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Abstract Natural sensory inputs, such as speech and music,
are often rhythmic. Recent studies have consistently dem-
onstrated that these rhythmic stimuli cause the phase of
oscillatory, i.e. rhythmic, neural activity, recorded as local
field potential (LFP), electroencephalography (EEG) or
magnetoencephalography (MEG), to synchronize with the
stimulus. This phase synchronization, when not accompa-
nied by any increase of response power, has been hypothe-
sized to be the result of phase resetting of ongoing,
spontaneous, neural oscillations measurable by LFP, EEG,
or MEG. In this article, however, we argue that this same
phenomenon can be easily explained without any phase
resetting, and where the stimulus-synchronized activity is
generated independently of background neural oscillations.
It is demonstrated with a simple (but general) stochastic
model that, purely due to statistical properties, phase syn-
chronization, as measured by ‘inter-trial phase coherence’,
is much more sensitive to stimulus-synchronized neural
activity than is power. These results question the usefulness
of analyzing the power and phase of stimulus-synchronized
activity as separate and complementary measures; particu-
larly in the case of attempting to demonstrate whether
stimulus-synchronized neural activity is generated by phase
resetting of ongoing neural oscillations.
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1 Introduction

Natural sensory inputs, such as speech, music and natural
audio-visual scenes, are often rhythmic. Low frequency
neural activity in the brain, either local field potential
(LFP), electroencephalography (EEG) or magnetoencepha-
lography (MEG), can synchronize to this input rhythm
(Lakatos et al. 2008; Luo and Poeppel 2007). The dominant
rhythm of natural stimuli is usually below 10 Hz, and
therefore the synchronized neural activity falls into the delta
and theta bands of neural oscillations. From this, low fre-
quency stimulus-synchronized activity is often hypothesized
to be related to the intrinsic rhythm of large-scale neural
oscillations. The main support for this hypothesis is that
when a rhythmic sensory input is present, the phase of the
oscillatory neural activity aligns with the input, as is dem-
onstrated by the high trial-to-trial coherence of the phase of
the neural response. In other words, similar response phases
are observed when a stimulus repeats. In contrast to the
phase, the power of the neural response is often not in-
creased in the presence of the same stimulus (Schroeder
and Lakatos 2009) and may not follow the stimulus rhythm
(Luo and Poeppel 2007). In short, it appears at first that the
phase, rather than the power, of a neural response is most
sensitive to the stimulus. From this it is often concluded that
stimulus-synchronized activity, without accompanying
increases in power, must be caused by phase resetting of
ongoing LFP/EEG/MEG oscillations (Shah et al. 2004)

Recently, however, Howard and Poeppel (2010) have
suggested that even if the power of oscillatory neural activ-
ity is truly synchronized by the stimulus, it may not be at all
observable experimentally, due to the presence of back-
ground, stimulus-irrelevant, neural activity. In this study
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we prove this mathematically, and characterize the statis-
tical properties of the neural response phase and power,
using a general model in which stimulus-synchronized
activity is generated independently of background neural
oscillations.

2 Phase synchronization in a general model

2.1 A linear model for stimulus-synchronized neural
response

Suppose the neural activity tracking a sensory stimulus
is S(f) and background neural activity is N(f), where
both signals are represented in the frequency domain.
The following discussion analyzes responses at only a
single frequency, and therefore the symbol f is dropped.
The results, however, hold without loss of generality to
all frequencies, since any measured neural response,
even if broadband, can be converted into its constituent
frequencies using Fourier analysis. Since S and N are
both complex Fourier coefficients, they can be conve-
niently denoted as phasors, i.e. S0rSexp(jθS) and N0
rNexp(jθN), where r and θ represent the magnitude and
phase respectively. For the stimulus-synchronized com-
ponent S, rS and θS are assumed to be constant over
trials. Under the assumption that stimulus-synchronized
activity S is generated independently of background
activity N, the measured neural activity, M0rMexp
(jθM), is modeled as the linear sum of the stimulus-
synchronized and background activity, i.e. M0S+N
(Sahani and Linden 2003).

We assume at first the stimulus-irrelevant background
activity to be independent identically distributed (i.i.d.)
Gaussian noise in the time domain. Consequently, in the
frequency domain, the phase of N, θN, is uniformly
distributed (from 0 to 2π), and the real and imaginary
parts of N are jointly Gaussian with equal variance, e.g.
σ2. For a more general case, we assume the stimulus-
irrelevant background activity to be i.i.d. generalized
Gaussian noise. Under this assumption, the probability
distribution of the background activity, n(t), at any
moment is Pn nðtÞð Þ ¼ C0exp $ nðtÞ σ=j jcð Þ , where C0 is a
normalization parameter and c is the shape parameter that
determines the kurtosis of the distribution. The generalized
Gaussian distribution reduces to a Gaussian distribution when
c02, or a Laplacian distribution when c01.

2.2 Distribution of the neural response phase

When the real and imaginary parts of background activity N
are jointly Gaussian, the real and imaginary parts of the
measurement M, i.e. rMcos(θM) and rMsin(θM), are also

jointly Gaussian. The joint distribution of amplitude and
phase of measured neural activity, i.e. rM and θM, is then

Prθ rM ; θMð Þ ¼
f rMcosθM$rScosθS

σ ;
rM sinθM$rSsinθS
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where ϕ(⋅,⋅) is the joint probability density function of two
independent standard Gaussian variables. The marginal dis-
tribution of θM can then be calculated to be
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p
rs σ= , and Φ(⋅) is the cu-

mulative distribution function of a standard Gaussian
random variable (zero mean and unit variance). γ is
the ratio between the amplitude of the stimulus-related
response and the amplitude of the stimulus-unrelated
response, and can be interpreted as a signal to noise
ratio (SNR). When the neural response amplitude is
zero, γ is 0, and therefore pθ (θM)01/(2π), i.e. θ is
uniformly distributed across all phases. Nevertheless,
as long as γ is not zero, pθ (θM) is non-uniform and
is maximal at θM0θS (Fig. 1(a)).

Fig. 1 The probability density function of the phase of neural meas-
urements when stimulus-synchronized activity is generated indepen-
dently of background activity. The probability distribution is distinct
from the uniform distribution (solid gray line), as long as stimulus-
synchronized activity has non-zero amplitude
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3 Detecting oscillatory neural activity using power
and phase

3.1 Detection of a neural response

In laboratory experiments, the existence of stimulus-
synchronized activity must be validated with a significance
test. Here, we analyze the statistical properties of the
significance test based on the linear model introduced in
Section 2.1. In these significance tests the null hypothesis,
H0, is that there is no stimulus-synchronized neural response
and therefore the neural measurement contains only back-
ground activity, e.g. M0N. The alternative hypothesis, H1, is
that there is indeed a non-zero stimulus-synchronized neural
response, e.g. M0λS+N, with λ≠0 the magnitude of
stimulus-synchronized activity. The significance level of a
test, α (fixed at 0.05 in this study) is the probability that the
test reports the alternative hypothesis given that the null
hypothesis is true, i.e. the false alarm rate. The performance
of a test is evaluated based on the statistical power, defined as
the probability that the test reports the alternative hypothesis
when the alternative hypothesis is true, i.e. the detection rate.

The testing of stimulus-synchronized activity can be
based on any random variable, called a test statistic, that is
sensitive to the response, e.g. power or phase coherence.
When the stimulus-synchronized activity is generated inde-
pendently from background activity, it linearly increases
with the power of neural responses, i.e.E M2ð Þ ¼ E S2ð Þ þ E
N2ð Þ . Also, as demonstrated in Section 2.2, the phase of
neural measurement deviates from the uniform distribution
associated with H0, when stimulus-synchronized activity
exists. Therefore, power and phase based measures are both
sensitive to stimulus-synchronized activity and are com-
monly used for significance test.

For K independent experimental measurements, Mi0
ricos(θi), i0{1, 2, …, K}, a few commonly used test statis-
tics are listed in Table 1, including phase coherence, mean
response power and evoked power (Luo and Poeppel 2007;
Shah et al. 2004). Phase coherence measures the consistency
of the response phase over trials. It is maximal (1) when the
response has the same phase in every single trial, and is
minimal (0) when the response phase is uniformly distrib-
uted across all possible values. For uniformly distributed
phase, the 95th percentile of KR2 is about 3 (Fisher 1993).
The evoked power is the power of the evoked response, i.e.
the response averaged over trials, and approximates the
power of the stimulus-synchronized response component,
i.e. E(S 2), when the trial number is large. The response
power, an estimate of E(M 2), on the other hand, averages
the power of single trial responses and is independent of the
phase consistency over trials. The response power is also
called the total power of a response, since it includes both
the power of phase-locked (evoked) activity and the pow-
er of non-phase-locked (induced) activity. Phase coherence
and response power are usually viewed as complimentary
measures, since they rely on, respectively, the phase and
power of single trial responses. Nevertheless, they are
statistically dependent in general, just as the power and
phase of a neural signal and, critically, have very different
statistical properties, as will be shown in the following.

To quantify the theoretical limit for the performance of any
significance test, we also compare all results with that of the
locally optimal significance test (Miller & Thomas 1972; Poor
1994, Chapter 3). The locally optimal test is optimal when the
neural signal contribution approaches zero amplitude, i.e. λ→
0. It requires a priori knowledge of the underlying amplitude
and phase of the neural response and therefore is impractical
experimentally. Under the generalized Gaussian noise

(a) (b)

Fig. 2 (a) The statistical power of four significance tests as a function
of SNR when background activity is subject to the Gaussian distribu-
tion. Each point in the figure is a Monte Carlo numerical result; the
theoretical statistical power, when available, is plotted as a (solid gray
line). Test statistics whose curves lie more to the left possess greater
statistical power at the same SNR than those to the right. Similarly, to
achieve 80 % statistical power, each test requires a different minimum

SNR, where smaller SNR values demonstrate greater overall statistical
power. (b) The SNR required for 80 % statistical power, for back-
ground activity subject to the generalized Gaussian distribution
(smaller SNR values demonstrate a more effective significance test).
Phase coherence is much more effective than response power when
testing the significance of a neural response
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assumption, based on a measured time seriesm(t)0λs(t)+n(t),
the locally optimal test statistic is

DO ¼ @ log
Q
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¼ @ log C1 exp $
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t mðtÞ $ lsðtÞð Þj jc

& '& '
@= l l¼0j

¼ $@
P

t mðtÞ $ lsðtÞð Þj jc @l l¼0j=

¼
P

t mðtÞ $ lsðtÞð Þj jc$1sign mðtÞ $ lsðtÞð ÞsðtÞ l¼0j
¼

P
t bmðtÞsðtÞ;

where bmðtÞ ¼ mðtÞj jc$1sign mðtÞð Þ, and C1 is a constant.
Since all discussions here focus on a single frequency, s(t) is
taken to be a sinusoid, i.e. a single Fourier component. Under
this assumption, the locally optimal test statistic can be easily
computed using the Fourier transform of bmðtÞ. In other words,
instead of directly taking the Fourier transform of m(t) to get
M, the locally optimal test processes m(t) with a static nonlin-
earity, applies the Fourier transform, and then projects the
Fourier coefficient at the response frequency, bMi, to the phase
of the response.

3.2 Numerical detection results

The statistical power of each of the statistical variables listed
in Table 1 is analyzed as a function of the neural response
SNR E(S2)/E(N2) expressed in dB. Each Monte Carlo exper-
iment uses 50 trials of the neural measurement. The results
under the Gaussian assumption are shown in Fig. 2(a). Each
curve in there can be well fitted by a sigmoidal function and
characterized by the SNR required for 80 % statistical power.
This SNR is shown in Fig. 2(b) under the generalized
Gaussian prior. The numerical estimates of generalized
Gaussian background activity use 5 s duration measurements
m(t), but the results are not sensitive to the duration of neural

measurements as seen in Fig. 2. The response power is the
least effective statistic (of the four) for significance testing,
and the phase coherence performs similarly to the evoked
power for Gaussian background activity.

How the number of trials influences statistical power is
illustrated in Fig. 3 for Gaussian and Laplacian background
activity. For a given SNR, the response power based sig-
nificance test needs many more measurements to achieve
similar performance to the phase coherence based signif-
icance test. The effect is particularly stark when the SNR
of individual trials is poor (as is common in EEG/MEG
measurements). In summary, when the stimulus-
synchronized response is relatively weak compared to
the ongoing background neural oscillation, it is very hard
to detect an increase in the response power, but easy to
detect an increase in phase coherence, even when the
stimulus-synchronized response is generated independent-
ly of background activity.

3.3 Statistical properties of background neural activity

Appropriate values for the generalized Gaussian distribu-
tion’s shape parameter can be estimated experimentally.
Here, as an example, it is estimated for MEG signals, either
from an empty chamber, or from an experiment with human
subjects listening to rhythmic stimuli, i.e. speech (Ding &
Simon 2012). When the subject is listening to speech, the
recorded MEG signal contains both background activity and
the response to the speech, but is dominated by background
activity when not averaged over trials (Howard and Poeppel
2010). The MEG activity is fitted to a generalized Gaussian
distribution, with its shape parameter estimated as E(n(t)2)/
E2(|n(t)|) (Mallat 1999), where n(t) is the MEG recording

Table 1 Four random variables used for the detection of stimulus-
synchronized activity, and their statistical power when background
activity is Gaussian. The response power is proportional to the total
power, i.e. summed over the individual power of every single trial

response, while the evoked power is the power of the average response
(i.e. the response averaged over trials). The optimal detector is optimal
for the detection of phase-locked activity, i.e. S, from neural measure-
ment Mi. See the text for symbol definitions

Expression Statistical power (Gaussian prior)

Phase coherence R2 ¼ 1
K
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Γ(⋅,⋅) is the incomplete gamma function (Poor 1994, Chapter 3).

G(⋅) and F(⋅,⋅) are the cumulative distribution functions of central and non-central Chi distributions with two degrees of freedom respectively
(Johnson et al. 1995).
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from a sensor. Outliers corresponding to MEG activity
stronger than 2 pT are removed from the analysis, as is
routinely done in MEG analysis in the first step of artifact
removal. The estimated shape parameter, the median over
MEG sensors, is 1.2 for the empty chamber, and 1.8±0.2 for
10 subjects during speech listening.

4 Discussion

4.1 Phase and power of neural activity

It is frequently observed that the phase of oscillatory LFP/
EEG/MEG activity is aligned to rhythmic stimuli. This phe-
nomenon could be a direct consequence of the “phase reset-
ting” of ongoing massive neural oscillations but could also be
an epiphenomenon caused by the generation of additional
stimulus phase-locked activity, i.e. a stimulus phase-locked
waveform. The decomposition of a response waveform into
power (amplitude) and phase, e.g. through Fourier or Hilbert
Transform, is nonlinear, and systematic characterizations of
the statistical properties of power and phase have been lack-
ing. The physiological meanings of the power-phase decom-
position are also not established in general. In experiments,
however, it is frequently observed that the power and phase of
a neural response have distinct properties, e.g. the phase but
not the power being sensitive to the stimulus. Here, we have
demonstrated that such differences may simply be caused by
the intrinsic statistical properties of the two measures rather
than differences in underlying physiological mechanisms, and
potential stimulus encoding via response phase may be simply
a reflection of stimulus encoding in the entire response wave-
form, including amplitude. Therefore, the analysis of the
response phase can be a powerful tool to extract and charac-
terize stimulus-synchronized neural activity (e.g. Kayser et al.
2009; Lakatos et al. 2008; Luo and Poeppel 2007), but its
physiological indications should be treated with caution.

4.2 Relation to spatial synchronization of neural activity

The fundamental difference between the phase resetting the-
ory and the linear model presented here is whether the
stimulus-synchronized neural response is generated indepen-
dently of the background neural oscillations measured by
LFP/EEG/MEG. However, it must be emphasized that LFP/
EEG/MEG only measures spatially synchronized neural ac-
tivity. Therefore, the model proposed here is an alternative to
the hypothesis that the stimulus-synchronized neural activity
is caused by the trial-to-trial phase resetting of spatially syn-
chronized background activity, but is independent of the hy-
pothesis that the LFP/EEG/MEG measurable response is
caused by the spatial phase resetting of neural oscillations in
local networks (Telenczuk et al. 2010).

More specifically, a stimulus-synchronized response can
be generated through one of several mechanisms:

(1) the excitation of new neural generators (excitation of
new oscillators).

(2) increased spatial synchronization between neural gen-
erators, while the power of each generator is constant
(increased coupling between oscillators).

(3) phase resetting of a single neural oscillator.

Mechanism (1) is clearly consistent with the linear model
discussed in this study while mechanism (3) is the phase
resetting model. For spatially synchronized neural measures,
such as LFP, EEG, and MEG, mechanism (2) is also con-
sistent with the linear model discussed here, since the power
of spatially synchronized activity, in single trials, is influ-
enced by both the power of individual neural generators and
the synchronization between generators. Therefore, the cur-
rent study distinguishes mechanism (3) from mechanisms
(1) and (2). Of course, a stimulus can also lead to non-
synchronized neural responses, i.e. induced activity, but
such responses are not discussed in the current study.

Fig. 3 The number of trials needed to achieve 80 % statistical power at
different SNR values, for background activity subject to a Gaussian
(c02) or Laplacian (c01) distribution. Each point in the figure is a
Monte Carlo numerical result. Theoretical values, when known, are
plotted as (solid gray lines). Test statistics whose curves lie more to the

left possess greater statistical power at the same SNR than those to the
right. To achieve similar statistical power, the response power test
needs dramatically more measurement trials compared with other
statistical tests
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4.3 Generation of stimulus-synchronized activity

The current model assumes stimulus-synchronized activity
to be generated independently from background activity, i.e.
that the neural measurement is a linear sum of stimulus-
synchronized and stimulus-irrelevant activity (e.g. Ding &
Simon 2012, Howard and Poeppel 2010; Sahani and Linden
2003). How stimulus-synchronized activity is generated in
the neural system, however, is not specified in the above
model. In the following, we provide an additional simple
linear-system model to demonstrate one way that stimulus-
synchronized activity can be generated independent of
stimulus-irrelevant activity. In this model, the neural gener-
ator is a damped oscillator that can be approximated as a
linear system with a transfer function Tran(f), and so the
response to stimulus Stim(f) is S(f)0Stim(f)Tran(f). The re-
sponse S(f) is nonzero as long as the stimulus has energy at
any frequency f0 and the system responds at frequency f0,
i.e. Tran(f0)≠0. In this simple linear system model, the
response is purely driven by the stimulus and therefore
independent of any background activity.

4.4 Relation to the generation mechanism of the evoked
response

The argument regarding the origin of the stimulus-synchronized
neural response, discussed here, is very similar to the one
regarding the origin of event-related potentials/fields (Sauseng
et al. 2007; Shah et al. 2004): That is, whether the evoked
response to a transient stimulus, e.g. an audio click or a visual
flash, is generated independently of the background neural
oscillations, or by the phase resetting of ongoing activity.
Indeed, all the stimulus-synchronized activity discussed above
is only assumed to be consistent over trials, and therefore
generalizes to any evoked responses, even those generated
by a transient, non-rhythmic stimulus. For event-related
potentials/fields, simulations have shown that either of these
two hypotheses may lead to phase synchronization of neural
responses (Yeung et al. 2004). The analytical results obtained
here validate and provide a theoretical basis for the results of
those simulations.

4.5 Invariant null distribution for phase coherence

A distinct and important advantage of the phase coherence
based significance test, over the others analyzed here, is that
the null hypothesis is frequency independent and even ex-
periment independent. Namely, the null hypothesis is al-
ways that the phase is uniformly distributed. In contrast,
the null hypothesis of all other statistical variables discussed
here, e.g. probability density function of the power of back-
ground activity, is data dependent and must be estimated
from experiments.

4.6 Conclusion

This study characterizes the statistical properties of the power
and phase of neural measurements based on a general model
where stimulus-synchronized activity is generated indepen-
dently from background activity. We analytically demonstrate
that, even without phase resetting of background activity, the
neural response phase is synchronized over trials and such
phase synchronization is much more sensitive to the existence
of stimulus-synchronized activity than response power. In
other words, statistically, stimulus-synchronized activity may
appear as a phase-resetting phenomenon, regardless of its
underlying mechanism. These analytical and numerical
results, together with earlier simulation results (Howard and
Poeppel 2010; Yeung et al. 2004), question the validity of
attempting to prove a phase resetting theory by showing the
combination of response phase synchronization with the ab-
sence of power increase. Furthermore, the essence of the
phase-resetting model is that intrinsic, ongoing neural activity
contributes to the encoding of an external stimulus. This
fundamental idea, however, does not even require the power
of neural activity to be insensitive to external stimuli.
Therefore, more advanced analysis methods, beyond simple
power and phase analyses, would be required to establish any
relationship between intrinsic neural oscillations and stimulus-
synchronized neural responses.
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