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To curb outbreaks of contagious diseases, county health departments must set up and operate clinics to dis-
pense medications and vaccines. Carefully planning these clinics in advance of such an event is difficult and
important. We developed and implemented operations research models to improve clinic planning for the
Montgomery County (Maryland) Public Health Services. They include discrete-event simulation models and
capacity-planning and queueing-system models. We validated these models using data that we collected during
full-scale simulations of disease outbreaks. We also developed guidelines for the physical design of clinics based

on general queueing principles and our own experiences.
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he threat of an outbreak of contagious disease

in the United States, caused by a terrorist act
or a natural occurrence, has prompted public health
departments to update and enhance their plans for
responding to such events. Especially in regions that
are densely populated or strategically important, such
as the nation’s capital, public health officials must
plan for potential disasters. In the worst-case sce-
nario, terrorists could release a lethal virus, such as
smallpox, into the general population. If this were
to happen, every person in the affected area would
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have to be vaccinated within a few days. For exam-
ple, Montgomery County, Maryland, would need to
vaccinate nearly one million people. To vaccinate so
many people in a short period, it would have to set up
mass-vaccination clinics at designated sites through-
out the county. Kaplan et al. (2002) compare vacci-
nation policies for responding to a smallpox attack
and show that mass vaccination results in many fewer
deaths than other tactics in the most likely attack sce-
narios. The spread of a pandemic flu could also trig-
ger mass vaccinations.
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Carefully planning mass-dispensing and vaccina-
tion clinics (or points of dispensing (PODs)) is impor-
tant. The health department must train the right num-
ber of people beforehand (although they can do some
training at the time of need), and must assign the right
number of workers to various roles when the clinic
begins operations. They must consider the capacity
of each clinic (the number of residents it can serve
per hour) and the number of minutes residents would
spend in the clinic (the time in system, the flow time,
or the throughput time). Clinic capacity affects the
number of clinics needed and the total time needed to
vaccinate the affected population. The time in system
affects the number of residents who would be inside
the clinic waiting for treatment; too many residents in
the clinic can cause crowding and confusion.

The Centers for Disease Control and Prevention
(CDC) (2002) have created guidelines to help county
health departments plan their responses to such inci-
dents. The guidelines provide some estimates of the
time needed to perform such activities and, based on
these estimates, suggest the number of staff needed
to meet a specific throughput target (118,000 residents
per day in Montgomery County). One purpose of our
research was to acquire further data about realistic
processing times and to assess the adequacy of the
existing guidelines.

Clinic capacity and time in system are not the only
concerns in planning such clinics. Based on mass-
prophylaxis operations in 2001, Blank et al. (2003)
described practical concerns that arise in planning
and operating mass-dispensing and vaccination clin-
ics, issues (including the incident command system)
similar to those faced by managers preparing for other
health-care emergency situations (Gardner 1999).

Researchers have used simulation modeling to
model health-care systems, such as medical cen-
ters, hospitals, and clinical practices (Ledlow and
Bradshaw 1999, Merkle 2002, Prieditis et al. 2005,
Swisher and Jacobson 2002, Su et al. 2005). Other for-
mal techniques have been applied as well: Malakooti
(2004) used a cell-formation approach to design emer-
gency rooms, and Jain and McLean (2004) describe a
framework for linking simulation models of disasters.

We developed discrete-event simulation models
and capacity-planning and queueing-system models

to improve clinic planning in an ongoing collabo-
ration between the University of Maryland, College
Park, and the Montgomery County Public Health
Services (PHS).

Planning Mass-Dispensing and
Vaccination Clinics

Prior to September 11, 2001, Montgomery County,
Maryland, had no plans for mass-dispensing and vac-
cination clinics. PHS, a division of the county’s health
and human services department, conducted small-
scale clinics for county residents, for example, to
administer flu vaccine or conduct tuberculosis screen-
ing. The importance of mass-dispensing became clear
after the anthrax attacks in October 2001. PHS dis-
pensed oral medications through mass-dispensing
clinics to postal workers and others who may have
been exposed to anthrax. These clinics were quite
small (treating about 1,400 residents) and were easy
to manage based on the county’s previous experience
with flu vaccination clinics. In 2002, the CDC began
requiring public health departments to develop small-
pox vaccination plans. PHS developed those plans
to meet CDC and state guidelines. The CDC imple-
mented guidelines for operating dispensing and vac-
cination clinics, which allowed PHS to enhance their
clinic plans. In addition, the county added opera-
tional detail to its plans to achieve the Public Health
Ready designation defined by the National Associa-
tion of County and City Health Officials (NACCHO).
For a site to earn Public Health Ready status, it
must meet goals in three areas: emergency prepared-
ness and response planning, workforce competency
development, and exercise simulations (NACCHO
2005b). NACCHO evaluators look for plan compo-
nents, including a concept of operations, detailed
descriptions of staff roles, training plans for staff, and
reports on exercises that have been conducted.

In June 2004, PHS tested its plans for smallpox
clinics by simulating a mock vaccination clinic in a
full-scale exercise and conducting a time study of the
residents going through the clinic. The results showed
that PHS needed to strengthen two areas: the logistics
of setting up a clinic and improving the clinic-flow
patterns. PHS had an opportunity to test its updated
procedures for clinic setup during the January 2005
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swearing-in of President Bush, when the State of
Maryland requested Montgomery County to have a
POD available in case of emergency. The model built
on the smallpox time study validated the county’s
plans and helped it to correct the clinic layout and to
assign staff.

Although each county has its own plan for setting
up and operating a clinic, a typical vaccination clinic
is based upon CDC guidelines, and county health
departments in addition to Montgomery’s are plan-
ning to use the following type of clinic:

After gathering at staging areas, residents travel on
school buses to the clinic. Using media channels, the
PHS advises those with smallpox symptoms to go to
the nearest hospital for treatment, not to the vacci-
nation clinics. The building housing the clinic may
be a school, a recreation center, a concert hall, or
some other facility that can handle a large number
of people. Clinics are not located in medical facilities
because those facilities will be extremely busy during
an event.

At the clinic, residents go to the triage station out-
side the clinic building. Members of the triage station
staff ask residents whether they have any symptoms
of smallpox (a rash or fever) or know they have been
exposed to the smallpox virus. Other staff members
escort symptomatic residents to a symptoms room,
where they will consult a doctor. Residents exposed
to the virus go to a holding room to wait for medical
attention. After consulting a doctor, infected residents
exit the clinic and go to the hospital; healthy residents
are allowed continue to registration (Figure 1).

Arrival Triage Registration

A

Holding room

Vaccination I- Screening

Consultation

4

Education

Figure 1: In this flowchart of resident flow, the dashed lines show resi-
dents who exit without receiving vaccinations.

After entering the clinic, residents obtain registra-
tion forms and printed information on smallpox at the
registration station. (The staff includes translators.)
Residents then go to the education station, classrooms
in which they watch informational videos about the
smallpox vaccine and fill in the registration forms.
(Some classrooms will show a Spanish-language
version of the video.) The education station staff
manages the classrooms and checks the registration
forms for completeness. Residents then walk to the
screening station.

At the screening station, they see medical person-
nel who check their registration forms and direct
residents with possible complications based on their
medical histories to visit the consultation station.
The remaining residents sign consent forms and go
directly to the vaccination station.

At the consultation station, residents discuss possi-
ble complications with a doctor. Those who refuse the
vaccination receive an information sheet and leave the
clinic. They will be monitored by public health offi-
cials. Those who decide to be vaccinated sign consent
forms and go to the vaccination station.

At the vaccination station, a vaccination nurse ver-
ifies that the consent form has been signed and wit-
nessed and then vaccinates the resident. Another staff
member and the resident go over an information
sheet about what to do after the vaccination, and then
the resident leaves the clinic.

Clinic Simulation Models

We began our analysis of clinic planning with a sim-
ulation study to evaluate alternative clinic designs
(Aaby et al. 2005). We limited the scope of the simu-
lation study to clinic operations and two key perfor-
mance measures, capacity and time in system. We did
not consider transporting people to the clinic or han-
dling vaccines and other supplies. For data, we relied
on a time study of a mass-vaccination clinic simulated
on June 21, 2004 by the Montgomery County PHS.
PHS conducted a trial run of the emergency proce-
dures it would use for mass vaccination in the event
of a widespread outbreak of smallpox. It opened the
clinic in a high school in Silver Spring, Maryland,
with nurses at the vaccination station simulating the
smallpox vaccination step by poking residents’” arms
with coffee stirrers.
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In this full-scale exercise, 152 workers and volun-
teers formed the professional, command, and admin-
istrative staff, and volunteers from the local workforce
and community served as residents. We encouraged
county workers, especially PHS staff members, to
participate with their families as volunteers. The vol-
unteers included elderly people, children, and indi-
viduals with physical disabilities. A local newspaper
covered the exercise (Harvey 2004).

Approximately 530 people participated in the exer-
cise as residents during a two-and-a-half hour period.
Researchers from the University of Maryland, along
with student volunteers, conducted a time study to
collect data on clinic performance during the exer-
cise. We gave residents time-stamp forms on arrival
stamped with the time (hour and minute) of their
arrival, and as they walked through the clinic from
station to station, they received time stamps at tables.
We collected the forms at the last time-stamp table.
We used electronic timers to give the time stamps and
video cameras to record the processes at each station.
We watched the videos to get data on stations outside
of the main clinic flow, where time stamps were not
given. The time study team also collected data on bus
arrivals, noting the times of arrival and the number
of residents on each bus. The average arrival rate was
213 residents per hour. In analyzing the data collected,
we estimated how long residents spent at each sta-
tion, the total time in the clinic, and the distributions
of the processing time at each station (Table 1).

We designed and built a discrete-event simulation
model of the mass-vaccination clinic using Rockwell

Measured from Given in CDC

Station exercise (minutes) guidelines (minutes)
Triage 0.267 1.0
Registration 0.117 05102
Education 22117 30
Screening 1.717 5t0 10
Consultation 3.7 51015
Vaccination 3.6 05t02
Symptoms 1.2 10
Contacts 3.8 10

Table 1: We determined the mean processing times from the data that was
collected during the exercise; some times differ greatly from the guide-
lines suggested by the CDC.

Software’s Arena 5.00. For validation purposes, we
designed the initial model to simulate the exercise we
had conducted. Residents arrived in batches that cor-
responded to the actual bus arrivals. In the model,
we represented residents as entities that progressed
through different queues and processes. The model
included animation allowing the user to visualize the
movement of residents through the clinic. We com-
pared the results we obtained from the simulation for
average station cycle time to the data collected in the
exercise (Figure 2). Although the measured and sim-
ulated times are not as close as desired, we found the
simulation model acceptable as a valid representation
of the real clinic.

After validating the model with our results, we
used simulation to evaluate alternative clinic designs
and operational policies. The first factor we stud-
ied was the distribution of bus interarrival times.

Total time in clinic
Time in triage
Time in registration
Time in education
Time in screening

Time in vaccination

T T
40 60 80

Time (minutes)

Figure 2: The validation results show the average time that a resident spent at each station and the total time
(in minutes) measured at the exercise (black bars) and from the results of the simulation study (gray bars). The
simulation results have error bars corresponding to the 95 percent confidence intervals.
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We conducted experiments to quantify the impact
of arrival variability, measured by the squared coef-
ficient of variation (SCV). We used the following
interarrival time distributions: exponential (SCV =1),
gamma (SCV = 0.25), and constant (SCV = 0) (Fig-
ure 3). We found that the variability in bus interarrival
times caused congestion. Clinic managers can control
bus arrivals by improving the dispatching of buses
from the staging areas.

We also considered reducing the batch sizes at the
education station (by cutting the number of residents
per classroom), along with reducing the number of
registration and screening staff. We must group peo-
ple for education because we have a limited number
of TVs available, even though doing so causes delays
in the clinic. Reducing this batch size should reduce
congestion, while increasing it should increase con-
gestion. However, the simulation results showed that
changing classroom size to 20 or 40 did not reduce
time in the clinic significantly at the highest arrival
rates (Figure 4).

In the baseline model, the utilization of the screen-
ing staff is at most 52 percent, and the utilization of
the registration staff is at most seven percent, indi-
cating that too many staff members are working at
these stations. Reducing their numbers at these sta-
tions should increase congestion slightly. To evaluate

200
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Figure 3: We compared the average total time in the clinic to the arrival
rate for several distributions of bus interarrival times. Hollow squares cor-
respond to the exponential distribution, diamonds to a gamma distribu-
tion, and filled squares to constant interarrival times. Error bars represent
the 95 percent confidence interval of the simulation results. It is readily
apparent that interarrival variability has a large impact on the time in the
clinic.

100

90 B Classroom size = 20
80 - O Classroom size = 30 ] I
O Classroom size = 40 l l

70
60 K
50
40 A
30
20 A

Time in clinic (minutes)

150 250 275 290 300
Arrival rate (people per hour)

Figure 4: The average total time in the clinic does not change significantly
with different classroom batch sizes, even at the highest rates of resident
arrivals.

the impact, we created a reduced staffing model with
only 10 members of the screening staff (instead of 16)
and one member of the registration staff (instead of
nine). At the highest arrival rate, the utilization of the
screening staff increased to 84 percent; that of the reg-
istration staff to 59 percent. The increase in time in the
clinic was not significant; at the highest arrival rate,
the time in the system was 80.4 minutes (with a 95
percent confidence interval half-width of 9.3 minutes).
Thus, the clinic could reduce its staff by 14 staff mem-
bers with little increase in congestion and still main-
tain the same clinic capacity.

Capacity-Planning and Queueing
Models

Discrete-event simulation models, although very use-
ful, require specialized software that public health
officials do not have. Thus, we developed capacity-
planning and queueing models using spreadsheet
software that is commonly available.

We wanted to provide public health officials with
accurate models for planning mass-dispensing or vac-
cination campaigns. Clinic planners can use the mod-
els to answer the following questions:

(1) Given a resident flow rate (calculated from pop-
ulation size and duration of campaign), how many
people do we need to staff each station?

(2) How much does each work station need to
accommodate residents waiting in line?

(3) How long will residents spend inside the clinic?
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(4) How will the clinic’s operations be affected if
stations are eliminated or combined?

We originally developed two capacity-planning
and queueing models: one for vaccination against a
contagious disease, such as smallpox (based on the
configuration in Figure 1), and another for dispens-
ing medicine (such as antibiotics in case of anthrax).
Based on feedback from public health officials, who
felt that these two models did not offer sufficient
flexibility, we created software that can generate a
spreadsheet-based capacity-planning and queueing
model for a customized clinic configuration. Public
health officials need to create models for a wide range
of clinic designs to plan for new emergencies, such as
pandemic flu (Aaby et al. 2006).

The model allows clinic planners to enter known
population information and set time constraints spe-
cific to their applications (Figure 5). The immediate
results include the minimum staff levels required,
along with detailed clinic information regarding wait-
ing times, queue lengths, and cycle time. Planners
can easily adjust staffing levels and various inputs
until they are satisfied with the efficiency of the clin-
ics. Users can accept default values if they have little
information about their clinics, or input more detailed
information, such as routing probabilities and process
times.

Because no resident visits every station, clinic capac-
ity is not simply the minimum station capacity. Based
on the routing probabilities, the capacity-planning and
queueing models estimate the number of residents (as
a percentage of the total) that each station will serve
and use this number to find each station’s constraint
(upper bound) on the clinic capacity. The minimum of
these is the clinic capacity (Table 2) (Appendix).

In addition to capacity, the average total time in the
clinic, the average time at each work station, and the
average number of residents waiting in line at each
work station are important clinic performance mea-
sures. To estimate these quantities, we modeled the
clinic as an open queueing network and decomposed
the network by estimating the performance of each
work station using a combination of queueing approx-
imations (Appendix). Many software packages for
analyzing queueing networks are available, but public
health officials do not have access to them. Including

the required mathematical analysis in the spreadsheet-
based capacity-planning and queueing models simpli-
fies their use of the models.

It has not been feasible to compare the results of the
capacity-planning and queueing model to the actual
clinic performance because the model estimates the
clinic’s steady-state performance. However, the PHS
has conducted only limited exercises, so we have no
actual steady-state performance available.

We conducted a computational study to compare
the results of the capacity-planning and queueing
model to those from a simulation model of the steady-
state performance of a clinic. The errors were small,
although slightly larger than the confidence intervals
on the simulation results (Treadwell and Herrmann
2005). The capacity-planning and queueing model
provides estimates that are as close as those provided
by other queueing software. Our spreadsheet-based
model helps clinic planners and managers to quickly
estimate clinic capacity and congestion as an event
unfolds without waiting for long simulation runs to
be completed.

Layout and Operational Guidelines

Our models quantitatively assess a clinic design based
on the key performance measures of capacity and
time in system. To plan a clinic, public health officials
must make many detailed design decisions, espe-
cially regarding layout. Because they will set up clin-
ics in existing facilities of various shapes and sizes,
it would not be useful for us to provide a detailed
layout for a complete clinic. Instead, we developed
guidelines that planners can use. We based some of
them on general queue-design knowledge, including
Hall’s (1991) ideas, while others are specific to mass-
dispensing and vaccination clinics. We grouped lay-
out and operational guidelines into four categories:
clinic layout, clinic operations, work-station layout,
and work-station operations.

Clinic Layout

Our guidelines for the overall layout of the clinic and
the location of work stations include the following:
Have a separate entrance for staff. Triage residents
outside the clinic. Protect residents waiting outside
from the weather. Place easy-to-understand signs
where residents can see them as they move through
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Staff per Minimum Wait time Queue
Station name shift staff per shift Station name (min) length Utilization
Reception 2 2 Reception 22.32 14 64.4%
Triage (Greeting) 1 1 Triage (Greeting) 0.10 0 27.0%
Triage (Nurses) 2 2 Triage (Nurses) 40.26 42 91.3%
Dispensing (Single) 2 2 Dispensing (Single) 0.07 0 54.7%
Dispensing (Multi) 2 2 Dispensing (Multi) 9.98 10 69.8%
Total service staff III III Total 72.73
Total staff Total 0.00
Values in red signify below-minimum staffing levels. Values in red denote the “worst” station for that characteristic.

Table of Model Routing .
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Figure 5: Using the capacity-planning and queueing model setup dialog and interface, planners can enter infor-
mation specific to their applications and specify the staffing at each work station. The values in red in the screen
shot are represented in bold in this figure.
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Station capacity Percentage of Constraint on

Number  (residents residents clinic capacity
Station of staff per hour) served (residents per hour)
Triage 2 463 100.0 463
Registration 9 4,444 97.3 4,567
Education 8 600 97.3 617
Screening 16 558 97.3 574
Consultation 7 111 25.5 437
Vaccination 16 294 95.8 307
Symptoms 1 49 4.8 1,037
Contact 1 16 3.2 498

Table 2: Each work station sets a constraint on clinic capacity based on its
capacity and the percentage of residents that it serves. In this example,
the clinic capacity is 307 residents per hour.

the clinic. Allow adequate space between work sta-
tions for residents waiting in line.

Clinic Operations

The guidelines for clinic operations include the fol-
lowing: Regulate resident arrivals carefully. Triage
residents as early as possible in the process.

Work-Station Layout

The guidelines for laying out work stations and mov-
ing residents through a work station include the
following: Use flow-through work station designs
(Figure 6). Provide quiet rooms for education work
stations where residents watch a video.

24 feet wide T T T

nl_aln tLogls
i N

Patient
leaves

Patient waits
at staging

Patient moves
to staging

Patient waits for
available staging

Patient enters queue —p
from entrance

SNl

Figure 6: A flow-through layout for a clinic work station permits residents
at the head of the queue to see when servers hecome available, stages the
next residents to avoid wasted idle time for staff, and avoids interference
caused by residents turning back after completing service.

Work-Station Operations

The guidelines covering operations at individual
work stations include the following: Use multiple,
small education classrooms instead of one large edu-
cation classroom. Run education classes continuously.
Provide residents with clipboards and pens so that
they can fill in forms while waiting in line.

Conclusions

This work is the beginning of an exciting process of
using operations research to improve planning for
bioterrorism attacks, pandemic flu, or other events.
Poorly conceived plans can cause confusion, delay
responses to events, and reduce the effectiveness
of responses, all of which increase the number of
victims.

Our models and guidelines are helpful tools for cre-
ating good plans and improving existing ones. Plan-
ners can use the models to determine the number of
staff members they need to achieve the capacity they
need, and to design clinics that avoid unnecessary
congestion. The models are based on data collected
from clinic exercises, and they have been validated by
those exercises and by public health professionals.

We are continuing to develop the models and
guidelines based on feedback from the public health
professionals using them. Because they are not, for-
tunately, operating mass-dispensing and vaccination
clinics, further validation will come from exercises
and from similar clinics set up to limit the spread of
more common diseases (such as influenza).

Montgomery County, Maryland, is home to one
of eight advanced practice centers (APCs) for public
health preparedness. The APCs are building innova-
tive programs and tools that prepare communities to
respond to and recover from major acts of bioterror-
ism. CDC funds the APC program, which NACCHO
administers. The APCs customize and package inno-
vative tools for other local public health agencies to
strengthen bioterrorism planning and response capa-
bilities. NACCHO maintains an online clearinghouse
of APC preparedness tools for local public health
agencies (NACCHO 2005a). Our models will be avail-
able on this Web site for public health profession-
als to download and use. The long-term goal is to
create and disseminate a broad set of methods and
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guidelines to help county health departments create,
assess, and improve their clinic plans.

While our guidelines include some suggestions on
the details of workstation operations, further work
is needed to study, improve, standardize, and docu-
ment those details. Such improvements can increase
the capacity of a work station (without adding staff)
and reduce the variability of the task, which in turn
reduces congestion in the clinic.

Mass-dispensing and vaccination clinics are an
important part of larger responses that include stag-
ing areas, resident transportation, and medicine dis-
tribution. Those planning these parts of responses
also need guidelines and models to form good plans.

Appendix. The Clinic Queueing
Network Model

Analyzing queueing networks is a well-known prob-
lem, and analysts have developed different approx-
imations for the general case. The following model
is based on relationships that were independently
derived, along with those provided by Hopp and
Spearman (2001) and Buzacott and Shanthikumar
(1993). We use i throughout to denote a station, with 0
referring to the bus arrival process, 1 through I refer-
ring to the stations in the clinic, and I +1 referring to
the exit.

Inputs
P = size of population to be treated (residents).
L = time allotted for treatment (days).
h = daily hours of operation (hours per day).
N = number of clinics.
m; = number of staff at station i.
t; = mean process time at station i (minutes).
o? = process time variance at station i (minutes?).
k; = processing batch size at station i.
d;; = distance from station i to station j (feet).
v = average walking speed (feet per second).
P; = routing probability from station i to station j.
ky = bus arrival size.

¢2, = arrival SCV at station 1.

Calculated Quantities
t; = arrival rate at station i (residents per minute).

2, = arrival SCV at station i.

2

c¢;; = processing time SCV at station i.

c2. = departure SCV at station i.

Outputs
TH' = required throughput (residents per minute).
m; = minimum staff at station i.
CT, = cycle time at station i (minutes).
TCT = total average time in clinic (minutes).
WIP = average number of residents in clinic.
R = clinic capacity (residents per minute).
w; = average wait time at station 7 (minutes).
W, = average time spent traveling to the next sta-
tion after station i (minutes).
Q, = average queue length at station i.
u; = utilization at station i.

The throughput required to treat the population in
the given time is TH' = P/60 LhN.

If residents arrive individually, the user specifies
the arrival variability c?. Else, the resident arrival
variability is given as ¢ =k, — 1.

All arriving residents go to the first station. We cal-
culate the arrival rates for the other stations based on
the routing probabilities,

TH’, i=1,

;= i—1
Y rPy, i1
=1

We use station arrival rates to determine the mini-
mum staff at each station, m} = (r; - ;) /k;.

We then use user-selected staff levels m; to calculate
station utilization, u; = (v; - t;)/(m; - k;).

We calculate the variability of arrivals, processes,
and departures from each station:

i—1 7. Pz
o = Z((Csj_l)'Pji'i'l)' ]r L,
=1

1

2

2 i

Ceizt_zl

2 N uo o,

Cdi=ki_1+ki<1+(1_ui)<ﬂ_ )+ 1 (Cei_1)>~
k; /1M

The average time spent waiting at station i depends
upon the process batch size,

k-1 1/ X i [2m+2—1
L= Y i ) M E——
i 2r; * 2 < k; * Cm) m(1—u) |

1
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The average time spent traveling to the next station
after station i depends upon the routing probabilities
and the average walking speed,

1 I+1
W= 60_0 Z Pijdij‘

j=i+1

The cycle time at station 7 is CT, = w; +t; + W,.

We weight the station cycle times by their arrival
rates to calculate the total average time in clinic,

1 1
TCT=—=> rCT.
"z
Other statistics we calculate include clinic capac-
ity, the average queue length at each station, and the

average clinic WIP:

R = min {@},

i=1,..,1 tl.ri
Qi=wr;,
WIP=r,-TCT.
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Gordon Aoyagi, Director, Homeland Security
Department, 101 Orchard Ridge Drive, Suite 250,
Gaithersburg, Maryland 20878, writes: “I am writing
about the queueing study conducted for Mont-
gomery County’s Public Health Services by Jeffrey W.
Herrmann, Department of Mechanical Engineering
and Institute for Systems Research, University of
Maryland, College Park, Maryland. This study and
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the associated planning tools were done as prepara-
tion for a major bioterrorism event or other public
health hazard where it would be necessary to give
medication to many or all residents of the county.

“In such a situation, time would be of the essence;
staff and available sites would be in short supply.
Moving people through lines in the most efficient
way would be crucial. Having enough staff at each
station—but not more than needed—is important for
using limited staff.

“This particular study assumed an outbreak of
smallpox where all residents of the County would
need to be vaccinated within a window of about seven
to ten days.

“Dr. Herrmann and his students developed a model
that estimated the amount of time spent by resi-
dents as they went through each stage of an exer-
cise conducted by the County’s Public Health Emer-
gency Preparedness Team. Simulating a real event, res-
idents went from one station to the next—registration
or intake, education, medical counseling, paperwork,
and getting the shots.

“After the demonstration, the queue time at indi-
vidual stations and the total time were analyzed, and
adjustments were made to the plan. Another demon-
stration was run using information from this analysis,
and queue times were greatly improved. In addition,
it was seen that some stations were overstaffed while
others were understaffed. Using staff most efficiently
is vital, especially medically trained staff who cannot
be augmented with minimally-trained volunteers.

“Montgomery County has about almost a million
residents. Where staff is limited and there is a deadline
by which medication must be administered in order to
be effective, our county’s ability to serve our residents
in a timely manner is extremely important. The clinic
planning models have helped us create better plans
that assign the correct number of staff to the proper
locations.

“In addition to administering medicine in time, effi-
ciency helps keep people calm. During a bioterror-
ism event or a large natural disaster, a high degree
of anxiety and worry is to be expected. Waiting in
line, perhaps with young children, exacerbates the
anxiety and frustration. Having a smoothly running
effort is itself calming because it sends a message that
those in charge know what they are doing and are
prepared.

“People waiting longer in line require a larger
number of facilities and staff because each facility
can hold only a given number of people at one
time. If the number of staff or facilities cannot be
expanded, this potentially means that some residents
may not get their medication within the designated
time frame. The challenge during these types of emer-
gencies is to achieve maximum effective throughput
through efficient use of staff and facilities. The work
of Dr. Herrmann has helped us achieve this.

“This model has since been tested in other jurisdic-
tions where different types of facilities were used. For
its exercise, Montgomery County used a high school
with classrooms for different stations. Other jurisdic-
tions have used a large convention center (with sta-
tions placed in one enormous hall) or a gymnasium.
The model helped initial planning to lay out the flow
before the exercises in these other jurisdictions and
was useful in analyzing glitches or seeing possible
improvements should a real-life exercise be necessary.

“Opverall, this outstanding work has provided our
emergency preparedness planners with substantial
results that have significantly increased our level of
readiness. We will continue to use these models to
help us plan for and respond to these types of events.
The work of Dr. Herrmann and the models devel-
oped provide critical planning and assessment tools to
Public Health Departments in evaluating their capa-
bilities to meet their mandates during public health
emergencies.”



