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Abstract—We consider correlated MIMO multiple access chan-
nels with block fading, where each block is divided into training
and data transmission phases. We find the channel estimationand
data transmission parameters that jointly optimize the achievable
data rate of the system. Our results for the training phase are
particularly interesting, where we show that the optimum training
signals of the users should be non-overlapping in time. For
the data transmission phase, we propose an iterative algorithm
that updates the parameters of the users in a round-robin
fashion. In particular, the algorithm updates the training and
data transmission parameters of a user, when those of the rest
of the users are fixed, in a way to maximize the achievable sum-
rate in a multiple access channel; and iterates over users ina
round-robin fashion.

I. I NTRODUCTION

In wireless communication scenarios, the achievable rate
of a system depends crucially on the amount of channel
state information (CSI) available at the receivers and the
transmitters, especially when there are multiple antennasand
multiple users in the system. With perfect CSI at the receiver
and the transmitter, the optimum adaptation scheme is water-
filling [1], [2]. However, in some cases, especially in multi-
input multi-output (MIMO) links, feeding the instantaneous
CSI back to the transmitter is not realistic. Therefore, some
research assumes that there is perfect CSI at the receiver, but
only partial CSI available at the transmitter [3]–[7].

Another line of research considers the actual estimation of
the channel at the receiver, which is noisy. The capacity and
the corresponding optimum signalling scheme for this case
are not known. However, lower and upper bounds for the
capacity can be obtained [8]–[10]. It is important to note that
[8]–[10] assume the existence of a separate channel that does
not consume system resources for channel estimation. For a
MIMO system with no CSI available at the transmitter, [11]
considers optimizing the achievable rate as a function of both
the training and the data transmission phases.

In [12], [13], we studied the optimization of the achievable
data rate jointly in terms of the channel estimation and
data transmission parameters of a single-user, block-fading,
correlated MIMO channel with noisy channel estimation at
the receiver, and partial CSI available at the transmitter.We
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solved the trade-off between estimating the channel betterand
increasing the achievable data rate.

In a multi-user setting, the amount of resources required to
measure the channel and to feed the estimated channel back
to the transmitter increases substantially. When perfect CSI
is available at the receiver and the transmitters at no cost,
[14] finds the optimum transmission strategy, which is a multi-
user water-filling scheme. Under a more practical assumption,
when there is perfect CSI at the receiver but only partial CSI
available at the transmitters, [6], [7] find the optimum transmit
strategies for all users. When the channel estimation at the
receiver is noisy, most of the research focuses on single-user
systems [8], [10]–[13].

In this paper, we consider a multi-user setting. First, we
consider the channel estimation process and find the optimum
training signals for all users. Although all of the users are
allowed to use the available training duration simultaneously,
we find that the training signals of the users should be non-
overlapping in time. Since the total block length, and therefore
the total training duration is limited, each user can only train
a fraction of its available channel dimensions, which might
result in shorter individual training signal durations compared
to the single-user case [12], [13].

Next, we move to the data transmission phase, and derive
an achievable sum-rate expression that includes the channel
estimation and data transmission parameters of all users. We
first determine the optimum transmit directions for all users.
Then, we develop an algorithm that maximizes the sum-rate
jointly over the individual training durations of all users,
the allocation of power of each user between training and
data transmission phases, and also the allocation of the data
transmission power of each user over its transmit directions.

II. SYSTEM MODEL

We consider a multiple access channel (MAC) with multiple
antennas at every user and the receiver. The channel between
userk and the receiver is represented by a random matrixHk

with dimensions ofnR×nT , wherenR andnT are the number
of antennas at the receiver and at the transmitters, respectively.
We consider a block fading scenario where the channel remains
constant for a block (T symbols), and changes to an i.i.d.
realization at the end of the block. In order to estimate the
channels, the receiver performs a linear MMSE estimation



for the channels of the users using training symbols overTt

symbols. During the remainingTd = T − Tt symbols, data
transmission occurs. While the receiver has a noisy estimate of
the realization of the fading channel, the transmitters have only
the statistical model of the channel. Each transmitter sends a
vectorxkn, and the received vector at timen is

rn =

K
∑

k=1

Hkxkn + nn, n = 1, . . . , T (1)

whereK is the number of users,nn is a zero-mean, identity-
covariance complex Gaussian vector, at timen, and the entries
of Hk are complex Gaussian random variables. Each user has
a power constraint ofPk, averaged overT symbols.

The statistical model that we consider is the “partial CSI
with covariance feedback” model where each transmitter
knows the channel covariance information of all transmitters,
in addition to the distribution of the channel. In this paper, we
will assume that the receiver does not have any physical re-
strictions and therefore, there is sufficient spacing between the
antenna elements on the receiver such that the signals received
at different antenna elements are uncorrelated. However, there
exists correlation between the signals transmitted by different
antenna elements. The channel is modeled as [15],

Hk = ZkΣ
1/2
k (2)

where the entries ofZk are i.i.d., zero-mean, unit-variance
complex Gaussian random variables, andΣk is the channel
covariance feedback matrix of userk. Similar covariance
feedback models have been used in [4]–[7].

III. JOINT OPTIMIZATION FOR MULTI -USERMIMO

Our goal in this paper is to find the maximum achievable
sum-rate which is optimized jointly over the training parame-
ters (training signal, training duration, training signalpower)
and the data transmission parameters (transmit directionsand
allocation of power over the antennas).

A. Training and Channel Estimation Phase

The input-output relationship during the training phase ina
multiple access channel is

Rt =

K
∑

k=1

HkSk + Nt (3)

where Sk is an nT × Tt dimensional training signal for
user k that will be chosen and known at both ends,Rt

and Nt are nR × Tt dimensional received signal and noise
matrices, respectively. Thenth column of the matrix equation
in (3) represents the input-output relationship at timen. The
power constraint for the training input signal for userk is
1
Tt

tr(SkS
†
k) ≤ Ptk

.
The receiver is to estimate the channels of all users simul-

taneously, during the same training phase, with the knowledge
of all training symbols. Therefore, it can regard the multi-user
channel as a single-user channel, where the channel and the

training signal matrices of all the users are stacked together.
We can then write (3) equivalently as

Rt = H̄S̄ + Nt (4)

where H̄ = [H1, . . . ,HK ] is an nR × KnT dimensional
channel matrix, and̄S = [S†

1, . . . ,S
†
K ]† is a KnT × Tt

dimensional training signal matrix. In this equivalent problem,
the receiver will estimateH̄ using the outputRt and the
training signalS̄.

Due to our channel model in (2), the entries in a row of
Hk are correlated, and the entries in a column ofHk are
uncorrelated. In other words, for each user, rowi and row
j of the channel matrix are i.i.d. This also holds for the
stacked matrixH̄. Let us represent rowi of Hk ash

†
ki, where

E[hkih
†
ki] = Σk, i = 1, . . . nR, and row i of H̄ as h̄i =

[h†
1i, . . . ,h

†
Ki]

†, whereΣ̄ = E[h̄ih̄
†
i ] = diag{Σ1, . . . ,ΣK}

is a block diagonal matrix, havingΣk on its diagonals.

Let the eigenvalue representation of the channel covariance
matrix of userk beΣk = UΣk

ΛΣk
U

†
Σk

, then the eigenvectors
of the stacked channel covariance matrixΣ̄ = ŪΣΛ̄ΣŪ

†
Σ can

also be written as̄UΣ = diag{UΣ1 , . . . ,UΣK
} [16, Lemma

1.3.10], which is a block diagonal matrix as well.

Since a row ofH̄ is formed by combining the rows of all
Hk into a single, and longer row, we can conclude that the
rows of H̄ are also i.i.d., and the receiver can estimate each
of them independently using the same training symbols. The
ith row of (4) can be written as

rti = S̄†h̄i + nti (5)

Since this is equivalent to a single-user channel estimation
problem with the exception of a block diagonal channel
covariance matrix, we can use the MMSE estimation results
of [12], [13]. Denoting the estimate of̄hi as ĥi = M̄rti, and
the channel estimation error as̃hi = h̄i − ĥi, the MMSE
estimation problem can be written as

min
M̄

E
[

h̃
†
i h̃i

]

= min
M̄

E
[

tr
(

(h̄i − M̄rti)(h̄i − M̄rti)
†
)]

(6)

Using the orthogonality principle [17, page 91] as in the single-
user case [12], we can find the optimum estimator asM̄∗ =

Σ̄S̄
(

S̄†Σ̄S̄ + I
)−1

, and the mean square error in (6) becomes,

min
M̄

E
[

h̃
†
i h̃i

]

= tr
(

(

Σ̄−1 + S̄S̄†
)−1

)

(7)

where we used the matrix inversion lemma [16, page 19]. Note
that the mean square error of the channel estimation process
can be further decreased by choosing the training signalS̄ to
minimize (7). The following theorem finds̄S, and the training
signals of individual usersSk, for a given training power and
training duration.

Theorem 1: For givenΣk = UΣk
ΛΣk

U
†
Σk

, Ptk
, Tt, and

the power constraints tr(SkS
†
k) ≤ Ptk

Tt, the KnT × Tt

dimensional optimum stacked training signalS̄ that minimizes
the total power of the channel estimation error vector is
S̄ = ŪΣΛ̄

1/2
S , and thenT ×K dimensional optimum training



signal of userk is Sk =
[

0, . . . ,0,UΣk
Λ

1/2
Sk

,0, . . . ,0
]

with

λS
ki =

(

1

µS
k

−
1

λΣ
ki

)+

, i = 1, . . . , min(nT , Ttk
) (8)

whereTtk
is the duration of the training signal of userk, (µS

k )2

is the Lagrange multiplier that satisfies the power constraint
with µS

k = Jk

Ptk
+

PJk
i=1

1

λΣ
ki

, andJk is the largest index that has

non-zeroλS
ki for userk.

A result of Theorem 1 is that it is sufficient to consider
only Ttk

≤ nT , which we will assume for the rest of this
paper. In addition, Theorem 1 states that orthogonality in the
time domain holds over the users in a multi-user setting as
well. Although this might seem counter-intuitive at first, after
the diagonalization of the channel, we are left with orthogonal
channels. Therefore, in order to estimate orthogonal channels,
sending orthogonal training signals is sufficient.

Due to the constraint on the training duration, fewer di-
mensions of the individual channels will be estimated for
each user, which will result in shorter individual training
durations compared to a single-user case. However, by the
conservation of energy, the training signal power of a particular
user will be larger compared to the training signal power of the
same user in a single-user environment. Therefore, although
fewer dimensions of the channel are estimated, the channel
estimation error corresponding to those estimated dimensions
will be smaller.

Note thatµS
k is a function of onlyPtk

and Ttk
, both of

which will be chosen to maximize the sum-rate of the data
transmission phase. The value ofTtk

determines the total
number of available parallel channels for userk, and the
value of Ptk

determines the number of channels that will be
estimated. The parametric values ofPtk

and Ttk
will appear

in the sum-rate formula in the next section.
Before moving on to the next section, we will state the

eigenvalues of the covariance matrices of the estimated chan-
nel vector, and the channel estimation error vector for all
users. This derivation is similar to the single-user case, and
can be found in [12], [13]. The covariance matrix of the
channel estimation error of userk can be found as̃Σk =
UΣk

(

Λ−1
Σk

+ ΛSk

)−1
U

†
Σk

, where the eigenvalues are given
as λ̃Σ

ki = min
(

λΣ
ki, µ

S
k

)

. Similarly, the covariance matrix
of the estimated channel of userk can be found using the
orthogonality principle aŝΣ = ŪΣ

(

Λ̄Σ − Λ̃Σ

)

Ū
†
Σ, where

the eigenvalues are given asλ̂Σ
ki = min

(

λΣ
ki − µS

k , 0
)

.

B. Data Transmission Phase

The sum-rate of a multiple access channel can be derived
using the stacked channel and input matrices,

r =

K
∑

k=1

Ĥkxk +

K
∑

k=1

H̃kxk + n = Ĥx̄ + H̃x̄ + n (9)

whereĤ = [Ĥ1, . . . , ĤK ], H̃ = [H̃1, . . . , H̃K ] arenR×KnT

dimensional, and̄x = [x†
1, . . . ,x

†
K ]† is KnT × 1 dimensional.

Although the optimum input distribution is not known, we can
achieve the following lower bound with Gaussianx̄ [10],

Csum
lb = I(r; x̄|Ĥ) = E

[

log
∣

∣

∣
I + R−1

H̃x̄+n
ĤQ̄Ĥ†

∣

∣

∣

]

(10)

whereRH̃x̄+n is the covariance matrix of the effective noise,
H̃x̄+n, andQ̄ = E[x̄x̄†]. Since the inputs for different users
are independent from each other,Q̄ is a block diagonal matrix,
havingQk in its diagonals with tr(Qk) ≤ Pdk

. As a result, we
haveH̄Q̄H̄† =

∑K
k=1 HkQkH

†
k. In addition, the covariance

of the effective noise can be calculated as

RH̃x̄+n
= I + E

[

H̃x̄x̄†H̃†
]

= I +

K
∑

k=1

E
[

H̃kQkH̃
†
k

]

(11)

From [12], [13], we know thatE
[

H̃kQkH̃
†
k

]

= tr(QkΣ̃k)I.
Since our goal is to find the largest lower bound, i.e., the
largest achievable rate with Gaussian signaling, we maximize
(10) over the entire block

Rs = max
(Qk,Ptk

,Ttk
)∈Sk

tr(Qk)≤Pdk
,∀k

T−Tt

T
E

[

log

∣

∣

∣

∣

∣

I+

∑K
k=1 ĤkQkĤ

†
k

1+
∑K

k=1 tr(QkΣ̃k)

∣

∣

∣

∣

∣

]

(12)

where Sk =
{

(Qk, Ptk
, Ttk

)
∣

∣

∣
tr(Qk)Td + Ptk

Ttk
= PkT

}

,

and the coefficientT−Tt

T reflects the amount of time that is
spent during the training phase. Note that the maximizationis
over the parameters of all users, where userk has the training
parametersPtk

, andTtk
, and the data transmission parameter

Qk, which can be decomposed into its eigenvectors, i.e., the
transmit directions, and eigenvalues, i.e., powers along the
transmit directions.

1) Transmit Directions: When the CSI at the receiver is
perfect, [7] showed that the eigenvectors of the transmit covari-
ance matrix of each user must be equal to the eigenvectors of
the channel covariance matrix of that user, i.e.,UQk

= UΣk
.

In other words, single-user transmit directions strategy is
optimum in a multi-user setting as well. In the following
theorem, we show that this is also true when there is channel
estimation error at the receiver.

Theorem 2: Let Σk = UΣk
ΛΣk

U
†
Σk

be the spectral de-
composition of the covariance matrix of the channel of user
k. Then, the optimum transmit covariance matrixQk of user
k has the formQk = UΣk

ΛQk
U

†
Σk

.
Using Theorem 2, we can write the optimization problem

in (12) as,

Rs = max
(λ

Q
k

,Ptk
,Ttk

)∈Pk

k=1,...,K

T−Tt

T
E

[

log

∣

∣

∣

∣

∣

I+

∑

k

∑nT

i=1 λ
Q
kiλ̂

Σ
kiẑkiẑ

†
ki

1+
∑

k

∑nT

i=1 λ
Q
kiλ̃

Σ
ki

∣

∣

∣

∣

∣

]

(13)

wherePk =
{(

λ
Q
k , Ptk

, Ttk

)
∣

∣

∣

(

∑

i λ
Q
ki

)

Td + Ptk
Ttk

=PkT
}

,

λ
Q
k = [λQ

k1, . . . , λ
Q
knT

], andẑki is annR×1 dimensional i.i.d.,
zero-mean, identity-covariance Gaussian random vector.

2) Power Allocation Policy: For a MIMO-MAC system
with perfect CSI at the receiver and partial CSI at the trans-
mitters, [6] proposes an algorithm to find the optimum power



allocation policy. However, the existence ofPtk
andTtk

here,
violates the symmetry in [6], and changes the form of the
objective function. Therefore, in this paper, we modify the
algorithm in [6] so that the new algorithm finds the optimum
Ptk

andTtk
as well as the powers along the transmit directions.

By plugging λ̂Σ
ki and λ̃Σ

ki into (13), and choosingλQ
ki = 0,

for i = Jk + 1, . . . , nT since they do not contribute to the
numerator, we get

Rs =max
T−Tt

T
E

[

log

∣

∣

∣

∣

∣

I+

∑

k

∑Jk

i=1λ
Q
ki(λ

Σ
ki−µS

k )ẑkiẑ
†
ki

1+
∑

k µS
k Pdk

∣

∣

∣

∣

∣

]

(14)

where the maximization is over the same set as in (13). In (14),
the parameters of the optimization problem are the powers
of all usersλ

Q
k1, . . . , λ

Q
kTtk

along the transmit directions, the
training signal powersPtk

, and the training durationsTtk

of all users. Solving for all these variables simultaneously
seems intractable. Therefore, we propose a Gauss-Seidel type
algorithm that solves (14) iteratively over the users as in [6].
When updating the parameters corresponding to userk, those
of the rest of the users are fixed. The optimization problem
corresponding to an update of each user becomes

Rk
s =max

T−Tt

T
E

[

log

∣

∣

∣

∣

∣

Φ+

∑Jk

i=1λ
Q
ki(λ

Σ
ki−µS

k )ẑkiẑ
†
ki

φ+µS
kPdk

∣

∣

∣

∣

∣

]

(15)

where Φ = I +
P

K
l 6=k

PJl
i=1 λQ

li
(λΣ

li−µS
l )ẑliẑ

†

li

1+
P

K
l=1 µS

l
Pdl

, and φ = 1 +
∑K

l 6=k µS
l Pdl

. We note that for any pair (Ptk
, Ttk

) that results
in Jk < Ttk

, we can find another pair (Ptk
, T

′

tk
) that results in

a higher rate, and therefore it is sufficient to search over those
(Ptk

, Ttk
) pairs that result inJk = Ttk

, with an additional

constraint ofPtk
>

∑Ttk

i=1

(

1
λΣ

Ttk

− 1
λΣ

i

)

, which guarantees

that, using the pair(Ptk
, Ttk

), all Ttk
channels are filled, i.e.,

Jk = Ttk
.

The parameters that we want to optimize (15) over are
discrete valuedTtk

, and continuous valuedPtk
, and λ

Q
ki,

for i = 1, . . . , Ttk
. Since, for every value ofTtk

, both the
coefficient in front of the expectation, and the number of terms
in the sum in the numerator of (15) are different, the form of
the objective function is also different. SinceTtk

is discrete,
and1 ≤ Ttk

≤ nT , we can perform an exhaustive search over
Ttk

and solvenT reduced optimization problems with fixed
Ttk

in each one. Then, we take the solution that results in the
maximum rate, i.e.,

Rk
s = max

1≤Ttk
≤nT

R
kTtk
s (16)

whereR
kTtk
s is equal to (15) with a fixedTtk

. While solving
for the inner maximization problem, we definefki(Ptk

) =
λΣ

ki−µS
k

φ+µS
k

Pdk

, for i = 1, . . . , Ttk
. In this case, the inner optimiza-

tion problem becomes

R
kTtk
s = max

(λQ,Pt)∈RkTtk

T−Tt

T
E



log

∣

∣

∣

∣

∣

∣

Φ+

Ttk
∑

i=1

λ
Q
kifki(Ptk

)ẑkiẑ
†
ki

∣

∣

∣

∣

∣

∣



(17)

In the optimization problem in (17), we haveTtk
+1 optimiza-

tion variables,λQ
k1, . . . , λ

Q
Ttk

, andPtk
. The KKT conditions for

the optimization problem in (17) can be written as

Td

T
fki(Ptk

)E
[

z
†
kiB

−1zki

]

≤ µkTd, i = 1, . . . , Ttk
(18)

Td

T

Ttk
∑

i=1

λ
Q
kiE

[

z
†
kiB

−1zki

] ∂fki(Ptk
)

∂Ptk

= µkTtk
(19)

whereB = Φ +
∑Ttk

i=1 λ
Q
kifki(Ptk

)ẑkiẑ
†
ki, µk is the Lagrange

multiplier, and the equality of the last equation follows from
the complementary slackness condition. Note that when the
optimum λ

Q
ki is non-zero, the corresponding inequality in

(18) will be satisfied with equality. Therefore, we pull the
expectation terms from (18) for those equations with non-
zeroλ

Q
ki’s, and insert them into (19). Since those indices with

λ
Q
ki = 0 do not contribute to (19), we have

Ttk
∑

i=1

λ
Q
ki

f ′
ki(Ptk

)

fki(Ptk
)

=
Ttk

Td
. (20)

Now, we have a fixed-point equation which does not include
any expectation terms. We can use this to solvePtk

in terms of
λ

Q
ki ’s. Using our single-user results in [12], [13], we propose

the following algorithm that first solvesPtk
(n + 1) from

Ttk
∑

i=1

λ
Q
ki(n)

f ′
ki(Ptk

(n + 1))

fki(Ptk
(n + 1))

=
Ttk

Td
(21)

and then, updatesλQ
ki(n + 1) using

λ
Q
ki(n+1)=

λ
Q
ki(n)fki(Ptk

(n+1))E
[

z
†
kiB

−1zki

]

Pdk
(n)

∑Ttk

j=1λ
Q
kj(n)fkj(Ptk

(n+1))E
[

z
†
kjB

−1zkj

] (22)

wherePdk
(n) =

(PkT−Ptk
(n+1)Ttk

)

Td
. This algorithm finds the

solution of (17), whenTtk
and the parameters of the rest of the

users are fixed. We runnT such algorithms simultaneously for
userk. The solution of (15) can be found by taking the one
that results in the largest rate. Now, we knowλQ

k , Ptk
, Ttk

,
that maximize (15). We then move to another user, and solve
(17) for this user, and in this manner we iterate over the users
in a round-robin fashion. Finally, round-robin algorithm gives
us the optimum parameters of all users that maximize (14).

As a result, throughPtk
, we find the power allocation of

userk over the training and data transmission phases. Through
Tt =

∑K
k=1 Ttk

, we find the optimum allocation of time over
the training and data transmission phases. Through Theorem2,
we find the optimum transmit directions of userk, and through
λ

Q
k1, . . . , λ

Q
Ttk

, we find the allocation of data transmission
power of userk over these transmit directions. Finally, the
optimum training signal of userk, Sk, is determined by the
optimumTtk

andPtk
through Theorem 1.

IV. N UMERICAL ANALYSIS

Analytical proof of the convergence of this algorithm seems
to be intractable for now. However, in our extensive sim-
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Fig. 1. The convergence of the multi-user algorithm withnT = nR = 3, 20 dB total average power andT = 10: (a) convergence for user 1; (b) convergence
for user 2; convergence for user 3 is similar and omitted heredue to space limitations.

ulations, we observed that the algorithm always converges.
In Figure 1, we considered a system ofK = 3 users with
nT = nR = 3, all having moderate power,P = 20 dB, and
moderate block length,T = 10. Each iteration in Figure 1,
corresponds to solving (15) for one of the users, while the
parameters of the rest of the users are fixed. We observe
that, all users estimate only one dimension of the channel.
Therefore, total training duration isTt = 3 symbols.

We observed through extensive simulations that for a large
set of channel eigenvalues, total available power and the block
length, all users estimate only one dimension of the channel. In
order to estimate a second dimension, either very large levels
of power or a long enough coherence time is needed. We
refer the reader to [18] for further simulation results, which
we cannot show here due to space limitations.

V. CONCLUSIONS

We considered a block-fading MIMO-MAC, where the re-
ceiver has a noisy estimate of the channel and the transmitters
have partial CSI. Each transmission block is divided into
a training phase and a data transmission phase. During the
training phase, we showed that the users should send non-
overlapping training signals. During the data transmission
phase, we formulated an optimization problem to maximize the
achievable sum-rate jointly over the training signal durations
of all users, the training powers of all users, and the transmit
covariance matrices of all users. We proposed a multi-user
algorithm that solves the problem iteratively over the users
in a round-robin fashion, by utilizing a single-user algorithm
similar to the one proposed in [12], [13], for an update
of each user. Although the theoretical convergence proof of
the proposed algorithm remains as open problem, through
extensive simulations, we observed that the proposed algorithm
always converged.
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