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cortical representation of the acoustic features of continuous speech is
the foundation of speech perception. In this study, noninvasive mag-
netoencephalography (MEG) recordings are obtained from human
subjects actively listening to spoken narratives, in both simple and
cocktail party-like auditory scenes. By modeling how acoustic fea-
tures of speech are encoded in ongoing MEG activity as a spectro-
temporal response function, we demonstrate that the slow temporal
modulations of speech in a broad spectral region are represented
bilaterally in auditory cortex by a phase-locked temporal code. For
speech presented monaurally to either ear, this phase-locked response
is always more faithful in the right hemisphere, but with a shorter
latency in the hemisphere contralateral to the stimulated ear. When
different spoken narratives are presented to each ear simultaneously
(dichotic listening), the resulting cortical neural activity precisely
encodes the acoustic features of both of the spoken narratives, but
slightly weakened and delayed compared with the monaural response.
Critically, the early sensory response to the attended speech is con-
siderably stronger than that to the unattended speech, demonstrating
top-down attentional gain control. This attentional gain is substantial
even during the subjects’ very first exposure to the speech mixture and
therefore largely independent of knowledge of the speech content.
Together, these findings characterize how the spectrotemporal fea-
tures of speech are encoded in human auditory cortex and establish a
single-trial-based paradigm to study the neural basis underlying the
cocktail party phenomenon.

speech segregation; attention; spectrotemporal response function;
magnetoencephalography

SPOKEN LANGUAGE IS THE DOMINANT form of human communica-
tion, and human listeners are superb at tracking and under-
standing speech even in the presence of interfering speakers
(Bronkhorst 2000; Cherry 1953). The critical acoustic features
of speech are distributed across several distinct spectral and
temporal scales. The slow temporal modulations and coarse
spectral modulations reflect the rhythm of speech and contain
syllabic and phrasal level segmentation information (Green-
berg 1999) and are particularly important for speech intelligi-
bility (Shannon et al. 1995). The neural tracking of slow
temporal modulations of speech (e.g., 1-10 Hz) in human
auditory cortex can be studied noninvasively using magneto-
encephalography (MEG) and electroencephalography (EEG).
The low-frequency, large-scale synchronized neural activity
recorded by MEG/EEG has been demonstrated to be synchro-
nized by speech stimulus (Luo and Poeppel 2007) and is
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phase-locked to the speech envelope, i.e., the slow modulations
summed over a broad spectral region (Abrams et al. 2008;
Ahissar et al. 2001; Aiken and Picton 2008; Lalor and Foxe
2010; Luo and Poeppel 2007). Temporal locking to features of
speech has also been supported by intracranial recordings from
human core auditory cortex (Nourski et al. 2009). The temporal
features of speech contribute significantly to speech intelligi-
bility, as do key spectrotemporal features in speech such as
upward and downward formant transitions. The neural coding
of spectrotemporal modulations in natural soundtracks has
been studied invasively in human auditory cortex using intra-
cranial extracellular recordings (Bitterman et al. 2008), where
the spectrotemporal tuning of individual neurons was found to
be generally complex and sometimes very fine in frequency. At
a neural network level, the blood oxygen level-dependent
(BOLD) activity measured by functional magnetic resonance
imaging (fMRI) also shows complex spectrotemporal tuning
and possesses no obvious spatial map (Schonwiesner and
Zatorre 2009). Which spectrotemporal features of speech are
encoded in the large-scale synchronized neural activity mea-
surable by MEG and EEG, however, remain unknown and are
the focus of the current study.

When investigating the neural coding of speech, there are
several key issues that deserve special consideration. One
arises from the diversity of speech: language is a productive
system permitting the generation of novel sentences. In every-
day life, human listeners constantly decode spoken messages
they have never heard. In most neurophysiological studies of
speech processing, however, small sets of sentences are re-
peated tens or hundreds of times (although see Lalor and Foxe
2010). This is primarily due to methodological constraints:
neurophysiological recordings, especially noninvasive record-
ings, are quite variable, and so integrating over trials is neces-
sary to obtain a valid estimate of the neural response. An often
neglected cost of repeated stimuli, however, is that the listener
has obtained complete knowledge of the entire stimulus speech
after only a few repetitions. Without the demands of speech
comprehension, the encoding of this repeated speech might be
quite different from the neural coding of novel speech under
natural listening conditions. It is pressing, therefore, to develop
experimental paradigms that do not require repeating stimuli
many times, to study how speech is encoded in a more
ecologically realistic manner.

Second, speech communication is remarkably robust against
interference. When competing speech signals are present, hu-
man listeners can actively maintain attention on a particular
speech target and comprehend it. The superior temporal gyrus
has been identified as a region heavily involved in processing
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concurrent speech signals (Scott et al. 2009). Recent EEG
results have shown that human auditory cortex can selectively
amplify the low-frequency neural correlates of the speech
signal being attended to (Kerlin et al. 2010). This attentional
modulation of low-frequency neural activity has been sug-
gested as a general mechanism for sensory information selec-
tion (Schroeder and Lakatos 2009). Because speech compre-
hension is a complex hierarchical process involving multiple
brain regions, it is unclear whether the attentional effect seen in
the auditory cortex directly modulates feedforward auditory
processing or reflects only feedback from language areas, or
even motor areas (Hickok and Poeppel 2007). One approach to
test whether feedforward processing is involved in speech
segregation is to investigate the latency of the attentional
effect. If the attentional modulation of MEG/EEG response has
a relatively short latency, e.g., 100 ms, then it is evidence that
top-down attention modulates representations that are other-
wise dominated by feedforward auditory processing. Other-
wise, segregating and selectively processing speech may rely
on feedback from nonauditory cortex or complex recursive
calculations within auditory cortex.

In addition, the auditory encoding of speech is lateralized
across the two cerebral hemispheres. It has been hypothesized
that the right hemisphere is specialized for the encoding the
slow temporal modulations of speech (Poeppel 2003). Support
for this hypothesis arises from the observation that neural
activity in the right hemisphere is more faithfully synchronized
to a speech stimulus than the left, for monaurally and diotically
presented speech (Abrams et al. 2008; Luo and Poeppel 2007).
Nevertheless, how this proposed intrinsic lateralization of
speech encoding interacts with the asymmetry of the ascending
auditory pathway is still unclear.

In this study, we investigated the neurophysiology underly-
ing speech processing in human auditory cortex, using min-
utes-long spoken narratives as stimuli. To address the robust-
ness of this neural coding of speech under more complex
listening conditions, the listeners were presented with two
simultaneous (and thus competing) spoken narratives, each
presented in a separate ear, as a classic, well-controlled illus-
tration of the cocktail party effect (Cherry 1953). This design
affords us both the opportunity to investigate the spectrotem-
poral coding of speech under top-down attentional modulation
and the opportunity to separate the intrinsic hemispheric later-
alization of speech encoding with the interaction between the
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left and right auditory pathways. Moreover, previous studies
have only demonstrated that speech is encoded in MEG/EEG
activity with sufficient fidelity to discriminate among two or
three sentences (Kerlin et al. 2010; Luo and Poeppel 2007).
With a long-duration, discourse-level stimulus, we can test the
limit of this fidelity by quantifying the maximum number of
speech stimuli that can be discriminated based on MEG re-
sponses.

Inspired by research on single-unit neurophysiology (de-
Charms et al. 1998; Depireux et al. 2001), the analysis of MEG
activity was performed using the spectrotemporal response
function (STRF), which can reveal neural coding mechanisms
by analyzing the relationship between ongoing neural activity
and the corresponding continuous stimuli (Fig. 1). The prop-
erties of network-level cortical activity, which plays an impor-
tant role in auditory processing (Panzeri et al. 2010; Schroeder
and Lakatos 2009), were characterized in terms of features of
the STRF, such as the spectrotemporal separability (Depireux
et al. 2001; Schonwiesner and Zatorre 2009), predictive power
(David et al. 2009), binaural composition (Qiu et al. 2003),
attentional modulation (Fritz et al. 2003), and hemispheric
lateralization, in parallel with what has been done in single-
neuron neurophysiology and fMRI. The quantification of these
fundamental neurophysiological features establishes the neural
strategy used to encode the spectrotemporal features of speech
in mass neural activity, conveying information complimentary
to that obtained by single-unit neurophysiology and fMRI.

METHODS

Subjects. Ten normal-hearing, right-handed young adults (between
19 and 25 yr old) participated in the experiment, six female. One
additional subject participated in the experiment but was excluded
from analysis due to excessive head movement (>2 cm) during the
experiment. All subjects were paid for their participation. The exper-
imental procedures were approved by the University of Maryland
Institutional Review Board. Written informed consent form was
obtained from each subject before the experiment.

Stimuli. Our stimulus consisted of two segments from a public
domain narration of the short story The Legend of Sleepy Hollow by
Washington Irving (http://librivox.org/the-legend-of-sleepy-hollow-
by-washington-irving/), read by a male speaker. The two segments
were extracted from different sections of the story, and each of the
2-min-duration segments was further divided into two 1-min-long
stimuli. The speech signal was low-pass filtered below 4 kHz. Periods
of silence longer than 300 ms were shortened to 300 ms, and white
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noise, 20 dB weaker than the speech, was added to the signal to mask
any possible subtle discontinuities caused by the removal of silent
periods. All stimuli were presented at a comfortable loudness level of
around 65 dB. The two stimulus segments were sinusoidally ampli-
tude modulated at 95% modulation depth at 37 and 45 Hz, respec-
tively. As determined by Miller and Licklider (1950), gating a speech
signal on and off at a high rate (near 40 Hz) does not significantly
affect the intelligibility of speech. Such gating, however, enabled the
analysis of auditory steady-state response (aSSR), commonly local-
ized to core auditory cortex (Herdman et al. 2003), and therefore
allowed us to monitor the activity in the earliest stage of cortical
auditory processing. The association between stimulus segment and
modulation rate was counterbalanced over subjects.

Procedure. The dichotic listening condition was conducted first.
The two audio book excerpts were presented dichotically (separately
in each ear) to the subjects using a tube phone plugged into the ear
canal. The subjects were instructed to focus on one of the ears until the
stimulus ended. The same stimulus was then played again, but the
subjects were instructed to switch focus to the other ear. This process
was repeated three times for the same set of stimuli, resulting in three
identical experimental blocks. All subjects described the dichotic
listening task as moderately difficult, and all but one subject reported
paying more, or a similar amount of, attention during the second and
third presentations of a stimulus, compared with the attention they
paid to the first presentation. Which stimulus was played first and
which ear was attended to first were counterbalanced over subjects.
After the dichotic listening condition was completed, the monaural
speech condition was presented. In this condition, each audio book
excerpt was presented monaurally, on the same side as in the dichotic
condition. Each stimulus was repeated four times. The subjects kept
their eyes closed during the whole experiment and had a break every
minute. During the break, they were asked a question related to the
comprehension of the passage they just heard. On average, the
subjects answered 90% of the questions correctly. The performance of
the subjects was not significantly different over the three repetitions
of the stimulus (1-way repeated-measures ANOVA). In addition,
before the main experiment, a pre-experiment was performed. One
hundred repetitions of a 500-Hz tone pip were presented to each
subject to measure the M100 response.

Data recording. The neuromagnetic signal was recorded using a
157-channel whole head MEG system (Kanazawa Institute of Tech-
nology, Kanazawa, Japan) in a magnetically shielded room, with a
1-kHz sampling rate. A 200-Hz low-pass filter and a notch filter at 60
Hz were applied online. Three reference channels were used to
measure and cancel the environmental magnetic field (de Cheveigne
and Simon 2007). Five electromagnetic coils were used to measure
each subject’s head position inside the MEG machine. The head
position was measured twice, once before and once after the experi-
ment, to quantify the head movement during the experiment.

MEG processing and neural source localization. Recorded MEG
signals contain not only responses directly driven by the stimulus but
also stimulus-irrelevant background neural activity. The response
component reliably tracking stimulus features is consistent over trials,
but the stimulus-irrelevant neural activity is not. On the basis of this
property, we decomposed the MEG recording using denoising source
separation (DSS) (de Cheveigne and Simon 2008), a blind source
separation method that extracts neural activity consistent over trials.
Specifically, DSS decomposes the multichannel MEG recording into
temporally uncorrelated components, where each component is deter-
mined by maximizing its trial-to-trial reliability, measured by the
correlation between the responses to the same stimulus in different
trials. We found that only the first DSS component contains a
significant amount of stimulus information (see RESULTS), so analysis
was restricted to this component. The spatial magnetic field distribu-
tion pattern of this first DSS component was utilized to localize the
source of neural responses. In all subjects, the magnetic field corre-
sponding to the first DSS component showed a stereotypical bilateral

dipolar pattern and was therefore well modeled by a single equivalent-
current dipole (ECD) in each hemisphere. A spherical head model was
derived for each subject using the MEG Laboratory software program
v.2.001M (Yokogawa Electric, Eagle Technology, Kanazawa Institute
of Technology). Position of the ECD was estimated using a global
optimization approach (Uutela et al. 1998). The ECD position in each
hemisphere was first determined using 54 MEG channels over the
corresponding hemisphere. The positions of bilateral ECDs were then
refined based on all 157 channels.

After the position of an ECD was determined, the time course of
the dipole moment strength was reconstructed using the generalized
least-squares method (Mosher et al. 2003). In the reconstructed source
activity, the polarity of M100 response was defined as negative (to be
consistent with the traditional conventions of MEG/EEG research).
The temporal activity reconstructed for the neural sources in the left
and right hemispheres was employed for further analysis.

STRF estimation. We modeled the cortical auditory processing
using the STRF, which describes the input-output relation between a
subcortical auditory representation and the cortical MEG response.
The subcortical auditory representation of the sounds is a function of
frequency and time and is denoted as S, (f, 1) or Si(f, #) for the stimulus
in the left or right ear, respectively. The MEG response is a function
of time and is denoted as r(f). The linear STRF model can be
formulated as

(1) = ; 2 STRFL(f, 7)SL(f. 1 — 7)
+ }f‘, 2 STRFx(f, 7)Se(f. 1 — 7) + &(1),

where STRF, (f, ©) and STRF(f, 1) are the STRFs associated with the
left- and right-side stimuli and &(¢) is the residual response waveform
not explained by the STRF model. In the monaural stimulus condition,
only the relevant stimulus ear is modeled. The subcortical auditory
representation is simulated using the model proposed by Yang et al.
(1992). This auditory model contains 100 frequency channels between
200 Hz and 4 kHz, similar to a spectrogram in log-frequency scale.
For STRF estimation, the 100 frequency channels are downsampled to
5 (David et al. 2007).

The STRF was estimated using boosting with 10-fold cross-vali-
dation (David et al. 2007). The estimation procedure is verbally
described below, and its strict mathematical formulation is given in
the Appendix. During STRF estimation, each 1-min-long MEG re-
sponse was divided into 10 segments. Nine segments were used to
iteratively optimize the STRF (Appendix), whereas the remaining
segment was used to evaluate how well the STRF predicts neural
responses by its “predictive power”: the correlation between MEG
measurement and STRF model prediction. Iteration terminated when
the predictive power of the STRF decreased for the test segment (e.g.,
started to demonstrate artifacts of overfitting). The 10-fold cross-
validation resulted in 10 estimates of the STRF, whose average was
taken as the final result.

STRF analysis. The spectral and temporal profiles of the STRF are
extracted using singular value decomposition (SVD), STRE(f, 1) =
3 MSRE(AHTRFE, (1), Ay > A, >. ... In SVD, the signs of the singular
vectors are arbitrary, but we then further require that the spectral
singular vectors be overall positive, i.e., %, SRF,(f) > 0. We refer to
the first spectral singular vector, i.e., SRF,(f), as the normalized
spectral sensitivity function and to the product of the first temporal
singular vector and its singular value, i.e., A, TRF,(?), as the tempo-
ral response function. The spectral sensitivity function and temporal
response function consider only the first spectral and temporal singu-
lar vectors, and therefore they only account for some fraction of the
total variance of the STRF. This fraction, A}/2;A;, is called the
separability of STRF (Depireux et al. 2001). If the separability of
STRF is high (near 1), the STRF is well represented as the outer
product of the normalized spectral sensitivity function and the tem-
poral response function, and the spectral and temporal properties of
STRF can be discussed separately without any loss of information.
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The temporal features of STRF, e.g., the M100-like peak, were
extracted from the temporal response function, since the STRF proved
to be highly separable. The M100-like peak was determined as the
strongest negative peak in the temporal response function between 70
and 250 ms. In analysis of the M100-like response, the MEG re-
sponses to each 1-min-long stimulus were averaged within each
attentional state unless the experimental block number was employed
as an analysis factor.

Decoding speech information from neural responses. The STRF
model addresses how spectrotemporal features of speech are encoded
in cortical neural activity. To test how faithful the neural code was, we
employ a decoder to reconstruct the speech features from MEG
measurements. Since STRF analyses show that only coarse spectro-
temporal modulations of speech are encoded in the MEG activity (see
RESULTS), we concentrated on decoding the envelope of speech in a
broad frequency band between 400 Hz and 2 kHz (calculated by
summing the auditory channels in this range). The linear decoder is
formulated as §(r) = 3 r(t + 1D(7) + &(r), where §(1), r(1), and D(¢)
are the decoded speech envelope, the MEG source activity, and the
decoder, respectively. This decoding analysis naturally complements
the STRF analysis (Mesgarani et al. 2009), and the decoder is
estimated using boosting in the same way that the STRF is estimated.
The time lag between neural activity and stimulus, 7, is assumed to be
between 0 and 500 ms.

To evaluate the performance of the decoder, we calculated the
correlation coefficient between the decoded envelope and the enve-
lope of the actual stimulus, and compared it with the correlations
between the decoded envelope and the envelopes of other speech
signals. We defined the decoding of a neural response as being
successfully decoded if the decoded envelope was more correlated
with the envelope of the actual stimulus than other nonstimulus
envelopes. Using this criterion, when decoding the responses to the
four 1-min-duration spoken narratives, a response is correctly decoded
if the reconstructed envelope is more correlated with the actual
stimulus than the other three stimuli. In this particular case, the
decoding task is not very demanding, since only 2 bits of information
are needed to discriminate four stimuli while having access to the
entire 1-min duration. To test the maximum amount of information
decodable from the MEG response, we increased the difficulty of the
decoding task by splitting the stimulus and the speech envelope
decoded from the neural response into multiple segments and deter-
mining the relationship between stimulus and response on a segment
basis. For example, if the segment duration is 2 s, each 1-min-long
stimulus/response results in 30 segments. To perfectly identify the 30
stimulus segments, one needs at least log(30) = 5 bits of information
in the 2-s-long response, resulting in an information rate of 2.5 bit/s
(all uses of the log function are with base 2 implied, as is customary
in information theoretic analysis). It is worth noting that the informa-
tion rate in this case describes how faithful the decoded envelope
resembles the actual envelope, rather than the linguistic information
carried in speech.

Information theory is employed to characterize how much infor-
mation can be extracted from the neural encoding of speech. The
minimal amount of information needed to discriminate N patterns is
log(N) bits. When the mutual information between the stimulus and
response, (s, 1), is less than log(N) bits, it is not possible to perfectly
decode N equally probable stimulus patterns based on the response.
The decoding accuracy is limited by Fano’s inequality (Cover and
Thomas 1991):

H(P,) + Plog(N — 1) >1log(N) — I(s,r),

where P, is percentage of correct decoding and H(P,) = P log(P,) +
(1 — P)log(l — P.). From the inequality, we also have an estimate
of the lower bound of the mutual information between stimulus and
response: I(s, r) > log(N) — H(P,) — P.Jog(N — 1). This inequality
holds for any N stimulus patterns, even if the stimulus patterns and the
decoding algorithm are optimized. For simplicity, we assume the

mutual information I(s, r) increases linearly with the duration of
stimulus/response and therefore express the result as the mutual
information rate, mutual information divided by the stimulus duration.

To avoid overfitting while decoding, we divided the two 1-min-
long stimuli in each ear into two equal size groups. We used one group
to train the decoder and the other group to evaluate decoding accu-
racy. The two groups were then switched. The decoding results, i.e.,
the correlation between decoded stimuli and real stimuli, were aver-
aged over the two groups.

Significance tests. The statistical significance of the STRF was
estimated by comparing the actual STRF results with the null distri-
bution of the STRF parameters. To estimate the null distribution, we
derived pseudo-STRFs based on each spoken narrative and mis-
matched neural responses. To generate a mismatched response, under
each listening condition (monaural/attended/unattended), we concat-
enated all the responses to the four spoken narratives and randomly
selected a 1-min-duration neural recording from the concatenated
response. One thousand such mismatched responses were generated
and resulted in 1,000 pseudo-STRFs in each listening condition.

The predictive power of the actual STRF was viewed as significant
if it was greater than any of the predictive powers of the 1,000
pseudo-STRFs (P < 0.001). Similarly, the M100-like peak in actual
STRF was viewed as significant if it was stronger than any of the
peaks in the pseudo-STRF in the same time window (P < 0.001). The
amplitude of the M100-like response was further analyzed using
repeated-measures ANOVA with Greenhouse-Geisser corrections,
using the CLEAVE statistical analysis tool (http://www.ebire.org/
hcnlab).

Auditory steady-state response analysis. Sinusoidal amplitude
modulation of a stimulus would be expected to evoke an aSSR at the
modulation rate. In the aSSR analysis, responses to the same stimulus
were averaged and converted into the frequency domain using the
discrete Fourier transform, with 0.017-Hz resolution (based on the
1-min-duration recording). Two stimulus modulation rates, 37 and 45
Hz, were employed in the experiment. In the monaural speech con-
dition, each stimulus was only modulated at one rate, and therefore
measurements at the other modulation rate were used to evaluate the
background neural noise level at that frequency. The significance of
the response at a modulation rate was determined by comparing the
response magnitude in the presence of the stimulus modulation and
the response magnitude in the absence of the stimulus modulation
(permutation test with paired data).

RESULTS

Representation of speech in the low-frequency neural response.
In the monaural listening condition, 2 min of a single spoken
narrative were presented to each ear. We employed the STRF to
model how the spectrotemporal modulations of speech are en-
coded in the MEG activity filtered into different frequency bands.
Figure 2 shows the predictive power of STRF, the correlation
between the STRF model prediction and the MEG measurement,
for every 2-Hz-wide frequency band between 1 and 59 Hz. The
predictive power was above chance level only in the low-
frequency region (1-8 Hz), which is further analyzed below.

Neural representation of spectrotemporal features in speech.
The STRF derived from the low-frequency MEG response
(1-8 Hz) is shown in Fig. 3A. The STRF can be interpreted in
several ways (deCharms et al. 1998; Simon et al. 2007). One is
that the STRF at each frequency represents the contribution to
the MEG response evoked by a unit power increase of the
stimulus in that frequency band. Another, complementary,
interpretation is that the STRF, when reversed in time, repre-
sents the acoustic features most effective at driving MEG
responses (Fig. 1). The STRF shows the strongest activation
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Fig. 2. Predictive power of the STRF model by
frequency band. The grand-averaged predictive
power is shown as the black line, with error bars
representing 1 SE on each side. The gray-shaded
area covers from 5 to 95 percentiles of chance level
predictive power, estimated based on pseudo-
STRFs. The predictive power of STRF of MEG
speech response was significantly higher than
chance level below 8 Hz. of
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(right) side stimulus (significantly higher for the left side,
paired t-test, 1, = 2.4, P < 0.05). In the left hemisphere, the
predictive power was similar for stimuli in both ears (0.11 for
the left and 0.12 for the right).

An STRF is called spectrotemporally separable when its
temporal and spectral processing are independent of each other
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(Depireux et al. 2001). The separability of the MEG STRF was
very high and is quantitatively illustrated in Fig. 4. Further-
more, the STRF separability was positively correlated with the
STRF predictive power (Fig. 4), indicating that STRFs that
predict the MEG response well are generally separable. A
separable STRF can be decomposed into the product of a single
temporal function (Fig. 5A) and a single spectral function (Fig.
5B), and therefore the spectral property and temporal property
of MEG STRFs are analyzed separately as described below.

The normalized spectral sensitivity function of the STRF
showed a broad peak between 400 Hz and 2 kHz (Fig. 5B). The
spectral sensitivity function significantly changed as a function
of frequency (frequency X hemisphere X stimulus side, 3-way
repeated-measures ANOVA, F| 359 = 28, P < 0.0001) but was
not significantly influenced by stimulus side or by hemisphere.

The M100-like response of the STRF was well captured in
the temporal response function (Fig. 5A) and was statistically
significant in each hemisphere for each stimulus presentation
side (test described in METHODS, P << 0.001). The amplitude and
latency of this M100-like response are summarized in Fig. 6.
The amplitude of this response was larger in the right hemi-
sphere, independent of the stimulus side (hemisphere X stim-
ulus side, 2-way repeated-measures ANOVA, F, ;5 = 11.6,
P < 0.008), whereas the latency was shorter for a contralateral
stimulus (hemisphere X stimulus side, 2-way repeated-mea-
sures ANOVA, F 5 = 14.6, P < 0.005).

Speech decoding based on the MEG response. The STRF
analysis above showed that spectrotemporal modulations of
speech are encoded in auditory cortex as a temporal code. The
fidelity of this temporal code was further assessed by decoding,
i.e., reconstructing, speech features from MEG responses.
Because the frequency tuning of STRF was broad, we concen-
trated on decoding the temporal envelope of speech. In the
decoding, we divided the MEG response and corresponding
stimulus into multiple segments of equal length and used the
decoder (estimated from a nonoverlapping data set) to decode
the stimulus from each segment. The correlation between the
decoded envelope and real stimulus envelope is shown in
Fig. 7A as a grand-averaged confusion matrix. This result is
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Fig. 4. Predictive power and separability of the STRF. Each point is the result
from an individual subject in 1 condition. STRFs with any substantial predic-
tive power are skewed toward high separability. Circles and squares are the
results from monaural and binaural listening conditions, respectively; filled and
open symbols are results from left and right hemispheres, respectively. The
background contour map shows the joint probability distribution density of
predictive power and STRF separability. The probability distribution density
was obtained by smoothing the 2-D histogram using a Gaussian function
(SD = 0.1 in both directions).
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Fig. 5. Temporal response function and spectral sensitivity functions. A: grand
average of the temporal response functions to speech stimuli under 3 different
listening conditions. The amplitude of the temporal response function was
higher in the monaural speech condition and was strongly modulated by
attention in the dichotic listening condition. B: the normalized spectral sensi-
tivity function (grand average over subjects) had a peak between 400 and 2,000
Hz in both hemispheres and all listening conditions. Normalized spectral
sensitivity functions to contralateral and ipsilateral stimuli were not signifi-
cantly different and therefore were averaged. The spectral sensitivity function
was smoothed using a Gaussian function with an SD of 5 semitones.

based on the right hemisphere’s response to a 1-min-duration
contralateral stimulus for the case where the stimulus and
response are divided into 50 (1.2-s duration) segments. In
Fig. 7A, the 50 stimulus segments and the 50 envelopes
decoded from response segments are indexed sequentially from
1 to 50. If each decoded envelope is attributed to the stimulus
whose envelope is most correlated with it, 86% of the 50
stimulus segments are correctly decoded.

The number and duration of stimulus/response segments
have a profound influence on speech decoding performance.
Figure 7B shows the speech decoding performance as a func-
tion of the number of stimulus segments divided by the
duration of each stimulus. Based on Fano’s inequality, the
speech decoding performance demands that at least 4 bits/s of
information in speech were encoded in the right hemisphere
MEG response. In the left hemisphere, this value dropped to 1
bit/s. This decoding result is based on the confusion matrix
averaged over subjects. Analysis of individual subjects con-
firms that more information was decoded from the right hemi-
sphere than the left (hemisphere X stimulus side, 2-way
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Fig. 6. Amplitude and latency of the M100-like response (grand average).
Error bars represent SE. The response amplitude was universally larger and the
response latency was universally shorter for monaurally presented speech. In
the dichotic condition, the response was stronger for the attended speech than
for the unattended speech.

repeated-measures ANOVA, F 4 28.5, P < 0.0005),
whereas a similar amount of information was decoded for the
left and right side stimuli.

Spectrotemporal representation of simultaneous speech
signals. Beyond the monaural listening condition analyzed
above, subjects also took part in a dichotic listening experi-
ment. In this condition, on top of the single spoken narrative in
one ear, another spoken narrative was presented simultane-
ously in the opposite ear, resulting in a dichotic listening
condition. In each experimental block, the subjects were first
instructed to listen to the spoken narrative in one ear, and then,
when the stimulus was repeated, to listen to the spoken narra-
tive in the other ear. Therefore, the speech signal in each ear
served as both a target (when attended to) and an interference
signal (when not being attended to). Each experimental block
was presented three times. The STRF was determined sepa-
rately for the stimulus in each ear, under each attentional
condition and for each hemisphere.

The STRF for both attended and unattended speech had a
salient M100-like response (Figs. 3B and 5A), similar to the
STRF for monaural speech. The STRFs obtained from this
dichotic listening condition remained highly separable (Fig. 4).
Frequency X hemisphere X attentional state (attended vs.
unattended) three-way repeated-measures ANOVA showed
that the normalized spectral sensitivity function was not influ-
enced by attentional state and was not different between the
two hemispheres (Fig. 5B).

The M100-like peak was statistically significant for both
attended and unattended speech (test described in METHODS,
P < 0.001). Compared with the M100-like response for mon-
aural stimuli, the M100-like response to dichotic stimuli was
weakened (paired t-test, P << 0.0001 for both attended re-
sponse and unattended responses) and delayed (paired z-test,
P < 0.002 for attended response and P << 0.0001 for unat-
tended response). A four-way repeated measures ANOVA
(attentional state X hemisphere X stimulus side X experimen-
tal block) showed that the latency of this peak in each hemi-
sphere was shorter for the contralateral stimulus (F; 39 = 13.5,
P < 0.000).

In the dichotic listening condition, the neural representation
of speech remained faithful. The predictive power of the STRF

was far above chance level (test described in METHODS, P <
0.001). It was not significantly affected by hemisphere or
which ear was attended to individually but was affected by the
interaction between the two (2-way repeated-measures
ANOVA, F| 39 = 20.0, P < 0.002). The predictive power was
higher when attention was paid to the contralateral stimulus
(0.17 vs. 0.10) for either hemisphere. A considerable amount of
speech information can be decoded from the MEG responses to
both the attended and the unattended speech. The amount of
information extracted from individual subjects was analyzed
using a three-way repeated-measures ANOVA (attentional
state X hemisphere X stimulus side). More information was
decoded when the stimulus was being attended to (F; ;9 = 23,
P < 0.0009) and in the right hemisphere (F; ;9 = 6.5, P <
0.03).

Attentional modulation during dichotic listening. The am-
plitude of this M100-like response peak (Fig. 6) was substan-
tially modulated by attention. A four-way repeated-measures
ANOVA (with attentional state, hemisphere, stimulus side, and
experimental block number as factors) revealed that the neural
response to attended speech was significantly stronger than the
neural response to unattended speech (F|,3 = 10.0, P <
0.02). There was a significant interaction among attentional
state, hemisphere, and stimulus side (F; 539 = 9.1, P < 0.02).
For the speech stimulus in each ear, the attentional effect was
more salient in the contralateral hemisphere (paired 7-test, 5o =
3.3, P < 0.002). There was also an interaction between
hemisphere and stimulus side (F 539 = 16.2, P < 0.003). The
response to the stimulus on either side was stronger in the
contralateral hemisphere. None of the factors interacted with
experimental block number. Even when only the first experi-
mental block was considered, the attention effect was signifi-
cant (attentional state X hemisphere X stimulus side, 3-way
repeated-measures ANOVA, F| ;o = 28.1, P < 0.0005, stron-
ger when attended) and the interaction among attentional state,
hemisphere, and stimulus side was significant (F; ;9 = 9.0,
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Fig. 7. Stimulus information encoded in the MEG response. A: the correlation
(grayscale intensity) between the stimulus speech envelope and the envelope
reconstructed from the right hemisphere MEG response. The stimulus enve-
lope most correlated with each reconstructed envelope is marked by a square.
B: stimulus decoding accuracy as a function of the number of stimulus
segments per second for monaural speech. The black and gray curves are the
results from the left and right hemispheres, respectively; solid and dashed
curves are based on the left- and right-side stimuli, respectively. The infor-
mation decoded from the right and left hemispheres was roughly 4 and 1 bit/s,
respectively, for a monaural speech stimulus and is a conservative estimate of
the stimulus information available in the MEG response.
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P < 0.02, attentional modulations stronger in the contralateral
hemisphere).

To investigate the temporal dynamics of the attentional gain
effect within a single presentation of the stimulus, we divided
each 1-min response into ten 6-s segments and estimated the
temporal response function for each segment independently.
The attentional gain of the M100-like response was extracted
from each temporal response function as the gain difference
between attended response and unattended response (in dB). A
three-way repeated-measures ANOVA (hemisphere X stimu-
lus side X segment) on the attentional gain of the M100-like
peak revealed no significant interaction between the attention
gain and segment number.

As a result of the attentional gain effect, one might expect
the neural response to the speech mixture to be more similar
to the neural response to the attended speech than the response
to the unattended speech. This hypothesis was confirmed by
the analysis of the correlation between the MEG response to
the speech mixture and the MEG responses to individual
speech components measured during monaural listening
(Fig. 8). A three-way repeated-measures ANOVA, with speech
component (attended or unattended), hemisphere, and stimulus
side as factors, confirmed that the response to the mixture was
more correlated with the response to the attended speech
component (F; ;o = 36.2, P < 0.0002). The ANOVA analysis
also revealed a significant interaction among speech compo-
nent, hemisphere, and stimulus side (F, 79 397, P <
0.0001): the response to the mixture was especially dominated
by the response to the attended speech in the hemisphere
contralateral to the ear the attended speech was presented to.

Neural source localization. In the STRF and decoding anal-
yses, the MEG speech response was decomposed into compo-
nents using a blind source separation method, DSS (de Chev-
eigne and Simon 2008). Only the first DSS component, which
has the strongest trial-to-trial reliability, produced any STRF
with substantive predictive power (Fig. 9). The topography of
the spatial magnetic field associated with this first DSS com-
ponent was quantitatively similar to that of the well-known
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Fig. 8. Correlation between the MEG response to dichotic speech stimuli and
the MEG responses to the 2 speech components presented monaurally. Each
symbol is the result from 1 subject. The responses in the right and left
hemispheres are plotted as stars and squares, respectively. For each hemi-
sphere, if the attended ear in the dichotic condition was the contralateral ear,
the result is plotted as a filled symbol, but otherwise it is plotted as an open
symbol. The response to dichotic stimuli was more correlated with the
response to the attended speech component, especially in the contralateral
hemisphere.
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Fig. 9. Predictive power of the STRF derived from each denoising source
separation (DSS) component. The first DSS component resulted in signifi-
cantly higher predictive power than other components and therefore was the
only one used to localize the source of the MEG response.

M100 response. The correlation between them was 96.0% for
the grand-average magnetic fields (with a 95% confidence
interval of 94.6 to 97.0% correlation, estimated by bootstrap
sampling). The magnetic field patterns associated with the first
DSS component and the M100 were separately modeled by a
single ECD in each hemisphere. The correlation between the
measured magnetic field and that of the dipole model was 94 =+
5% and 92 * 7% (mean * SD) for the DSS component and the
M100, respectively. The ECD locations for the two responses
were not distinguishable (P > 0.1 in all directions), consistent
with their topographical similarity, which implies that both are
centered in association auditory cortex (Liitkenhoner and
Steinstriater 1998; Woldorff et al. 1993).

Auditory steady-state response. The sinusoidal modulation
of the speech waveforms near 40 Hz generated a small but
observable aSSR. For the monaural speech condition, the aSSR
at both modulation rates was statistically significant (P <
0.05). In the dichotic listening condition, the attentional mod-
ulation of aSSR power was assessed by two-way repeated-
measures ANOVA (attentional state X hemisphere), but no
significant effects were seen.

DISCUSSION

In this study, we have characterized how spectrotemporal
features of speech are encoded in spatially synchronized activ-
ity in auditory cortex, by quantifying the relationship between
ongoing MEG response and continuous speech stimulus. The
major results are summarized as follows. /) The neural activity
in auditory cortex precisely encodes the slow temporal modu-
lations of speech (<8 Hz) in a broad spectral region between
400 and 2,000 Hz, which roughly encompasses the first and
second formants of speech. 2) The neural coding of slow
temporal modulations is stronger and more precise in the right
hemisphere, regardless of which ear the speech stimulus is
presented to. In the right hemisphere, the neural code is faithful
enough to discriminate the responses to hundreds of speech
stimuli based on a few seconds of neural recording. 3) The
neural response in each hemisphere is weaker and has a longer
latency for speech stimulus monaurally presented to the ipsi-
lateral ear, similar to what is observed for the M100 response
(Pantev et al. 1986; Rif et al. 1991).

Using a dichotic listening paradigm, we have further dem-
onstrated how competing speech signals are encoded. /) Au-
ditory cortex precisely tracks the temporal modulations of both
incoming speech signals but substantially more strongly for the
attended one. 2) The effect of attentional modulation in audi-
tory cortex has a latency of only 100 ms, indicating that the
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segregation of dichotic speech stimuli must still involve feed-
forward neural processing. 3) The attentional modulation of
auditory activity is present even during the subjects’ first
exposure to a dichotic speech mixture. 4) The attentional gain
effect is more salient in the hemisphere contralateral to the
attended ear. 5) The neural response to speech in either ear is
weakened (cf. Fujiki et al. 2002; Penna et al. 2007) and delayed
by speech in the other ear.

These results on the spectrotemporal neural encoding of
speech provide a clear explanation for stimulus-synchronized
neural response observed in previous experiments (Abrams et
al. 2008; Ahissar et al. 2001; Aiken and Picton 2008; Lalor and
Foxe 2010; Luo and Poeppel 2007; Nourski et al. 2009). The
properties and indications of this neural code are discussed
below.

Attentional gain control for unfamiliar speech. The atten-
tion-modulated sensory gain control shown in this study is
largely independent of specific knowledge of the content of the
speech, since it is effective even on the first exposure to the
speech. As far as we know, this is the first evidence that
attentional gain modulation is active with a relative short
latency when human listeners strive to comprehend novel
speech in the presence of interfering speech. Although natural
speech has built-in contextual and rhythmic cues, these do not
predict the content of the speech by any means. It is known that
even without any rhythmic cues, the auditory evoked response
to an attended stimulus can be enhanced (Hillyard et al. 1973).
It is also possible, however, that contextual cues, and espe-
cially the rhythm of natural speech, facilitate the neural am-
plification of speech encoding (Lakatos et al. 2008). Experi-
ments using dichotically presented tone sequences have dem-
onstrated that the effect of attention on the M100 (N1) is
observed for stimuli with some kinds of rhythm (typically fast)
(Ahveninen et al. 2011; Hillyard et al. 1973; Power et al. 2011;
Rif et al. 1991; Woldorff et al. 1993), but not others (Hari et al.
1989; Ross et al. 2010). Therefore, it is critical to show directly
whether early auditory response to speech, with its unique
complex temporal structure, is modulated by attention.

Equally as important, the attentional gain effect is seen in
auditory cortex, directly affecting a neural response component
whose latency is only about 100 ms and which is phase-locked
to low-level acoustic features of speech. Therefore, the segre-
gation and selective processing of two dichotically presented
speech signals almost certainly involve feedforward auditory
neural computations. Also, because of the relatively short
latency and the neural source location, it is unlikely that this
observed speech segregation occurs during or after the seman-
tic processing of speech. It is also worth noting, however, that
the early sensory response to the unattended speech is sup-
pressed but not eliminated. This relatively weak auditory
response may be further processed, leading to the interaction
between dichotically presented speech signals seen behavior-
ally (Brungart and Simpson 2002; Conway et al. 2001). In
addition, although the M100-like response in STRF is modu-
lated by attention, the aSSR is not. This result is consistent with
previous observations that 40-Hz aSSR is not, or only very
weakly, modulated by attention or even awareness of sounds
(Gutschalk et al. 2008; Lazzouni et al. 2010; Linden et al.
1987). Compared with the M100-like response, the aSSR has a
shorter latency at about 50 ms (Ross et al. 2000). Moreover, the
neural source location of the aSSR is commonly believed to be

in core auditory cortex (Herdman et al. 2003), whereas the
neural source location of the M100-like response is centered in
association auditory cortex (Liitkenhoner and Steinstréiter
1998). Therefore, although feedforward processing is clearly
involved in dichotic speech segregation, it may not occur at the
level of core auditory cortex. It is also possible, however, that
the lack of statistically significant attentional effects on the
aSSR is due to the weakness of the aSSR; it is known that
aSSR is attenuated by slow temporal modulations, such as
those present in speech (Ding and Simon 2009).

Although dichotic speech segregation is reflected in the
feedforward early auditory response seen in this study, it is
certainly under the modulation of higher order cortical net-
works. Further experiments are still necessary to identify the
network controlling the attentional gain effects seen in auditory
cortex, which may include areas in the frontal and parietal
cortex (Hill and Miller 2010; Shomstein and Yantis 2006). The
attention-control signals by no means need to be phase-locked
to acoustic features of the speech stimulus and therefore cannot
be extracted using the STRF analysis employed presently.

In addition, since the current experiment uses the same
speaker and same narrative source for both ears, rather than
tones of different frequencies, we have demonstrated that this
attentional sensory gain control can be driven entirely by the
stimulus ear, not needing, for example, spectral cues. Of
course, other monaural cues, such as pitch and rhythm, and
binaural cues, such as interaural time difference (ITD) and
interaural level difference (ILD), can also be utilized to segre-
gate concurrent sounds (Bronkhorst 2000). Previous experi-
ments with simple nonspeech stimuli have demonstrated that
monaural cue-based segregation of spectrally nonoverlapping
sounds is reflected neurally in human auditory cortex (Bidet-
Caulet et al. 2007; Elhilali et al. 2009; Xiang et al. 2010).
Future experiments are needed to address whether speech
segregation itself, which is a much harder problem, also occurs
in human auditory cortex at a short latency.

Hemispheric lateralization of speech coding in auditory cortex.
Although the neural tracking of spectrotemporal modulations
in speech is seen bilaterally, it is strongly lateralized to the
right hemisphere, independent of the stimulus ear. This later-
alization is demonstrated by the amplitude of the M100-like
component (Fig. 6) and more critically by the fidelity of neural
coding (Fig. 7B). This strong right hemisphere dominance
effect is surprising, however, since it is not observed in the
M100 response to sound onsets or to aSSR to 40-Hz amplitude
modulations (Rif et al. 1991; Ross et al. 2005), both of which
are instead stronger in the hemisphere contralateral to the ear
receiving the stimulus or equally strong in both hemispheres.
Furthermore, even for responses to speech, if both the response
tracking speech features and other responses are considered,
the total response is stronger in the left rather than right
hemisphere (Millman et al. 2011). Nor can the rightward
lateralization of the neural representation of speech be ex-
plained anatomically, since the dominant excitatory input to
each hemisphere is from the contralateral ear (Pickles 1988).
Therefore, this result gives further support to the hypothesis
that the right hemisphere is intrinsically dominant in process-
ing the slow modulations (<10 Hz) in speech during natural
speech comprehension (Poeppel 2003). This right hemisphere
dominance has also been observed in the neural response to
speech (Abrams et al. 2008; Kerlin et al. 2010; Luo and
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Poeppel 2007) and even in endogenous neural oscillations
(Giraud et al. 2007).

On top of this intrinsic right hemisphere dominance, how-
ever, during dichotic listening, the effect of attentional gain
control is even more prominent in the hemisphere contralateral
to the attended side. This hemispheric lateralization effect
likely arises from the anatomical asymmetry between the left
and right afferent pathways to each hemisphere. When two
different sounds are presented to the two ears separately, their
neural representations form a competition (Fujiki et al. 2002;
Penna et al. 2007). One result of this competition may be that
each hemisphere primarily processes information from the
contralateral ear, where most of the excitatory afferent inputs
are from (Pickles 1988). Therefore, the neural processing of
each stimulus can be most strongly modulated by the atten-
tional gain change in the contralateral hemisphere.

Neural coding of spectrotemporal dynamics of speech signals.
Using STRF analysis, we have demonstrated that slow tempo-
ral modulations of speech (particularly of coarse spectral mod-
ulations) are precisely encoded in human auditory cortex.
Taking advantage of the fine time resolution of MEG, we have
shown that the observed neural responses encode at least 4 bit/s
information. This indicates that, using a linear decoder, we can
errorlessly discriminate about 16 speech stimuli (4 bits) of 1-s
duration based on their MEG responses. Similarly, this same
information rate allows one to errorlessly discriminate about
256 speech stimuli (8 bits) of 2-s duration. The possibility of
discriminating MEG/EEG responses to speech has been sug-
gested by earlier studies but only shown on the basis of a small
number of sentences of several seconds in duration (Kerlin et
al. 2010; Luo and Poeppel 2007). The MEG response is also
robust: an M100-like response is observed even for unattended
speech. This contrasts with the observation that the neural
representation of sounds in anesthetized avian auditory fore-
brain is severely degraded by acoustic interference (Narayan et
al. 2007) and therefore suggests that the robust neural coding
may require top-down attentional modulation.

In speech, temporal modulations below 10 Hz convey syl-
labic and phrasal level information (Greenberg 1999). In quiet,
these slow modulations, in concert with even a very coarse
spectral modulation, accomplish high speech intelligibility
(Shannon et al. 1995). When speech is masked by acoustic
interference, slow temporal modulations of the interference
releases the masking of the target speech (Festen and Plomp
1990). Faster acoustic fluctuations of speech, e.g., spectral and
pitch cues, that contain phonetic and prosodic information are
gated by the slow modulations (Rosen 1992). Similarly, the
neural processing of speech features on short time scales
(<100 ms) may also be modulated by the low-frequency neural
activity analyzed in this study. The phonetic information of
speech has been suggested to be spatially coded over neural
populations in auditory cortex (Chang et al. 2010). This spatial
code discriminates different syllables most effectively at
around 100 ms after the syllable onset, consistent with the
latency of the M100-like response in the MEG STRF. Other
possible neural signatures of higher level processing of speech
are high-frequency neural oscillations (40—150 Hz), which are
also coupled to slow neural oscillations below 10 Hz (Lakatos
et al. 2008). Therefore, the slow activity noninvasively mea-
sured by MEG probably reflects the timing of such microscopic

neural computations of the phonetic level information of
speech.

The STRF of the MEG speech response. The mathematical
linear system bridging the speech stimulus and the neural
representation of that speech can be represented graphically by
the STRF. The predictive power of the MEG STRF compares
well with that obtained from single cortical neurons for speech
stimuli (Bitterman et al. 2008; David et al. 2007, 2009). The
MEG STREF is highly separable: the temporal processing of the
speech stimulus is consistent over the entire frequency range of
the STRF and is equally sensitive to upward and downward
changes in frequency content. This contrasts with the variety of
separability seen in the STRFs of single neurons in primary
auditory cortex (Depireux et al. 2001) and the inseparability
seen using TMRI (Schonwiesner and Zatorre 2009). This dif-
ference in separability reflects differences between the spec-
trotemporal tuning of individual neurons, spatially synchro-
nized activity and nonspatially synchronized activity. MEG
and fMRI recordings reflect the activity of large neural popu-
lations. In addition, MEG records only spatially synchronized
components of the response (and in this study, stimulus-
synchronized neural activity), whereas fMRI measures the
indirect hemodynamic response, which is influenced by both
synchronized and asynchronous neural activity. Hence, MEG
and fMRI demonstrate very different aspects of the population
level distribution of the spectrotemporal tuning properties of
neurons and are therefore naturally complementary.

In summary, in this study we have demonstrated the exis-
tence of a neural encoding of speech in human auditory cortex
that can be measured extracranially and noninvasively. We
also have demonstrated that this neural encoding is based on
the acoustic modulations of the spectrotemporal features of
speech. The encoding is quite faithful (perhaps even surpris-
ingly so given that the neural signal is measured extracranially)
and is able to distinguish among hundreds of different stimuli
in the course of only a few seconds. In addition, on one hand,
the encoding strategy is very strongly tied to the physical
properties of speech, which would normally imply a bottom-up
encoding process, but on the other hand, the encoding strategy
is also strongly modulated by the attentional state of the
listener, demonstrating that top-down processes directly mod-
ulate the neural representation of the fundamental acoustic
features of speech. Finally, we also have developed a practical
experimental paradigm that allows single-trial analysis of the
auditory cortical encoding of continuous speech in an ecolog-
ically realistic manner.

APPENDIX

The STRF based on the MEG response is estimated using boosting
(David et al. 2007) with 10-fold cross-validation. The procedure is
documented as follows:

1) Initialize the STRF.

STRF(f, ) = 0, forall fand r.

2) Iteratively optimize the STRF. The nth iteration is based on the
results of the (n — 1)th iteration:

raoy (1) = ; 2 STRF,_,(f, 7)S(f. 1 — ) + &, (2).

In the nth iteration,
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ra(1) = ; 2 STRE,(f, 7)S(f, 1 — 7) + &,(1),

where
STRF,(f, 7) = STRF,_,(f, 7) + ASTRF(f, 7),

8,if f=fo.t =1,
ASTRE(f, 7) = {0 J=er=t
The prediction error in the nth iteration is g,(f) = €,, _ 1(t) — 85(f;, t,)-
ASTREF is selected to minimize the prediction error, i.e.,

ASTRF(f, 7) = argmin > ex(1) =
Joto 7
argmin 2 [8,,_|(t) - SS(fO, to)]z.

foto 1

3) Terminate the iteration when the prediction error of the model
drops based on cross-validation.
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