classify Cluster Associate Classifier NeuralNetwork -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a -G -R Choose Test options Classifier output -Use training set === Evaluation on test split === === Summary === Supplied test set Set.... Correctly Classified Instances 50 98.0392 % Cross-validation Folds 10 Incorrectly Classified Instances 1.9608 % 1 Kappa statistic 0.9704 \odot Percentage split % 66 Mean absolute error 0.0239 Root mean squared error 0.1101 More options... Relative absolute error 5.3594 % Root relative squared error 23.2952 % Total Number of Instances 51 + (Nom) class === Detailed Accuracy By Class === Stop Start FP Rate Precision TP Rate Recall F-Measure Class Iris-setosa 1 0 1 1 1 Result list (right-click for options) 0.031 0.95 1 0.974 Iris-versicolor 1 0.941 0.941 0.97 Iris-virginica 0 1 11:49:05 - trees.j48.J48 14:34:28 - functions.neural.NeuralNetwork === Confusion Matrix === <-- classified as а b C 15 0 0 | a = Iris-setosa 0 19 0 | b = Iris-versicolor 0 1 16 | c = Iris-virginica 4

Status

 $\mathbf{0}$

Weka Knowledge Explorer

Preprocess Classify Cluster Associate Select attributes Visualize

Log

1		,		1						
Classifier										
Choose NeuralNetwork -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a -G -R										
Test options Classifier output										
🔵 Use training set			=== Evalu	ation on t	est split ==					
Supplied test se	et Set		=== Summa	ry ===						
O Cross-validatio	n Folds 10		Correctly Incorrect	Classifie ly Classif	d Instances ied Instance	es	50 1	98.0392 % 1.9608 %		
Percentage split	% 66		Kappa sta	tistic			0.9704			
More	options		Root mean	squared e	rror		0.1101			
More	options		Relative Root rela	absolute e tive squar	ed error		5.3594 % 23.2952 %			
(Nom) class		•	Total Num	ber of Ins	tances		51			
(1.0.1.) 0.000			=== Detai	led Accura	cy By Class					
Start	Stop		TP Rate	FP Rate	Precision	Recall	F-Measure	Class		
Result list (right-click fo	r options)		1	0	1 0.95	1	1 0.974	Iris-setosa Iris-versicolor		
11:49:05 - trees.j48	3.J48		0.941	0	1	0.941	0.97	Iris-virginica		
14:34:28 - functions.neural.NeuralNetwork === Confusion Matrix ===										
			a b c < classified as 15 0 0 a = Iris-setosa 0 19 0 b = Iris-versicolor 0 1 16 c = Iris-virginica							
) + ►		

Status

ROC curves

- Weka provides the ability to generate ROC curves
- In this case, right click on the model you just built and instead of selecting "Visualize Classifier Errors" select "Visualize Threshold Curve"
 - You will need to specify one of the 3 class values since ROC curves are only defined for 2 classes
 - * The one you select will be the positive class and the other two will be merged into the negative class
 - In this case the curves are "perfect" or near perfect since there is only one error.

000

Associate

Cluster

Classify

Preprocess

Select attributes

utes Visualize

Log 💉 🗴 0

Classifier								
📁 weka								
🔻 📁 classifiers								
👕 🔻 📁 bayes	assifier output							
AODE BayesNetK2 BayesNetB	== Evaluation on test split === == Summary ===							
NaiveBaves	prrectly Classified Instances	50	98.0392 %					
NaiveBayes Multinomial	appa statistic	0.9704	1.9608 %					
NaiveBayesMutthomia	an absolute error	0.0239						
NaiveBayesSimple	pot mean squared error	0.1101						
NaiveBayesUpdateable	alative absolute error	5.3594 %						
Functions	otal Number of Instances	51						
► 📁 lazy								
▶ 📁 meta	== Detailed Accuracy By Class ===							
 misc trees 	? Rate FP Rate Precision Recall	F-Measure	Class					
	1 0.031 0.95 1	0.974	Iris-versicolor					
- Fules	0.941 0 1 0.941	0.97	Iris-virginica					
	== Confusion Matrix === a b c < classified as 15 0 0 a = Iris-setosa 0 19 0 b = Iris-versicolor 0 1 16 c = Iris-virginica							

-

Classify Cluster Associate

Preprocess classify	Cluster Associate Select attributes	visualize							
Classifier									
Choose NaiveBayes									
Test options	Classifier output								
🔘 Use training set	=== Evaluation on test split ===	(
O Supplied test set Set	=== Summary ===								
O Cross-validation Folds 10	Correctly Classified Instances Incorrectly Classified Instances	50 98.0392 % 1 1.9608 %							
• Percentage split % 66	Kappa statistic 0.9704 Mean absolute error 0.0239								
More options	Root mean squared error Relative absolute error	5.3594 %							
	Root relative squared error	23.2952 %							
(Nom) class	Total Number of Instances	51							
	=== Detailed Accuracy By Class ===								
Start Stop	TP Rate FP Rate Precision Recall	F-Measure Class							
Result list (right-click for options)	1 0 1 1	1 Iris-setosa							
11:49:05 - trees.j48.J48	0.941 0 1 0.941	0.97 Iris-virginica							
14:34:28 - functions.neural.NeuralNetwork	=== Confusion Matrix ===								
	a b c < classified as 15 0 0 a = Iris-setosa 0 19 0 b = Iris-versicolor 0 1 16 c = Iris-virginica								
		▼)↓►(

	Preprocess	Classify	Cluster	Associate	Select at	tributes	Visualize			
Classifier Choose NaiveBayes										
Test options			Classifier ou	tput						
O Use training set			=== Evalua === Summar	ation on te ry ===	est split ==	=				
 Supplied test se Cross-validation Percentage split More of (Nom) class 	t Set n Folds 10 % 66 options	·	Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances				50 1 0.9704 0.0239 0.1101 5.3594 % 23.2952 % 51	98.0392 % 1.9608 %		
Start Result list (right-click fo 11:49:05 – trees.j48 14:34:28 – functions	Stop options) .J48 s.neural.Neural	Network	TP Rate 1 0.941 === Confus a b c 15 0 0 0 19 0 0 1 16	FP Rate 0 0.031 0 sion Matrix < class a = Iri b = Iri c = Iri	Precision 1 0.95 1 c === ssified as is-setosa is-versicolo is-virginica	Recall 1 0.941	F-Measure 1 0.974 0.97	Class Iris-setosa Iris-versicolor Iris-virginica		

$\mathbf{0}$

	Preprocess	Classify	Cluster	Associat	e Select at	tributes	Visualize					
Classifier												
Choose NaiveBayes												
Test options			Classifier ou	tput								
O Use training set			=== Evaluation on test split ===									
Supplied test se	t Set	.)	=== Summan	су ===								
O Cross-validation Folds 10			Correctly Classified Instances Incorrectly Classified Instances				48 3	94.1176 % 5.8824 %				
Percentage split	% 66		Kappa stat Mean absol	tistic lute error			0.9113					
More	options	\square	Root mean Relative a Root relat	squared e absolute e tive squar	rror rror ed error		0.1722 10.0365 % 36.4196 %					
(Nom) class		¢	Total Numb	per of Ins	tances		51					
Start) Stop	,	TP Rate	FP Rate	Precision	Recall	F-Measure	Class				
Result list (right-click for	r options) ———		1 0.947	0 0.063	1 0.9	1 0.947	1 0.923	Iris-setosa Iris-versicolor				
11:49:05 - trees.j48	.J48		0.882	0.029	0.938	0.882	0.909	Iris-virginica				
14:34:28 – functions.neural.NeuralNetwork			=== Confus									
Line of buyes. Hu			a b c 15 0 0 0 18 1 0 2 15	< cla a = Ir b = Ir c = Ir	ssified as is-setosa is-versicolo is-virginica	or a		4 *				
								141				

 $\mathbf{0}$

Log

	,			1			I
Classifier							
Choose NaiveBayes							
Test options		Classifier ou	tput				
 Use training set 		=== Evalua	ation on te	est split ==			
O Supplied test set Set		Summa	су				
O Cross-validation Folds 10	Correctly Classified Instances Incorrectly Classified Instances				48 3	94.1176 % 5.8824 %	
Percentage split % 66	Kappa statistic				0.9113		
More options	Root mean squared error Relative absolute error Root relative squared error				0.1722 10.0365 % 36.4196 %		
(Nom) class	•	Total Num	per of Inst	tances		51	
		=== Detai.	led Accurac	cy By Class			
Start Stop		TP Rate	FP Rate	Precision	Recall	F-Measure	Class
Result list (right-click for options)		1 0.947	0.063	1 0.9	1 0.947	1 0.923	Iris-setosa Iris-versicolor
11:49:05 - trees.j48.J48		0.882	0.029	0.938	0.882	0.909	Iris-virginica
14:34:28 - functions.neural.Neural 14:48:05 - bayes.NaiveBayes	=== Confusion Matrix ===						
	a b c < classified as 15 0 0 a = Iris-setosa 0 18 1 b = Iris-versicolor 0 2 15 c = Iris-virginica						
			****	****) 4 ►

Now Try a Few More on Your Own

- Run Random Forest
 - It is a tree ensemble method that is under Trees
 - After running it with default options, change the maximum depth from 0 (unlimited) to 3, 2, and then 1. When do you see markedly different results?

Run Bagging

- It is an ensemble (meta learning) method, so find it under classifiers meta
 - Bagging runs a base method again and again with different training data
 - ★ Run with default options, then change base method to J48

Now Try the KnowledgeFlow Interface

- Will build a flow to do crossvalidated J48
- This example is from the WEKA manual for 3.8.3 under the KnowledgeFlow section and then is the first example
- From the console choose KnowlegeFlow interface

Add a DataSources Node

- Expand the DataSources entry in the Design panel and click on ArffLoader (the mouse pointer will change to a cross hairs).
 - Next place the ArffLoader step on the layout area by clicking somewhere on the layout (a copy of ArffLoader icon will appear).
 - Next specify an ARFF file to load by first right clicking the mouse over the ArffLoader icon on the layout. A pop-up menu will appear. Select Configure under Edit in the list from this menu and browse to the location of your ARFF file.
 - May need to copy an arff file to the PC unless there are data files already loaded under the data folder

Adding ClassAssigner to specify class

- Next expand the "Evaluation" entry in the Design panel and choose the ClassAssigner (allows you to choose which column to be the class) step from the toolbar. Place this on the layout.
- Now connect the ArffLoader to the ClassAssigner: first right click over the ArffLoader and select dataSet under Connections in the menu. A rubber band line will appear. Move the mouse over the ClassAssigner step and left click - a red line labeled dataSet will connect the two steps.
- Next right click over the ClassAssigner and choose Configure from the menu. This will pop up a window from which you can specify which column is the class in your data (last is the default).

Add CrossValidationFoldMaker

 Next grab a CrossValidationFoldMaker step from the Evaluation entry in the Design panel and place it on the layout. Connect the ClassAssigner to the CrossValidationFoldMaker by right clicking over ClassAssigner and selecting dataSet from under Connections in the menu.

Add J48

- Next expand the Classifiers entry and then the trees sub-entry in the Design panel and choose the J48 step. Place a J48 step on the layout.
- Connect the CrossValidationFoldMaker to J48 TWICE by first choosing trainingSet and then testSet from the pop-up menu for the CrossValidationFoldMaker.

Finish the Flow

- Next go back to the Evaluation entry and place a ClassifierPerformanceEvaluator step on the layout. Connect J48 to this step by selecting the batchClassifier entry from the pop-up menu for J48.
- Next go to the Visualization entry and place a TextViewer step on the layout. Connect the ClassifierPerformanceEvaluator to the TextViewer by selecting the text entry from the pop-up menu for ClassifierPerformanceEvaluator.
- Now start the flow executing by pressing the play button on the toolbar at the top of the window. Progress information for each step in the flow will appear in the Status area and Log at the bottom of the window.
- When finished you can view the results by choosing Show results from the pop-up menu for the TextViewer step.

Seeing the Results for Each Fold

Connect a TextViewer and/or a GraphViewer to J48 in order to view the textual or graphical representations of the trees produced for each fold of the cross validation (this is something that is not possible in the Explorer).