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Abstract—We consider correlated MIMO multiple access chan-  solved the trade-off between estimating the channel batter

nels with block fading, where each block is divided into trahing increasing the achievable data rate.

and data transmission phases. We find the channel estimaticand In a multi-user setting, the amount of resources required to
data transmission parameters that jointly optimize the aclevable the ch | ’d to feed th timated ch | back
data rate of the system. Our results for the training phase ae measure the C anl_'le and to ree e_ estimated channel bac
particularly interesting, where we show that the optimum training ~ t0 the transmitter increases substantially. When perfegtt C
signals of the users should be non-overlapping in time. For is available at the receiver and the transmitters at no cost,
the data transmission phase, we propose an iterative algashm  [14] finds the optimum transmission strategy, which is a mult
that updates the parameters of the users in a round-robin ,qar water-filling scheme. Under a more practical assumptio

fashion. In particular, the algorithm updates the training and - . .
data transmission parameters of a user, when those of the res when there is perfect CSI at the receiver but only partial CS

of the users are fixed, in a way to maximize the achievable sum- available at the transmitters, [6], [7] find the optimum sanit
rate in a multiple access channel; and iterates over users ia  strategies for all users. When the channel estimation at the

round-robin fashion. receiver is noisy, most of the research focuses on single-us
systems [8], [10]-[13].
. INTRODUCTION In this paper, we consider a multi-user setting. First, we
In wireless communication scenarios, the achievable rat€onsider the channel estimation process and find the optimum
of a system depends crucially on the amount of channdf&ining signals for aII.users. A_Ithough al! of tlhe users are
state information (CSI) available at the receivers and théllowed to use the available training duration simultarsipu
transmitters, especially when there are multiple anteramas W€ find that the training signals of the users should be non-
multiple users in the system. With perfect CSI at the receive©verlapping in time. Since the total block length, and thene
and the transmitter, the optimum adaptation scheme is watef1€ total training duration is limited, each user can onairtr
filling [1], [2]. However, in some cases, especially in multi & fraction of its available channel dimensions, which might
input multi-output (MIMO) links, feeding the instantaneou result in_ shorter individual training signal durations quared
CSI back to the transmitter is not realistic. Therefore, om 0 the single-user case [12], [13]. .
research assumes that there is perfect CSI at the receiiter, b Next, we move to the data transmission phase, and derive
only partial CSI available at the transmitter [3]—[7]. an achievable sum-rate expression that includes the channe
Another line of research considers the actual estimation ofStimation and data transmission parameters of all usees. W
the channel at the receiver, which is noisy. The capacity anfl'St détermine the optimum transmit directions for all sser
the corresponding optimum signalling scheme for this casd "eN. e develop an algorithm that maximizes the sum-rate
are not known. However, lower and upper bounds for thdointly over the individual training durations of all users
capacity can be obtained [8]-[10]. It is important to notatth the allocation of power of each user between training and
[8]-[10] assume the existence of a separate channel that dogat@ fransmission phases, and also the allocation of tfee dat
not consume system resources for channel estimation. For lnSmission power of each user over its transmit direstion
MIMQ system V\_/it_h no CSI a}vailable at the transm_itter, [11] Il. SYSTEM MODEL
considers optimizing the achievable rate as a function tfi bo

the training and the data transmission phases We consider a multiple access channel (MAC) with multiple

In [12], [13], we studied the optimization of the achievable antennas at every user and the receiver. The channel bgtween
data rate jointly in terms of the channel estimation andu‘?‘?]”é.and the recfelwer 'S repr:esented téya randrc:m mHtr,);x
data transmission parameters of a single-user, blockdadi with dimensions ot X nr, Wherény andny are the number

correlated MIMO channel with noisy channel estimation atof antennas at the receiver and at_the transmitters, réeplgct :
the receiver, and partial CS| available at the transmitée. We consider a block fading scenario where the channel remain

constant for a block’ll symbols), and changes to an i.i.d.
This work was supported by NSF Grants CCR 03-11311, CCF @ag7 'ealization at the end of the block. In order to estimate the
and CCF 05-14846; and ARL/CTA Grant DAAD 19-01-2-0011. channels, the receiver performs a linear MMSE estimation



for the channels of the users using training symbols &yer
symbols. During the remainin@y; = 7' — T, symbols, data
transmission occurs. While the receiver has a noisy estiofat
the realization of the fading channel, the transmitterehay
the statistical model of the channel. Each transmitter send
vectorxy,,, and the received vector at timeis

K

I‘n:ZHkan—an, n=1,...,T
k=1

where K is the number of usersy,, is a zero-mean, identity-
covariance complex Gaussian vector, at timend the entries

1)

training signal matrices of all the users are stacked t@geth
We can then write (3) equivalently as

R; = HS + N, (4)

where H = [Hy,...,Hg] is anng x Kny dimensional
channel matrix, andS = [S!,...,8L]" is a Kny x T,
dimensional training signal matrix. In this equivalent iplem,
the receiver will estimatéd using the outputR, and the
training signalS.

Due to our channel model in (2), the entries in a row of
H, are correlated, and the entries in a columnkbf are

of H; are complex Gaussian random variables. Each user hamcorrelated. In other words, for each user, rovand row

a power constraint of’;, averaged ovel’ symbols.

j of the channel matrix are i.i.d. This also holds for the

The statistical model that we consider is the “partial CSIstacked matrid. Let us represent rowof H;, as:h};i, where
with covariance feedback” model where each transmittefZ[h;;h)] = =),i = 1,...ng, and rowi of H ash; =

knows the channel covariance information of all transmstte
in addition to the distribution of the channel. In this papee

i, ... hi ], whereX = E[h;h!] = diag{=,,..., Sk}
is a block diagonal matrix, having; on its diagonals.

will assume that the receiver does not have any physical re- | ot the eigenvalue representation of the channel covagianc

strictions and therefore, there is sufficient spacing betwée

antenna elements on the receiver such that the signalseecei

at different antenna elements are uncorrelated. Howdvere t
exists correlation between the signals transmitted byesfit
antenna elements. The channel is modeled as [15],

H) = 7,5,/ ()

where the entries o#, are i.i.d., zero-mean, unit-variance

complex Gaussian random variables, afgd is the channel
covariance feedback matrix of usér Similar covariance
feedback models have been used in [4]-[7].

IIl. JOINT OPTIMIZATION FOR MULTI-USERMIMO

matrix of userk be ¥, = ngAgkUTEk, then the eigenvectors
of the stacked channel covariance mafiix= Uz Az UL can
also be written alJs, = diag{Uy,,...,Us, } [16, Lemma
1.3.10], which is a block diagonal matrix as well.

Since a row ofH is formed by combining the rows of all
H, into a single, and longer row, we can conclude that the
rows of H are also i.i.d., and the receiver can estimate each
of them independently using the same training symbols. The

it" row of (4) can be written as
ri; = S'h; + ny (5)

Since this is equivalent to a single-user channel estimatio
problem with the exception of a block diagonal channel

Our goal in this paper is to find the maximum achievablecoyariance matrix, we can use the MMSE estimation results

sum-rate which is optimized jointly over the training paem
ters (training signal, training duration, training sigmedwer)
and the data transmission parameters (transmit direcéinds
allocation of power over the antennas).

A. Training and Channel Estimation Phase
The input-output relationship during the training phaseain
multiple access channel is

K
R, = Z H.S; + N,
k=1

®3)

where Sy is an np x T; dimensional training signal for
user k that will be chosen and known at both end3,

and N, are ng x T, dimensional received signal and noise

matrices, respectively. The’” column of the matrix equation
in (3) represents the input-output relationship at timeThe
power constraint for the training input signal for ugeris
Atr(SS)) < P,

of [12], [13]. Denoting the estimate df; asf}i = Mry;, and
the channel estimation error & = h; — h;, the MMSE
estimation problem can be written as

min £ (k] = min B [tr ((h; — Mry)(h; — Mra)')] ()

Using the orthogonality principle [17, page 91] as in they&n
user case [12], we can find the optimum estimatoivis =
¥S(ST2S + I)fl, and the mean square error in (6) becomes,

(7)

where we used the matrix inversion lemma [16, page 19]. Note
that the mean square error of the channel estimation process
can be further decreased by choosing the training si§rtal
minimize (7). The following theorem findS, and the training
signals of individual userS;, for a given training power and
training duration.

Theorem 1: For givenX; = ngAgkUTEk, b, , T, and

min £ [Bfh,| =t (£ +88") ")

The receiver is to estimate the channels of all users simulthe power constraints (fSkSL) < P, Ty the Kny x Ty
taneously, during the same training phase, with the knayded dimensional optimum stacked training sigsathat minimizes

of all training symbols. Therefore, it can regard the muker

channel as a single-user channel, where the channel and tBe= Us Ay

the total power of the channel estimation error vector is
/2 and thenr x K dimensional optimum training



signal of userk is Sy, = {0, ..., 0, ngAls/kQ, 0,...,0| with Although the optimum input distribution is not known, we can
achieve the following lower bound with Gaussiar10],

1 1\*
5= = - — ) = i sum <13 — T AT
A = (uf AEZ-) . i=1,...min(np,T,) (8) Csum = I(r;x|H) = E [1og ‘I n Rﬁ;ﬂHQHTH (10)

whereT}, is the duration of the training signal of uger(ugy vyhereRHiﬂl is the covariance matrix of the effective noise,
is the Lagrange multiplier that satisfies the power constrai Hx+n, andQ = E[xx]. Since the inputs for different users

with pf = U J{c,k —, and.J; is the largest index that has are independent from each othéis a block diagonal matrix,
. iz 5T havingQy in its diagonals with fQy.) < Py, . As a result, we
non-zero\y; for userk. haveHQH' = %  H,Q,H]. In addition, the covariance

A result of Theorem 1 is that it is sufficient to consider of the effective noise can be calculated as
only 73, < np, which we will assume for the rest of this K
paper. In addition, Theorem 1 states that orthogonalithent g —14p {fb—(}—(fﬁf} =1+ F [ﬁkaﬁH (12)
time domain holds over the users in a multi-user setting as 1
well. Although this might seem counter-intuitive at firsftea ~ . ~
the diagonalization of the channel, we are left with orthoglo  From [12], [13], we know thai? {HkaHH = tr(Qx X)L
channels. Therefore, in order to estimate orthogonal atlann Since our goal is to find the largest lower bound, i.e., the
sending orthogonal training signals is sufficient. largest achievable rate with Gaussian signaling, we maemi

Due to the constraint on the training duration, fewer di-(10) over the entire block
mensions of the individual channels will be estimated for
each user, which will result in shorter individual training R,= max EE
durations compared to a single-user case. However, by the (97t "t )€

; o ; . tr(Qx)<Pu,, Yk

conservation of energy, the training signal power of a paldir F

user will be larger compared to the training signal poweheft \ynhere S. = {(Qk,Pt T, )‘tr(Qk)Td'i‘Pt T, = ka},
same user in a single-user environment. Therefore, althoug et o

.. T—Tg . .
fewer dimensions of the channel are estimated, the channgpd the coefficient—= reflects the amount of time that is

L . . ) . Spent during the training phase. Note that the maximizason
estimation error corresponding to those estimated dimessi -
will be smaller. over the parameters of all users, where uséas the training

Note thatyy is a function of onlyP;, andT;,, both of parameters,, andT;,, and the d_ata transmission parameter

. : - Qr, which can be decomposed into its eigenvectors, i.e., the
which will be chosen to maximize the sum-rate of the datatransmit directions. and eigenvalues. ie. . powers al i
transmission phase. The value @}, determines the total ’ 9 €. P e

. transmit directions.
number of available parallel channels for userand the it Directions When th h N
value of P,, determines the number of channels that will be 1) Transmit Directions. W_en the CSI at the receiver Is
estimated. The parametric values Bf andT,, will appear perfect, [7] showed that the eigenvectors of the transmiaie
in the sum-rate formula in the next skection * ance matrix of each user must be equal to the eigenvectors of
Before moving on to the next section, we will state thethe channel covariance matrix of that user, l8g, = Us, .

eigenvalues of the covariance matrices of the estimateri-chaIn pther yvords, s]lngle—user .transm|t d:lretlztlonhs s%trﬁlteg_y !
nel vector, and the channel estimation error vector for aiPpPtimum in a mu tl-user_sgttlng as well. In the oflowing
users. This derivation is similar to the single-user case, a theorem, we show that this is also true when there is channel
can be found in [12], [13]. The covariance matrix of the estimation error at the receiver.

S ~ . — i -
channel estimation error of usér can be found a;, = Theorem 2: Let 3, = Uy, Ay, Uy, Dbe the spectral de
Us, (A—l +Ag )71U" where the eigenvalues are given composition of the covariance matrix of the channel of user

k Xk k 3!

as )\Ei — min (/\Eiaﬂf)- Similarly, the covariance matrix k. Then, the optimum transmit covariance mat@y of user

_ 1
of the estimated channel of usércan be found using the K TJ@ theTl;or % _ZUZ’“AQ’“UE_kt' the ontimizati b
orthogonality principle a® = Uy, (AE - ]&E) UL, where SIng Theorem =, we can write the optimization problem

Sy HyQuH]

lo = -
T4 7 r(QrXy)

g I+

(12)

% ( - s ) in (12) as,
the eigenvalues are given ag, = min (Ag; — ¢z, 0). " et
_ -1 kD )‘in)‘EizkiZLi
. Rs= max log|I+ e 0T (13)
B. Data Transmission Phase (D Py, T, )Py T3, S AGAL
The sum-rate of a multiple access channel can be derived b i

using the stacked channel and input matrices, whereP, — { (Aka ptk’Ttk) ‘ (Z- )\EQ_) Ty+ P, T, szT},

K K A =D )\anT], andzy; is annpy x 1 dimensional i.i.d.,

r= Z Hyxi + Z Hixp+n=Hx+Hx+n (9  zero-mean, identity-covariance Gaussian random vector.
k=1 =1 2) Power Allocation Policy: For a MIMO-MAC system
whereH = [H,,...,Hg|, H=[H,,... . Hg]arengx Kny  with perfect CSI at the receiver and partial CSI at the trans-
dimensional, an&k = [x{, . ,x}(]" is Kny x 1 dimensional. mitters, [6] proposes an algorithm to find the optimum power



allocation policy. However, the existence Bf andT;, here, Inthe optlmlzatlon problem in (17), we ha{g, + 1 optimiza-
violates the symmetry in [6], and changes the form of thetion varrables)\kl, . A? , andP;, . The KKT conditions for
objective function. Therefore, in this paper, we modify thethe optimization problem in (17) can be written as
algorithm in [6] so that the new algorithm finds the optimum

P,, andT;, as well as the powers along the transmit directions. sz(Ptk)E {z,ﬂB ;ﬂ} <wupTy, i=1,...,7T;, (18)
By plugging A}, and \}} into (13), and choosing® = 0, o T BflP)
for i = J, + 1,...,nr since they do not contribute to the Ld Z)‘szE [ ITWB 1, } killte) T (19)
numerator, we get p 0P,
J
Rs:maXT TE log ZkZ C NS — )iz (14) whereB = & +2Tt’“ A2 fri(Pyy )2riz),, . is the Lagrange
T 1+Z,C i Pa, multiplier, and the equalrty of the last equation followsrfr

where the maximization is over the same set as in (13). In (14)he complementary slackness condition. Note that when the

optimum )\ is non-zero, the corresponding inequality in
the parameters of the optimization problem are the power
Q 18) will be satisfied with equality. Therefore, we pull the
of all users\?, ... s Apr,, along the transmit directions, the

expectation terms from (18) for those equations with non-
training signal powersF‘Zk, and the training duration§y, b (18) q

of all users. Solving for all these variables simultanepusl zero/\Q S, and insert them into (19). Since those indices with
g PUst \o O do not contribute to (19), we have

seems intractable. Therefore, we propose a Gauss-Sejpiel ty” #@

algorithm that solves (14) iteratively over the users as6in [ Ty, F(P T

When updating the parameters corresponding to ksétose Z A Zhid T/ w) _ To (20)

of the rest of the users are fixed. The optimization problem Fri(Pr) T

corresponding to an update of each user becomes Now, we have a fixed-point equation which does not include
Q5 any expectation terms. We can use this to sdlyein terms of

k -1 Z 1A (A — :uk)zklzkz Q> i i i :
R =max E |log|®+ 5 H (15)  Aj;’s. Using our single-user results in [12], [13], we propose
O+ Fa, the following algorithm that first solveg;, (n + 1) from
K s A2 2.2, T,
where ® = T+ ek fl; = DL and ¢ = Z A2 f,m w(n+1) T, 21)

Z#k wi Py, We note that for any paertk,Ttk) that results Py(n+1))  Tq

in J, < T;,, we can find another pauP(,C,Tk) that results in
a higher rate, and therefore it is sufficient to search oveseh
(P, T:,) pairs that result inJ, = Ty, , with an additional /\in(n)fki(Ptk (n+1)E {zTiB’lzki} Py, (n)

y . Q _
T (L L), which guarantees Agi(n+1)=

and then, update)sgi(n + 1) using

(22)

constraint of P, > -5z T i
e > > XF, T arant SR (0) fi (P, (n—i—l))E[ JB—lzkj}
that, using the paifP,,,T;,), all T;, channels are filled, i.e.,
Jp =T, where Py, (n) = 7= P'kT("+1)T'k This algorithm finds the

The parameters that we want to optimize (15) over aresolution of (17), wherf}, and the parameters of the rest of the
discrete valuedT},, and continuous valued®,, and A%,  users are fixed. We run; such algorithms simultaneously for
fori = 1,...,T;. Since, for every value of,, both the userk. The solution of (15) can be found by taking the one
coefficient in front of the expectation, and the number af®r that results in the largest rate. Now, we knd\@,Ptk,Ttk,
in the sum in the numerator of (15) are different, the form ofthat maximize (15). We then move to another user, and solve
the objective function is also different. Sin@g, is discrete, (17) for this user, and in this manner we iterate over thesuser
and1 < T;, < nr, we can perform an exhaustive search overin a round-robin fashion. Finally, round-robin algorithrives
T}, and solveny reduced optimization problems with fixed us the optimum parameters of all users that maximize (14).
T:, in each one. Then, we take the solution that results in the As a result, through?,,, we find the power allocation of

maximum rate, i.e., userk over the training and data transmission phases. Through
B —  max KTy, (16) T, = Zle T;,, we find the ppt_imum allocation of time over
S A<, <ng the training and data transmission phases. Through Thedrem
o . . . _ we find the optimum transmit directions of uggrand through
where R, " is equal to (15) with a fixed;, . While solving @ )\% , we find the allocation of data transmission
fc;rz the inner maximization problem, we defing:(F:.) =  power of userk over these transmit directions. Finally, the
ﬁﬁi—", fori=1,...,T}, . In this case, the inner optimiza- optimum training signal of usek, S, is determined by the
tion problem becomes optimum7;, andP;, through Theorem 1.
T T-T, T, o ; IV. NUMERICAL ANALYSIS
t A A
Rs " = max E |log ‘I’+Z/\mfki (Pr,)2ri2y, || (17) Analytical proof of the convergence of this algorithm seems

(AQ,P)ERT, — 7 K . R
K i=1 to be intractable for now. However, in our extensive sim-
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average power arid = 10: (a) convergence for user 1; (b) convergence

for user 2; convergence for user 3 is similar and omitted ldeie to space limitations.

ulations, we observed that the algorithm always converges|2]
In Figure 1, we considered a system Bf = 3 users with

ny = ng = 3, all having moderate powel? = 20 dB, and 3]
moderate block length]” = 10. Each iteration in Figure 1,
corresponds to solving (15) for one of the users, while thel4]
parameters of the rest of the users are fixed. We observe
that, all users estimate only one dimension of the channels]
Therefore, total training duration i5;, = 3 symbols.

We observed through extensive simulations that for a Iarge[e]
set of channel eigenvalues, total available power and thekbl
length, all users estimate only one dimension of the chahmel
order to estimate a second dimension, either very largdsleve
of power or a long enough coherence time is needed. We

[7]

refer the reader to [18] for further simulation results, evhi  [8]
we cannot show here due to space limitations.

V. CONCLUSIONS ol

We considered a block-fading MIMO-MAC, where the re- 110]

ceiver has a noisy estimate of the channel and the transmitte
have partial CSI. Each transmission block is divided into
a training phase and a data transmission phase. During th#ll
training phase, we showed that the users should send non-
overlapping training signals. During the data transmissio [12]
phase, we formulated an optimization problem to maximiee th
achievable sum-rate jointly over the training signal diorsg 13
of all users, the training powers of all users, and the trainsm
covariance matrices of all users. We proposed a multi-user
algorithm that solves the problem iteratively over the sser
in a round-robin fashion, by utilizing a single-user algjom
similar to the one proposed in [12], [13], for an update
of each user. Although the theoretical convergence proof ofs!
the proposed algorithm remains as open problem, through

|

(14]

extensive simulations, we observed that the proposeditigor [16]
always converged. [17]
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