The Problem

• **Input:**
 – The set of components on the board
 – For each component, a set of alternative components, if any
 – For each component, a set of appropriate processes, including alternate processes, if any
 – Component characteristics: costs, defect rates
 – Process characteristics: yields, runtimes, setup times
 – The list of suppliers, the set of components supplied by each supplier
 – Supplier characteristics: lead times, quantity discount structures
 – Batch size, labor cost

• **Output:**
 – A set of solutions (designs) that are efficient with respect to five metrics - cost, yield, supplier lead time, number of suppliers, and quantity discounts
Assembly Data Model
Design and Manufacture of Microwave Modules

- Device Conceptualization and Architecture
- Individual Module Design
- Prototype Manufacturing
- Process Planning
- Module Manufacturing
- Module Testing & Tuning
- Module Design
 - Electrical
 - Schematic
 - Artwork
 - Mechanical
 - Component selection
- Substrate Design & Population
- Device Assembly

- areas we are addressing
Data Flow for Design Tradeoff

- Oracle Database
 - List of parts
 - List of alternative parts
 - List of <Part, Processes> (w/without precluded processes)
 - Alternative Designs
 - exclude precluded processes
 - include precluded processes
 - Files

- HTN planner
 - Files
 - Tradeoff Analysis
 - HTN planner

- Eesof
 - Suppliers
 - Parts
 - Process

- Viewing

Cost-Quality Tradeoff Curve for a Design

FILE containing the solution corresponding to the chosen point on the Cost-Quality curve:
Function Blocks, Assemblies, Parts, Processes.

Set of efficient solutions to problem P
Constraints

- For each component, choose exactly one among its alternatives \(\sum_{j \in v} x_{j} = 1 \) \(k \in v \)
- For each process related to a component, choose exactly one among its alternative \(\sum_{p \in P, j} x_{pj} = x_{j} \) \(\forall p, i \in Pj \)
- Selection of processes \(y_{p} \geq x_{pj} \) \(\forall p, j \)
- Selection of suppliers \(w_{i} \geq x_{j} \) \(\forall i \in S, j \in S \)
- Integrality \(y_{p}, x_{pj}, w_{s} \in \{0, 1\} \) \(\forall j, p, s \)

Performance metrics Expressions

Material cost: \(C_{m} = \sum_{i} n_{i} c_{i} x_{i} \)

Runtime cost: \(C_{r} = \ell \sum_{p, j} t_{pj} x_{pj} \)

Setup cost: \(C_{p} = \frac{\ell}{b} \sum_{p} t_{p} y_{p} \)

Total cost: \(C = C_{m} + C_{r} + C_{p} \)

Part Yield: \(Q = \prod_{r}^{P} (\beta_{p})^{r} \prod_{j}^{PARTS} (1 - \alpha_{j})^{x_{j}} \)
Objectives

• Develop a tool that integrates product and process design in a single system Environment.

• Support ‘Design-to-Cost’ through generation & evaluation of alternate designs

• Integration of heterogeneous databases (including legacy systems)

• Multi-objective Optimization for Tradeoff.

• Integration will provide designer with qualitative relationship between process/technology & quality/cost.