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Speech recognition is robust to background noise. One underlying neural mechanism is that the auditory system
segregates speech from the listening background and encodes it reliably. Such robust internal representation has
been demonstrated in auditory cortex by neural activity entrained to the temporal envelope of speech. A paradox,
however, then arises, as the spectro-temporal fine structure rather than the temporal envelope is known to be
the major cue to segregate target speech from background noise. Does the reliable cortical entrainment in fact
Auditory cortex reflect a robust internal “synthesis” of the attended speech stream rather than direct tracking of the acoustic
Auditory scene analysis envelope? Here, we test this hypothesis by degrading the spectro-temporal fine structure while preserving the
MEG temporal envelope using vocoders. Magnetoencephalography (MEG) recordings reveal that cortical entrainment
to vocoded speech is severely degraded by background noise, in contrast to the robust entrainment to natural
speech. Furthermore, cortical entrainment in the delta-band (1-4 Hz) predicts the speech recognition score at
the level of individual listeners. These results demonstrate that reliable cortical entrainment to speech relies on
the spectro-temporal fine structure, and suggest that cortical entrainment to the speech envelope is not merely a
representation of the speech envelope but a coherent representation of multiscale spectro-temporal features that
are synchronized to the syllabic and phrasal rhythms of speech.
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Introduction

Normal hearing listeners exhibit a surprising ability to understand
speech in noisy acoustic environments, even in the absence of visual
cues. A number of studies have suggested that the target speech and
the listening background are separated in auditory cortex (Ding and
Simon, 2012a; Zion Golumbic et al,, 2013; Horton et al., 2013; Kerlin
et al,, 2010; Mesgarani and Chang, 2012; Power et al., 2012). In particu-
lar, when a listener attends to a speech stream, auditory cortical activity
is reliably entrained to the temporal envelope of that stream, regardless
of the listening background. This reliable neural representation of the
speech envelope, i.e. slow temporal modulations below 16 Hz, is a key
candidate mechanism underlying the reliable recognition of speech,
since the temporal envelopes carry important cues for speech recogni-
tion (Shannon et al.,, 1995). It remains mysterious, however, how such
reliable cortical entrainment to the speech envelope is achieved, since
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envelope is not an effective cue for segregation of speech from noise
(Friesen et al., 2001).

Moreover, even the nature of cortical entrainment to the speech enve-
lope is heavily debated, especially about whether it encodes the temporal
envelope per se or instead other speech features that are correlated with
the speech envelope (Obleser et al, 2012; Peelle et al,, 2013). Many
speech features, including pitch and spatial cues, are temporally coherent
and correlated with the temporal envelope (Shamma et al., 2011). There-
fore it has been proposed that the envelope entrainment in fact reflects a
collective neural representation of multiple speech features that are
synchronized to the syllabic and phrasal rhythm of speech (Ding
and Simon, 2012a). Because of the collective nature of this representa-
tion, it has been suggested as a representation of speech as a whole
auditory object.

If envelope entrainment indeed reflects an object-level, collective
representation of speech features, reliable envelope entrainment in com-
plex auditory scenes is likely to involve an analysis-by-synthesis process
(Poeppel et al.,, 2008; Shamma et al., 2011; Shinn-Cunningham, 2008):
In such a process, multiple features of a complex auditory scene are
extracted subcortically in the analysis phase and then, based on speech
segregation cues such as pitch, features belonging to the same speech
stream are grouped into an auditory object in the synthesis phase. In
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contrast, if envelope entrainment involves only direct neural processing
of the envelope, its robustness to noise may arise from more basic pro-
cesses such as contrast gain control (Ding and Simon, 2013; Rabinowitz
etal, 2011).

In this study, we investigate whether noise-robust cortical entrain-
ment to the speech envelope involves merely envelope processing or
instead reflects an analysis-by-synthesis process that includes the pro-
cessing of spectro-temporal fine structure and reflects envelope proper-
ties of the re-synthesized auditory object. Here, the spectro-temporal
fine structure refers to the acoustic information not included in the
broadband envelope of speech (<16 Hz), including, for example, the
acoustic cues responsible for the pitch and formant structure of speech.
We degrade the spectro-temporal fine structure of speech or speech-
noise mixtures using noise vocoders and investigate whether vocoded
stimuli are cortically represented differently from natural speech using
MEG. If cortical entrainment only depends on the temporal envelope, it
will not be affected by degradation of the spectro-temporal fine structure,
even in a noisy listening environment. In contrast, if reliable cortical
entrainment to speech requires an analysis-by-synthesis process that
relies on the spectro-temporal fine structure, it should be severely
degraded for vocoded speech.

Materials & methods
Subjects

Twelve normal hearing, right-handed (Oldfield, 1971) young adults
(6 females), all between 19 and 32 years old (23 years old on average)
participated in the experiment. Subjects were paid, and the experimental
procedures were approved by the University of Maryland institutional
review board. Written informed consent form was obtained before the
experiment.

Stimuli

The stimuli were selected from of a narration of the story Alice's
Adventures in Wonderland (Chapter One, http://librivox.org/alices-
adventures-in-wonderland-by-lewis-carroll-4/). The sound recording
was low-pass filtered below 4 kHz and divided into twelve 50-
second duration segments, after long speaker pauses (>300 ms)
were shortened to 300 ms. All sound stimuli were presented binaurally
(diotically). Six types of stimuli were created (2 noise levels x 3 vocoding
conditions).

Background noise

Half of the speech segments (N = 6) were presented in a quiet
listening environment (no noise added in), while the other half were
mixed with spectrally matched stationary noise generated using a 12th-
order linear predictive model estimated from the speech recording. The
intensity ratio between speech and noise was fixed at 3 dB, measured
by RMS.

Noise vocoding

Each stimulus is either noise vocoded (through a 4-channel or 8-
channel vocoder) or unprocessed. The noise vocoder filters the stimulus,
either speech in quiet or speech in noise, into 4 or 8 frequency channels
between 123 and 3951 Hz using a 4th order Butterworth filter. All
frequency channels are evenly distributed in the Cam scale (Glasberg
and Moore, 1990; Qin and Oxenham, 2003). In each frequency band,
the envelope of the stimulus, either speech or a speech-noise mixture,
is extracted by taking the absolute value of the Hilbert Transform, low-
pass filtering below 160 Hz using a 4th order Butterworth filter, and
then half-wave rectifying the filtered signal. The extracted envelope is
used to modulate white noise filtered into the same frequency band
from which the envelope was derived. The envelope-modulated-noises
are then summed over frequency bands to create the noise-vocoded

stimulus. The RMS intensity of the noise-vocoded stimulus is adjusted
to match that of the unprocessed stimulus.

Stimulus characterization

The auditory spectrogram of the stimulus was calculated using a
sub-cortical auditory model (Yang et al., 1992) and expressed in a loga-
rithmic amplitude scale. The frequency by time auditory spectrogram
has 128 logarithmically spaced frequency channels and a 10-ms resolu-
tion in time. The broadband temporal envelope of the stimulus was
extracted by summing the auditory spectrogram over frequency.

Procedure

The stimuli were presented in two orders, each to half of the sub-
jects. In either order, the story continued naturally between stimuli
and was repeated twice after the first presentation (3 trials in total).
In the progressive order, the first two speech segments were natural
speech presented in quiet, followed by 8-band vocoded speech in
quiet and then 4-band vocoded speech in quiet. Then, natural speech
in noise, 8-band vocoded speech in noise, and 4-band vocoded speech
in noise were presented sequentially. To control for the effect of presenta-
tion order, we also created a random order condition, in which each
acoustic manipulation (e.g. vocoding or background noise) was assigned
randomly to a segment for each subject. The two presentation orders did
not result in any difference in speech intelligibility or neural synchroniza-
tion spectrum and were therefore not distinguished in the following
analysis.

The subjects were asked to listen to the story and keep their eyes
closed. Questions about the story were asked after each 50-second dura-
tion stimulus to ensure subjects’ attention. The subjects were also asked
to rate the percent of words they understood after the first presentation
of each stimulus (on a scale of 0% (not intelligible) to 100% (fully intel-
ligible)). The grand averaged subjectively rated intelligibility is highly
correlated with the grand averaged percent of questions correctly
answered (R = 0.96). Before the experiment, the subjects listened
to 100 repetitions of a 500-Hz tone and the responses were used to ex-
tract the M100 response, a salient MEG response localized to auditory
cortex (Liitkenhoner and Steinstrater, 1998).

The magnetic field generated by cortical activity was recorded using
a 157-channel whole-head MEG system (KIT, Kanazawa, Japan). The
signal was sampled at 1 kHz and was filtered by a 200-Hz lowpass
filter and a notch filter at 60 Hz online. Environmental noise was
further removed using TS-PCA (de Cheveigné and Simon, 2007).
The whole-head MEG recording was used for analysis unless other-
wise specified. When the two hemispheres were analyzed separately,
hemisphere-specific responses were extracted using 55 sensors located
above each hemisphere. More details of the recording procedure are as
described in Ding and Simon (2012a).

Inter-trial correlation analysis

The phase locking of a neural response was evaluated by the
inter-trial correlation of the neural response in narrow frequency
bands (2-Hz wide) (Ding and Simon, 2013; Zion Golumbic et al.,
2013). The inter-trial correlation is the Pearson correlation coefficient
between two trials of the neural responses to the same stimulus (aver-
aged over all possible combinations of two trials). It measures the reli-
ability of the neural response when the same stimulus repeats, and
reflects the strength of phase-locked neural activity. The major
phase-locked component of the MEG response was extracted using a
blind source separation method, Denoising Source Separation (DSS)
(de Cheveigné and Simon, 2008). The first DSS component was
used for this analysis.
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Temporal response function

The response from each MEG sensor is modeled as the speech
envelope convolved with a temporal response function (TRF), which
characterizes the cortical response evoked by a unit power increase of
the stimulus (Ding and Simon, 2012b). The TRF is derived by summing
a spectro-temporal response function (STRF) over frequency.

The STRF is estimated using boosting with 10-fold cross validation
(David et al., 2007). For computational efficiency, the 157 MEG sensors
were reduced to 10 DSS components (de Cheveigné and Simon, 2008).
The STRFs separately estimated for the 10 DSS components were con-
verted back to the sensor space for further analysis (Ding and Simon,
2012a).

The two major peaks of the TRF have latencies near 50 ms and
100 ms and they are referred to as the M50gr and the M100+gg. The
M50+gr is extracted as the response peak, identified by the root mean
square (RMS) of the MEG response over sensors, between 20 and
80 ms, while the M100¢ is extracted as the peak between 90 and
160 ms.

When deriving the STRF, the auditory spectrogram (Yang et al.,
1992) of clean speech is always used, even when modeling the neural
response to noisy speech. Previous studies have shown that the spectro-
gram of clean speech models the MEG response slightly better than the
spectrogram of the actual noisy stimulus (Ding and Simon, 2013). More
importantly, since the background noise is stationary, the shape of the
spectrogram of the noisy stimulus closely resembles that of clean
speech but the dynamic range, or contrast, of the spectrogram is much
smaller for the noisy stimulus. Therefore, it is the gain, rather than the
shape of the TRF, that depends strongly on which spectrogram is used.
Here, by using the original speech spectrogram, the effect of noise on
the TRF amplitude depends on how the neural response amplitude
changes with noise, rather than on how the stimulus dynamic range
changes with noise.

Results

MEG responses were recorded from subjects listening to a narrated
story presented either in quiet or in spectrally matched stationary
noise (3 dB SNR). The speech stimuli were presented either without
additional processing, referred to as natural speech, or after being proc-
essed by a noise vocoder (4-band or 8-band), referred to as vocoded
speech. Noise vocoding reduces the spectral resolution of speech, as is
demonstrated by the auditory spectrograms of the stimuli (Fig. 1). The
temporal envelope (summation of the auditory spectrogram over
frequencies), however, is essentially identical before and after noise
vocoding (R > 0.99 for the stimuli used in this study).

Neural synchronization spectrum

We first characterize how each stimulus synchronizes the neural
responses in different frequency bands. The degree of neural synchroni-
zation is measured by the inter-trial correlation of the neural recording
(Fig. 2). Consistent with previous studies (Ding and Simon, 2012b; Luo
and Poeppel, 2007), neural synchronization to speech is observed in
the delta (1-4 Hz) and theta (4-8 Hz) bands. A comparison of the neu-
ral responses to speech in quiet and speech in noise indicates that the
degree of neural synchronization was robust to noise for natural but
not for noise-vocoded speech (Fig. 2A). Note that for speech presented
in noise, the same noise signal is used across trials. Therefore, the inter-
trial correlation reflects the neural phase locking to any available stimulus
features, including the background noise. Therefore, the reduced neural
phase locking for vocoded speech in noise indicates an overall reduction
in the response to the speech-noise mixture.

In a quiet listening environment, as the spectral resolution of
the stimulus decreases, neural synchronization below 4 Hz is en-
hanced (P < 0.01, 1-way repeated measures ANOVA) while neural
synchronization above 4 Hz is reduced (P < 0.003, 1-way repeated mea-
sures ANOVA) (Fig. 2BC). In a noisy listening environment, however, the
degree of neural synchronization is reduced in both the delta (P < 0.003,
1-way repeated measures ANOVA) and theta bands (P < 107>, 1-way
repeated measures ANOVA) as the stimulus spectral resolution reduces
(Fig. 2B). In this analysis, the two hemispheres are combined. When
each hemisphere is analyzed separately, no significant hemispherical
lateralization is seen in any of the 6 stimulus conditions for any 2-Hz
band between 2 and 8 Hz (P > 0.17 and on average 0.37, uncorrected
paired t-test).

Predicting individual speech recognition score

The subjectively rated speech recognition score varies strongly
across subjects. The individual recognition score significantly correlates
with delta-band neural synchronization for 4-band vocoded speech in
quiet, and for 8-band vocoded speech both in quiet and in noise
(P < 0.002, bootstrap). Since there are 6 stimulus conditions, the
P-value remains below 0.012 after a Bonferroni correction. The cor-
relation coefficients are 0.66 & 0.14, 0.55 &+ 0.14,and 0.71 £ 0.11
(mean + SEM) for these 3 conditions (Fig. 3, from left to right). For
4-band vocoded speech in noise, a weaker correlation is also found
(P < 0.02, bootstrap; R = 0.43 4 0.20). For natural speech in quiet
and in noise, speech intelligibility reaches ceiling, obscuring any
observable correlation between neural synchronization and speech
intelligibility. In this correlation analysis, the two hemispheres are
combined. If each hemisphere is considered separately, the only
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Fig. 1. Examples of the auditory spectrograms of the experimental stimuli (2 noise levels x 3 vocoding conditions). Subjectively rated speech recognition score (mean 4+ SEM) is labeled in
the upper right corner of each spectrogram. Vocoding (8-band or 4-band) degrades the spectro-temporal fine structure of speech, for example, the harmonic structure, but preserves the

temporal envelope.
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Neural Synchronization Spectrum

>

natural 8-band 4-band
= in quiet
5.5 2 == in noise
5%
o QL
E5
(&)
0
0 5 10 15 0 5 10 15 0 5 10 15
frequency (Hz) frequency (Hz) frequency (Hz)
B Synchronization Spectrum C dc?lta (1-4 Hz)
in quiet in noise ool [T F-L_;I
— natural 01
.2 — 8-band —c N84 n 38 4
£2 —4band  £%
i *,q:) S theta (4-8 Hz)
L1 2E —t =
25 £g02 r—‘|| w:‘
0 0.1
0o 5 10 15 0 5 10 15 n8§ 4 n 8 4
frequency (Hz) frequency (Hz) 3 in quiet in noise

Fig. 2. The inter-trial correlation of the neural response to natural and vocoded speech. (A) The inter-trial correlation grouped by spectro-resolution. The background noise decreases the
inter-trial correlation of the neural response for vocoded speech but not for clean speech. Frequency regions where the response is significantly affected by noise (P < 0.001, 1-way
ANOVA) are shaded in yellow. (B) The inter-trial correlation grouped by the noise level. Noise vocoding affects the phase-locking spectrum differentially for speech in quiet and speech
in noise. Frequency regions where the response is significantly affected by vocoding (P < 0.001, 1-way ANOVA) are shaded in yellow. (C) The inter-trial correlation averaged over the delta
(1-4 Hz) and theta (4-8 Hz) bands. The error bar represents one SEM. In quiet, delta-band inter-trial correlation increases with reduced spectral resolution, while theta-band inter-trial
correlation decreases. For speech in noise, the inter-trial correlation decreases with decreasing spectral resolution for both bands. *P < 0.01, **P < 0.001, (paired t-test).

significant correlation is for the 8-band vocoded speech in noise, in
the left hemisphere (P < 0.002, bootstrap). This result indicates
that the two hemispheres encode speech similarly and therefore
integrating measurements across hemispheres increases the statis-
tical power of the correlation analysis. The correlation between
neural synchronization and speech intelligibility is only observed
in the delta band but not in the theta band in any condition.

Temporal response function

The neural synchronization analysis characterizes the response reli-
ability over trials, while in the following we further investigate how the
neural response follows the speech envelope using a temporal response
function (TRF). The TRF can be interpreted by the neural response
evoked by a broadband power increase of the stimulus (Ding and
Simon, 2012b). The RMS of the TRFs from all MEG sensors is shown in
Fig. 4. The amplitude of the TRF is dimensionless, and is normalized by
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4-channel, in quiet

the maximal amplitude of the TRF for natural speech in quiet. The TRF
in quiet shows two early peaks near 50 ms and 100 ms and these two
peaks are referred to as the M50rr and M100xr respectively (Ding
and Simon, 2013).

The early response component M50 is sensitive to noise while the
late response component M100+gg is not. Specifically, the M50;gr ampli-
tude is significantly reduced by noise (P < 0.001, F(1, 71) = 41.26,
SNR x spectral resolution 2-way repeated measures ANOVA) and
there is an interaction between the influence of noise and the influence
of spectral resolution (P = 0.033 with Geisser-Greenhouse corrections,
F(2, 71) = 5.34). To investigate the interaction between noise and
spectral resolution, two separate ANOVA tests are applied to the
M50¢gr amplitude in quiet and in noise, with spectral resolution as the
analysis factor. In quiet, the M50 amplitude increases with reduced
spectral resolution (P = 0.006, F(2, 33) = 6.03, 1-way repeated mea-
sures ANOVA). In noise, the M50:xr amplitude is weak and is not signif-
icantly changed when the stimulus spectral resolution reduces. The
M100r amplitude is not significantly affected by noise or resolution.

8-channel, in noise

100 x XX 80 80
o 66+.14 o 055+0.14 X x o 0.71+£0.11 %
Q Q X Q
(6] (5] [5)
w w w
et = =
=2 2 2 40
> & = X
S S S
(8] (8] (8]
o 80 x o e

0 0 X x
0.1 0.2 0.1 0.2 0.1 0.2

delta synchronization

delta synchronization

delta synchronization

Fig. 3. Delta-band neural synchronization correlates with the speech recognition score of individual listeners. Each cross shows the data from a listener and the solid line is the regression
line. The correlation coefficient between delta-band inter-trial correlation and the speech score is shown at the upper left corner of each plot (mean + SEM).
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Temporal Response Function
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Fig. 4. Properties of the temporal response function (TRF). (A) The RMS of the TRF over
MEG sensors, which can be interpreted as the total energy of the neural response evoked
by a unit power increase of the sound stimulus. Time intervals where the TRF amplitude is
significantly modulated by background noise (P < 0.001) are shaded in yellow. The early
peak of the TRF near 50 ms, i.e. M50rgg, is most strongly affected by background noise
and stimulus spectral resolution. Its amplitude decreases in the presence of background
noise and increases when the stimulus spectral resolution decreases in a quiet listening
environment.

Discussion

This study demonstrates that although the cortical entrainment to
natural speech is robust to noise the cortical entrainment to vocoded
speech is not. This phenomenon cannot be explained by passive enve-
lope tracking mechanisms since noise vocoding does not directly affect
the stimulus envelope to which that cortical activity is entrained. In-
stead, the results illustrate that the spectro-temporal fine structure,
which is degraded for noise-vocoded speech, is critical to segregating
speech from noise and to constructing an object-level neural represen-
tation of speech that is robust to the listening background.

Object-based vs. stimulus-based representation

Only after simultaneous auditory objects are neurally segregated,
can each of them be represented and processed independent of each
other (Ding and Simon, 2012a). On the other hand, if the auditory
scene is represented as a whole in auditory cortex, the cortical represen-
tation will be affected by every component in the same auditory scene.
In this study, we found that the neural representation of natural speech
is largely invariant to a moderate amount of background noise, i.e. at
3 dB SNR, indicating that natural speech is neurally segregated from
noise and is represented as an individual auditory object. This result is
consistent with a previous study where the neural representation of
speech is found to be largely independent of background noise until
the significantly worse case of —3 dB SNR (Ding and Simon, 2013). In
contrast, the neural representation of vocoded speech is significantly
degraded by noise. This encoding interference between noise and
speech suggests that the vocoded speech noise mixture is not neurally
segregated in auditory cortex.

The role of contrast gain control

Stationary noise significantly reduces the intensity contrast of speech
but does not strongly affect the shape of the temporal envelope of speech
(Fig. 1). As a result, the robust neural representation of natural speech
may be accounted for by contrast gain control (Ding and Simon, 2013),
a relatively passive mechanism that can be observed in anesthetized an-
imals (Dean et al., 2005; Rabinowitz et al.,, 2011). Nevertheless, although
contrast and intensity gain control surely play an important role in main-
taining the noise robust representation of speech, they cannot explain the
phenomenon observed in this study without assuming the prior neural
segregation of speech and noise. First, background noise reduces the
intensity contrast of natural speech and vocoded speech in the same
way, but a noise-robust cortical representation is only observed for
natural speech. Second, even in auditory cortex, contrast gain control
is incomplete, in the sense that even though the neural gain changes,
the cortical response is still affected by the stimulus intensity con-
trast (Rabinowitz et al., 2011).

Robust cortical entrainment: An analysis-by-synthesis approach

An analysis-by-synthesis approach is ubiquitously adopted in senso-
ry systems (Poeppel et al., 2008; Yuille and Kersten, 2006). In a primary
analysis stage, the sensory system breaks up the sensory input into
fundamental features, e.g. edges are encoded in the visual system and
spectro-temporal features in the auditory system. After this stage, how-
ever, a synthesis stage is necessary to reconstruct the sensory experi-
ence, usually with top-down modulations that contribute pertinent a
priori information about the observer's world. Such mechanisms are
likely to be useful in attenuating the effects of unwanted noise.

The sensitivity to the spectro-temporal fine structure indicates
that robust cortical entrainment to speech is the consequence of
the analysis-by-synthesis process rather than just bottom-up enve-
lope tracking. In the sub-cortical auditory system, acoustic cues that
are important for sound source segregation, such as pitch and binaural
cues, are extracted (Nelken, 2008). This decomposition process can be
viewed as an analysis stage. In order to achieve speech recognition
or auditory perception in general, however, features belonging to the
same speech stream need to be bound or re-synthesized into an audi-
tory object (Shinn-Cunningham, 2008). In speech, multiple acoustic
features are temporally coupled and the spectro-temporal fine struc-
ture is modulated by the temporal envelope (Shamma et al.,, 2011;
Sheft, 2007). Therefore, in this synthesis stage, sound segregation cues
play a guiding role: The auditory system is proposed to group features
based on their temporal coherence with the sound segregation cues
(Shamma et al., 2011). As a consequence of this temporal coherence
based grouping, features belonging to the attended speech stream are
recovered from a complex auditory scene and appear as neural activity
entrained to the temporal envelope of the attended speech. When
sound segregation cues such as the spectro-temporal fine structure
are degraded, features extracted from a complex auditory scene can
no longer be selectively grouped into a representation specific to the
attended speech stream. Therefore, cortical entrainment is degraded.

Influence of spectral resolution on speech encoding

As the spectral resolution of speech is reduced, speech intelligibility
decreases mildly in a quiet listening environment but severely in noisy
environments (Friesen et al., 2001). The same trend is seen in theta- but
not delta-band cortical synchronization. In a quiet environment, as the
stimulus spectral resolution decreases, theta-band synchronization is
moderately reduced, consistent with previous studies (Luo and
Poeppel, 2007; Peelle et al.,, 2013), while delta-band synchronization
is enhanced. It is possible that the reduction in theta-band activity re-
flect an impairment of neural processing of syllabic-level speech fea-
tures (Giraud and Poeppel, 2012; Peelle et al, 2013), while the
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enhancement in delta-band activity, hypothesized as an instrument of
top-down attention (Schroeder and Lakatos, 2009), may reflect in-
creased listening effort. Both the delta- and theta-band synchroniza-
tions in auditory cortex are likely to be modulated by higher level
cortical areas involved in language processing (Obleser and Weisz,
2012; Scott et al., 2006). Furthermore, when the spectro-temporal res-
olution is reduced in the time domain, the M50+gr is enhanced. This is
likely to be related to the observations that the M50 is stronger at
the onset of a noise burst than at the onset of a tone (Chait et al,
2004) and that the onset response to vocoded speech is stronger than
the onset response to natural speech (Obleser and Kotz, 2010).

Delta band synchronization and speech intelligibility

Cortical entrainment to speech is generally observed in the delta and
theta bands. In this study and other studies using long (>10 s) continuous
speech stimuli, delta-band entrainment dominates the measured neural
activity (e.g. Ding and Simon, 2012a, 2013; Zion Golumbic et al., 2013).
For studies using isolated sentences (<5 s in duration), however,
delta-band entrainment is much weaker than theta-band entrainment
(e.g. Howard and Poeppel, 2010; Luo and Poeppel, 2007; Peelle et al.,
2013). Therefore, it is likely that delta-band entrainment requires the
longer time scale contextual information of running speech.

Here, we observed that delta-band synchronization correlates with
listeners' speech recognition scores for vocoded speech, and a previous
study found a similar correlation for speech embedded in strong noise
(Ding and Simon, 2013). It is possible that delta-band synchronization
to speech is a signature of the auditory cortical representation subserving
subsequent language processing (Giraud and Poeppel, 2012; Schroeder
and Lakatos, 2009; Schroeder et al., 2008). Alternatively, it is possible
that speech intelligibility is required for delta-band synchronization to
occur. This possibility, however, is not well supported since strong neural
synchronization has been seen to reversed speech (Howard and Poeppel,
2010) and amplitude/frequency modulated tones (Henry and Obleser,
2012; Wang et al., 2012).

The correlation between neural synchronization and individual
speech recognition score is not found in the theta band, consistent
with previous studies (Peelle et al., 2013). One possible reason is that
theta-band synchronization is relatively weak compared with delta-
band synchronization for discourse level speech stimuli, and the lower
signal to noise ratio of theta activity makes it less reliably measured at
an individual subject level. Alternatively, it is also possible that theta
band activity faithfully reflects properties of the stimulus but not indi-
vidual differences in neural processing (see also Schroeder et al., 2008).

In summary, the spectro-temporal fine structure is required to main-
tain noise-robust cortical entrainment to the speech envelope. These
results demonstrate that envelope entrainment in auditory cortex is
not just a neural representation of the speech envelope per se but in-
stead is likely to be a collective, object-level neural representation that
is achieved by an analysis-by-synthesis approach. Furthermore, since
degraded ability to separate simultaneous auditory objects is common
for hearing impaired listeners (Shinn-Cunningham and Best, 2008),
the results here are indicative of the cortical processing in impaired au-
ditory systems.
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