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Abstract— We use the idea of dependence balance [1] to obtain
the first improvement over the cut-set bound for the discrete
memoryless multiple access channel with noiseless feedback
(MAC-FB). More specifically, we consider a binary additive noisy
MAC-FB whose capacity does not coincide with the Cover-
Leung achievable rate region [2]. Evaluating the dependence
balance bound is difficult due to an involved auxiliary random
variable. We overcome this difficulty by using functional analysis
to explicitly evaluate our upper bound for the binary additive
noisy MAC-FB and show that it is strictly less than the cut-set
bound for the symmetric-rate point on the capacity region.

I. INTRODUCTION

Noiseless feedback can increase the capacity region of the
discrete memoryless MAC, unlike for the single user discrete
memoryless channel. This was shown by Gaarder and Wolf
in [3] for the binary erasure MAC, which is defined as Y =
X1+X2. Cover and Leung obtained an achievable rate region
for the general MAC-FB based on block Markov superposition
coding in [2]. This region is in general larger than the capacity
region of the MAC without feedback. For a specific class of
MAC-FB, Willems [4] developed an outer bound that equals
the Cover-Leung region. For this class of MAC-FB, each
channel input (say X1) should be a deterministic function
of the other channel input (X2) and the channel output (Y ).
The channel considered by Gaarder and Wolf, where Y =
X1 +X2, falls into this class of channels. Therefore, Cover-
Leung region is the capacity region for this channel. However,
for general MAC-FB, the best known outer bound is the cut-
set bound, which, in general, is loose. An intuitive reason for
the cut-set bound to be loose for the general MAC-FB is its
permissibility of arbitrary input distributions, some of which
yielding rates which may not be achievable. For instance, even
though Cover-Leung achievability scheme [2] does introduce
correlation between X1 and X2, it is a limited form of
correlation, as channel inputs are conditionally independent
given an auxiliary random variable.

The idea of dependence balance was introduced by Hekstra
and Willems in [1] to obtain an outer bound on the capacity
region of the single output two-way channel. The basic idea
behind this outer bound is to restrict the set of allowable
input distributions. The authors in [1] also developed a parallel
channel extension for the dependence balance bound. The
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parallel channel extension can be interpreted as follows: the
parallel channel output can be considered as a genie aided
information which is made available at both transmitters and
it also effects the set of allowable input distributions through
the dependence balance bound. Depending on the choice of
the parallel channel, there is an inherent tradeoff between the
set of allowable input distributions and the excessive mutual
information rate terms which appear in the rate expressions
as a consequence of the genie aided output. We will exploit
this tradeoff provided by the parallel channel extension of
the dependence balance bound to obtain a strict improvement
over the cut-set bound for a particular MAC whose feedback
capacity is not known. It should be noted here that the idea
of using parallel channel extension for MAC-FB was also
suggested by Kramer in [5].

To motivate the choice of our MAC, consider the binary
erasure MAC used by Gaarder and Wolf given by Y = X1 +
X2. If we introduce binary additive noise at the channel output,
then the channel becomes Y = X1 +X2 +N , where all X1,
X2 and N are binary and N has a uniform distribution. This
is a non-deterministic noisy MAC which does not fall into
any class for which the feedback capacity is known. We will
consider the symmetric-rate point1 on the capacity region of
this channel.

The symmetric-capacity of this channel without feed-
back is 0.40564 bits/transmission. Cover-Leung’s achievable
symmetric-rate for this channel was obtained in [5] as 0.43621
bits/transmission. In [5], Kramer obtained an improved
symmetric-rate inner bound as 0.43879 bits/transmission by
using superposition coding and binning with code trees. The
cut-set upper bound on the symmetric-rate was obtained in
[5] as 0.45915 bits/transmission. We use the parallel chan-
nel extension of the dependence balance bound to obtain
a symmetric-rate upper bound of 0.45330 bits/transmission
which strictly improves upon the cut-set bound. Even though
the improvement from the cut-set bound is modest, our main
contribution is to illustrate the usefulness of dependence
balance and to explicitly evaluate the dependence balance
bound which involves an auxiliary random variable. It should
be remarked that the capacity region of the two user Gaussian
MAC-FB was established by Ozarow in [6] where it was
shown that the cut-set bound was tight. The channel considered

1By symmetric-rate point, we refer to the maximum rate R such that the
rate pair (R, R) lies in the capacity region of MAC-FB.



in this paper can be thought of as the discrete version of the
channel considered by Ozarow. Interestingly, our result shows
that the cut-set bound is not tight for a discrete binary version
of the Gaussian MAC-FB.

II. SYSTEM MODEL

A discrete memoryless two-user MAC-FB (see Figure 1) is
defined by two input alphabets X1 and X2, an output alphabet
Y , and the channel probability transition function p(y|x1, x2)
for (x1, x2, y) ∈ X1 × X2 × Y . A (n,M1,M2, Pe) code
for the MAC-FB consists of two sets of encoding functions
f1i : M1 × Y

i−1 → X1, f2i : M2 × Y
i−1 → X2 for

i = 1, . . . , n and a decoding function g : Yn → M1 ×M2.
The two transmitters produce independent and uniformly dis-
tributed messages W1 ∈ {1, . . . ,M1} and W2 ∈ {1, . . . ,M2},
respectively, and transmit them through n channel uses. The
average error probability is Pe = Pr(g(Y n) 6= (W1,W2)). A
rate pair (R1, R2) is said to be achievable for MAC-FB if for
any ε ≥ 0, there exists a pair of n encoding functions {f1i}

n
i=1,

{f2i}
n
i=1, and a decoding function g : Yn →M1 ×M2 such

that R1 ≤ log(M1)/n, R2 ≤ log(M2)/n and Pe ≤ ε for
sufficiently large n. The capacity region of MAC-FB (CFB

MAC )
is the closure of the set of all achievable rate pairs (R1, R2).

III. CUT-SET OUTER BOUND FOR MAC-FB
By applying Theorem 14.10.1 in [7] a cut-set outer bound

on the capacity region of MAC-FB can be obtained as:

CS =
{

(R1, R2) : R1 ≤ I(X1;Y |X2) (1)

R2 ≤ I(X2;Y |X1) (2)

R1 +R2 ≤ I(X1, X2;Y )
}

(3)

where the random variables (X1, X2, Y ) have the joint distri-
bution

p(x1, x2, y) = p(x1, x2)p(y|x1, x2) (4)

The cut-set bound allows all input distributions p(x1, x2),
which makes it seemingly loose since an achievable scheme
might not achieve arbitrary correlation and rates given by the
cut-set bound. Our aim is to restrict the set of allowable input
distributions by using a dependence balance approach.

IV. DEPENDENCE BALANCE OUTER BOUND FOR MAC-FB
The capacity region of MAC-FB (CFB

MAC) is contained
within DB, where

DB =
{

(R1, R2) : R1 ≤ I(X1;Y |X2, T ) (5)

R2 ≤ I(X2;Y |X1, T ) (6)

R1 +R2 ≤ I(X1, X2;Y )
}

(7)

where the random variables (X1, X2, Y, T ) have the joint
distribution

p(t, x1, x2, y) = p(t)p(x1, x2|t)p(y|x1, x2) (8)

and also satisfy the following dependence balance bound,

I(X1;X2|T ) ≤ I(X1;X2|Y, T ) (9)
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Figure 1: The multiple access channel with feedback
(MAC-FB).

where T is subject to a cardinality constraint of |T | ≤
|X1||X2|+ 2.

V. ADAPTIVE PARALLEL CHANNEL EXTENSION OF THE
DEPENDENCE BALANCE BOUND

In [1], Hekstra and Willems also developed an adaptive
parallel channel extension of the dependence balance bound
which is given as follows: Let ∆(U) denote the set of all
distributions of U and ∆(U|V) denote the set of all conditional
distributions of U given V , then for any mapping F : ∆(X1×
X2)→ ∆(Z|X1 ×X2 ×Y), we have CFB

MAC ⊂ DBPC where

DBPC =
{

(R1, R2) : R1 ≤ I(X1;Y,Z|X2, T ) (10)

R2 ≤ I(X2;Y,Z|X1, T ) (11)
R1 ≤ I(X1;Y |X2) (12)
R2 ≤ I(X2;Y |X1) (13)
R1 +R2 ≤ I(X1, X2;Y ) (14)

R1 +R2 ≤ I(X1, X2;Y,Z|T )
}

(15)

where the random variables (T,X1, X2, Y, Z) have the joint
distribution

p(t, x1, x2, y, z) = p(t, x1, x2)p(y|x1x2)p
+(z|x1, x2, y, t)

(16)

such that for all t,

p+(z|x1, x2, y, t) = F (pX1,X2
(x1, x2|t)) (17)

and such that

I(X1;X2|T ) ≤ I(X1;X2|Y,Z, T ) (18)

where T is subject to a cardinality bound of |T | ≤ |X1||X2|+
3.

We should remark that the parallel channel (defined by
p+(z|x1, x2, y, t)) is selected apriori and for every choice of
the parallel channel, one obtains an outer bound on CFB

MAC ,
which is in general tighter than the cut-set bound. The set of al-
lowable input distributions p(t, x1, x2) are those which satisfy
the constraint in (18). Also note that only the right hand side of
(18), i.e., only I(X1;X2|Y,Z, T ) depends on the choice of the
parallel channel. By carefully selecting p+(z|x1, x2, y, t), one
can reduce I(X1;X2|Y,Z, T ), thereby making the constraint
(18) more stringent, consequently reducing the set of allowable
input distributions.

To motivate the choice of our parallel channel, first consider
a trivial choice of Z: Z = φ (a constant). For this choice of



Z, (18) reduces to (9) and we are not restricting the set of
allowable input distributions any more than the DB bound.
Also note that the smallest value of I(X1;X2|Y,Z, T ) is
zero. Thus, it follows that if we select a parallel channel
such that I(X1;X2|Y,Z, T ) = 0 for every input distribution
p(t, x1, x2), then I(X1;X2|T ) = 0 by (18). Hence, the small-
est set of input distributions permissible by DBPC consists
of those p(t, x1, x2) for which X1 and X2 are condition-
ally independent given T , which is obtained by choosing
a parallel channel such that for every p(t, x1, x2), we have
I(X1;X2|Y,Z, T ) = 0. Furthermore, for the class of parallel
channels where I(X1;X2|Y,Z, T ) = 0, the bound in (15) is
redundant. This can be seen from:

0 = I(X1;X2|T )− I(X1;X2|Y,Z, T )

= I(X1, X2;Y,Z|T )− I(X1;Y,Z|X2, T )

− I(X2;Y,Z|X1, T ) (19)

Using (19), it is clear that the sum of constraints (10) and (11)
is at least as strong as the constraint (15).

VI. BINARY ADDITIVE NOISY MAC WITH FEEDBACK

To illustrate the usefulness of dependence balance, we will
consider a binary input MAC given by Y = X1 + X2 + N
where N is binary, uniform over {0, 1} and is independent
of X1 and X2. The channel output Y takes values from the
set Y = {0, 1, 2, 3}. This channel does not fall into any class
of MAC-FB for which the capacity region is known. This
channel was also considered by Kramer in [8] where the
first improvement over Cover-Leung achievable symmetric-
rate was obtained.

To improve upon the symmetric-rate cut-set bound, we need
to select a “good” parallel channel such that it restricts the
input distributions to the smallest allowable set and yields
small values of I(X1;Z|Y,X2, T ) and I(X2;Z|Y,X1, T ) at
the same time. These two mutual information “leak” terms
are the extra terms that appear in (10) and (11) relative to the
rates appearing in (5) and (6), respectively. We select a parallel
channel p+(z|x1, x2, y) such that I(X1;X2|Y,Z, T ) = 0.
By (18), this will imply I(X1;X2|T ) = 0 and hence only
distributions of the type p(t, x1, x2) = p(t)p(x1|t)p(x2|t)
will be allowed. By doing so, we restrict the set of allow-
able distributions to be the smallest permitted by DBPC ,
although we pay a penalty due to the positive “leak” terms
I(X1;Z|Y,X2, T ) and I(X2;Z|Y,X1, T ).

Hence for a particular selection of the parallel channel such
that I(X1;X2|Y,Z, T ) = 0, the overall problem is to find the
maximum symmetric-rate such that

R1 ≤ I(X1;Y |X2, T ) + L1 (20)
R2 ≤ I(X2;Y |X1, T ) + L2 (21)
R1 ≤ I(X1;Y |X2) (22)
R2 ≤ I(X2;Y |X1) (23)

R1 +R2 ≤ I(X1, X2;Y ) (24)

over the set of distributions of the type p(t, x1, x2) =
p(t)p(x1|t)p(x1|t) where we have defined L1 =
I(X1;Z|Y,X2, T ) and L2 = I(X2;Z|Y,X1, T ).

Two simple choices of Z for which I(X1;X2|Y,Z, T ) = 0
are Z = X1 or Z = X2. We will show that the cut-set bound
can be improved upon by the choice Z = X1. The case Z =
X2 will yield the same symmetric-rate upper bound as Z =
X1. The evaluation of the above bound for the symmetric-
rate point is rather cumbersome because for binary inputs, the
bound on |T | is |T | ≤ 7. To the best of our knowledge, no
one has been able to conduct an exhaustive search over an
auxiliary random variable whose cardinality is larger than 4.
In the next section, we show that a binary selection of T with
uniform distribution is sufficient to obtain our symmetric-rate
upper bound. We show that this upper bound is strictly less
than the cut-set bound.

VII. EVALUATION OF THE DEPENDENCE BALANCE
BOUND

First note that for the binary additive noisy MAC in con-
sideration, the following equalities hold for any distribution of
the form p(t, x1, x2) = p(t)p(x1|t)p(x2|t),

I(X1;Y |X2, T ) =
H(X1|T )

2
(25)

I(X2;Y |X1, T ) =
H(X2|T )

2
(26)

For the choice of Z = X1, the information leaks are

L1 =
H(X1|T )

2
(27)

L2 = 0 (28)

Substituting (25), (26), (27) and (28) in (20) to (24), we can
restate the problem as finding the maximum symmetric-rate,
R, subject to the following constraints,

R ≤ H(X1|T ) (29)

R ≤
H(X2|T )

2
(30)

R ≤ I(X1;Y |X2) (31)
2R ≤ I(X1, X2;Y ) (32)

over all input distributions of the form p(t, x1, x2) =
p(t)p(x1|t)p(x2|t). Note that since L2 = 0, among the two
constraints (21) and (23), the constraint (23) is redundant, due
to the fact that conditioning reduces entropy. By ignoring any
of the constraints (29) to (32), one obtains an albeit looser
upper bound on R. Ignoring the constraint on R in (31), we
obtain

R ≤ H(X1|T ) (33)

R ≤
H(X2|T )

2
(34)

2R ≤ I(X1, X2;Y ) (35)

In what follows, we will characterize the maximum R
over all allowable conditionally independent distributions
p(t)p(x1|t)p(x2|t) subject to the constraints in (33)-(35).
Throughout the paper, h(s) will refer to the binary entropy
function. To characterize our upper bound, we will use the



following function

φ(s) =

{

1−
√

1−2s
2 , for 0 ≤ s ≤ 1/2,

1−
√

2s−1
2 , for 1/2 < s ≤ 1.

(36)

It was shown in [9] that the composite function h(φ(s)) is
symmetric around s = 1/2 and concave in s for 0 ≤ s ≤ 1.
The functions φ(s) and h(φ(s)) are illustrated in Figure 2.
From the definition of φ(s) in (36) it is clear that for any
s ∈ [0, 1], the function φ(s) satisfies the following property

φ(2s(1− s)) = min(s, 1− s) (37)

As a consequence, the following holds as well,

h(φ(2s(1− s))) = h(s) (38)

Let the cardinality of the auxiliary random variable T be
fixed and arbitrary, say |T |. Then the joint distribution
p(t)p(x1|t)p(x2|t) can be described by the following: qjt =
Pr(Xj = 0|T = t) for j = 1, 2 and pt = Pr(T = t) for
t = 1, 2, . . . , |T |. We will characterize our symmetric-rate
upper bound in terms of two variables u1 and u2, which are
functions of p(t, x1, x2), and are defined as,

u1 =
∑

t

ptq1t(1− q1t) =
∑

t

ptu1t (39)

u2 =
∑

t

ptq2t(1− q2t) =
∑

t

ptu2t (40)

where we have defined

ujt = qjt(1− qjt), j = 1, 2. (41)

It should be noted that since 0 ≤ qjt ≤ 1 for j = 1, 2, the
variables u1, u2, u1t and u2t all lie in the range [0, 1

4 ]. Now
consider the constraint (33),

R ≤ H(X1|T ) =
∑

t

pth(q1t) (42)

=
∑

t

pth(φ(2q1t(1− q1t))) (43)

=
∑

t

pth(φ(2u1t)) (44)

≤ h(φ(2u1)) (45)

where (43) follows due to (38), (44) follows by (41), and
(45) follows due to the fact that h(φ(s)) is concave in s and
application of Jensen’s inequality [7]. Using a similar set of
inequalities for the constraint in (34), we obtain

R ≤
h(φ(2u2))

2
(46)

We will now obtain an upper bound on I(X1, X2;Y ). First
note that

I(X1, X2;Y ) = H(Y )−H(Y |X1, X2) (47)

= h(4)(PY (0), PY (1), PY (2), PY (3))− 1 (48)

where

PY (0) =
∑

t

ptq1tq2t/2 (49)
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Figure 2: The functions φ(s) and h(φ(s)).

PY (1) =
∑

t

pt

[

q1t + q2t − q1tq2t

]

/2 (50)

PY (2) =
∑

t

pt

[

1− q1tq2t

]

/2 (51)

PY (3) =
∑

t

pt(1− q1t)(1− q2t)/2 (52)

and h(4)(s1, s2, s3, s4) = −
∑

i silog(si), for si ≥ 0 and
∑

i si = 1. Note that,

h(4)(a, b, c, d) =
1

2
h(4)(a, b, c, d) +

1

2
h(4)(d, c, b, a) (53)

≤ h(4)

(

a+ d

2
,
b+ c

2
,
b+ c

2
,
a+ d

2

)

(54)

= h (a+ d) + h

(

1

2

)

(55)

= h (1− (b+ c)) + 1 (56)

where (54) follows by the concavity of the entropy func-
tion and application of Jensen’s inequality [7]. Now starting
from (48), and using (56), we obtain an upper bound on
I(X1, X2;Y ) as follows,

I(X1, X2;Y ) ≤ h (1− (PY (1) + PY (2))) + h

(

1

2

)

− 1 (57)

= h

(

1− u

2

)

(58)

where we have defined

u =
∑

t

pt (q1t + q2t − 2q1tq2t) (59)

=
∑

t

ptut (60)

where ut = q1t + q2t − 2q1tq2t. To obtain an upper bound
on R in terms of u1 and u2 using (58), we will first obtain
a lower bound on the variable u in terms of u1 and u2. For
this purpose, define a function f(x, y) for any x ∈ [0, 1

2 ] and
y ∈ [0, 1

2 ] as follows,

f(x, y) , φ(x) + φ(y)− 2φ(x)φ(y) (61)

=
1−

√

(1− 2x)(1− 2y)

2



We will now state two lemmas which are necessary in obtain-
ing an upper bound on I(X1, X2;Y ) in terms of u1 and u2.

Lemma 1: The variable

ut = q1t + q2t − 2q1tq2t (62)

is always lower bounded by f(2u1t, 2u2t) for any q1t ∈
[0, 1], q2t ∈ [0, 1].

Lemma 2: The function

f(x, y) = φ(x) + φ(y)− 2φ(x)φ(y) (63)

is jointly convex in (x, y) for 0 ≤ x ≤ 1
2 , 0 ≤ y ≤ 1

2 .

We omit the proofs of Lemmas 1 and 2 here due to space
limitations; they can be found in [10]. Returning to (60), we
now obtain a lower bound on u as follows,

u =
∑

t

ptut (64)

≥
∑

t

ptf(2u1t, 2u2t) (65)

≥ f

(

2
∑

t

ptu1t, 2
∑

t

ptu2t

)

(66)

= f(2u1, 2u2) (67)

where (65) follows from Lemma 1 and (66) follows by Lemma
2 and application of Jensen’s inequality [7]. Having lower
bounded u in terms of u1 and u2, we now obtain a third
constraint on R in terms of u1 and u2, by continuing from
(58),

2R ≤ I(X1, X2;Y ) (68)

≤ h

(

1− u

2

)

(69)

≤ h

(

1− f(2u1, 2u2)

2

)

(70)

where (70) follows by (67) and using the fact that the binary
entropy h(s) is monotonically increasing in s for s ∈ [0, 1

2 ].

To summarize our results, we have three bounds on R from
(45), (46) and (70) which when combined yield an upper
bound on the symmetric-rate as follows,

R ≤ max
u1∈[0, 1

4
],u2∈[0, 1

4
]
min

{

h(φ(2u1)),
1

2
h(φ(2u2)),

1

2
h

(

1− f(2u1, 2u2)

2

)

}

(71)

This yields an upper bound on the symmetric-rate R as
0.45330 bits/transmission. The optimal pair (u∗1, u

∗
2) which

attains this symmetric-rate upper bound is,

(u∗1, u
∗
2) = (0.086063, 0.218333) (72)

An input distribution p(t, x1, x2) which attains this upper
bound is specified as follows,

P (T = 0) = P (T = 1) =
1

2
q10 = 1− q11 = φ(2u∗1) = 0.095109

q20 = 1− q21 = φ(2u∗2) = 0.322050 (73)

The input distribution in (73) yields a symmetric-rate of
0.45330 bits/transmission. This shows that the bound obtained
in (71) can be attained by a binary auxiliary random variable
T with uniform distribution over {0, 1}.

VIII. CONCLUSION

In this paper, we used the parallel channel extension of the
dependence balance bound (DBPC) to obtain an improvement
over the symmetric-rate cut-set bound for a simple multiple
access channel whose feedback capacity is not known. To
be consistent with literature, we chose a binary additive
noisy MAC, which was extensively studied in [8]. We used
composite functions and their properties to obtain an upper
bound of 0.45330 bits/transmission on the symmetric-rate,
which is strictly less than the symmetric-rate cut-set bound
0.45915 bits/transmission. The improvement over the cut-set
bound for the symmetric-rate is about 0.006 bits/transmission.
Although this improvement is modest, the main contribution
of this work is to show the usefulness and explicit evaluation
of the dependence balance bound which improves upon the
cut-set bound for the binary additive noisy MAC-FB.

Recently, Kramer and Gastpar have used the idea of de-
pendence balance to obtain first improvement over the cut-
set bound for a K-user Gaussian MAC with feedback and
the Gaussian interference channel with noisy feedback [11],
[12]. It would be interesting to generalize dependence balance
bounds and their corresponding parallel channel extensions to
Gaussian interference networks with generalized feedback.
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