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Abstract—The reliable and efficient transmission of high- conserve computational resources on network switches, as il-
quality variable bit rate (VBR) video through the Internet |ystrated in Fig. 1. Such systems will likely not have complete
generally requires network resources be allocated in a dynamic yng\ledge of the network state, and must therefore make their

fashion. This includes the determination of when to renegotiate for - . o
network resources, as well as how much to request at a given time. use of network resources as minimal as possible to maintain a

The accuracy of any resource request method depends critically 9iven QoS. If a source requests more bandwidth than it actu-
on its prediction of future traffic patterns. Such a prediction can ~ ally uses, the overall network utilization drops. Conversely, if
be performed using the content and traffic information of short  the source exceeds its bandwidth request, packet loss and delay
video segments. This paper presents a systematic approach toyj|l become significant. While off-line systems could compute
select the best features for prediction, indicating that while content the exact dynamic bandwidth requirements for a stream before
is important in predicting the bandwidth of a video bit stream, the transmittina it. on-line processina is desirable in many aoplica-
use of both content and available short-term bandwidth statistics g p - 9 ; . y app

can yield significant improvements. A new framework for traffic ~ tions. Systems such as V|d90_ conferencmg and ||Ve_ r_1ews-on.-de-
prediction is proposed in this paper; experimental results show a mand absolutely require on-line processing. In addition, on-line

smaller mean-square resource prediction error and higher overall processing is needed in any system that dynamically transcodes

link utilization. video, or that splices and combines segments in an interactive
Index Terms—Bandwidth prediction, dynamic resource alloca- manner. To keep delay and computational requirements low, the
tion, multimedia over IP, neural network (NN), VBR video. information used to make bandwidth decisions should be di-

rectly available from the compressed video stream. The overall
goal is to have a resource management system that can accu-
rately estimate the required bandwidth in real time.
T RANSMISSION of digital video and other multimedia No one-time bit rate allocation will provide loss-free VBR
information over the Internet is becoming increasinglyigeo transmission with high utilization and low delay. For
important. Applications such as video conferencing and mulf{pEG-1 and MPEG-2 streams, the bit rate variations can be
media streaming have the potential to transform both Iearni[]g to an order of magnitude and occur on two different time
and entertainment worldwide. The high bandwidth of digitajcales. The shorter time scale corresponds to the duration of
video, one of the key components of most multimedia sourcege group of pictures (GoP); the variation is due to the fact that
requires careful management of network resources in ordefid@acoded frames (I-frames) generally require more bits than
keep utilization high while preserving any quality of servicgynward predicted frames (P-frames), which in turn require
(QoS) requirements. Variable bit rate (VBR) video, which imore bits than bidirectionally predicted frames (B-frames).
general offers improved perceptual quality for a given averag@e prief spikes in traffic caused by I-frames are generally not
bit rate, presents a particular challenge in time-varying resoutggroblem for networks; as most MPEG compressors produce
allocation. only about two or three I-frames per second, a small buffer can
Bandwidth allocation and management for individual streamgjequately smooth the traffic if some delay is tolerable. The
generally must be done at teelgesof the network, in order to |ong-term variation is brought about by the changes in semantic
content of different shots and scenes. Such bandwidth changes
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Fig. 2. Proposed resource allocation structure, containing two subsystems: 1) determination of renegotiation points (Section Il) and 2) regneéatisith
(Sections Il and IV). Section Il describes the feature extraction and temporal segmentation, Section Il details the feature selection &mdreetioals
used in training, and Section 1V describes our NN-based per-interval traffic predictor.

taining traffic characteristics, then RESV messages containingl. DYNAMIC RESOURCERENEGOTIATION FORVBR VIDEO
resource reservation requests are forwarded from the receive

along a reverse pa_th. In the context O.f QoS-g_uarantee_d netw85 dwidth undergoes both short- and long-term changes, in re-
communication, it is crucial to quantify the video traffic char- ction to the complexity—and therefore, compressibility—of

acteristics as precisely as possible (no matter what protocol,1S : : .
) L . .~ _the underlying video. Allocating a constant amount of band-
being used). Such quantification generally involves prediction . o
! width for a VBR stream will lead to one of the following:
of future and/or long-term traffic patterns because the frequency  ~— =~
of reservation adjustment is limited in practice. 1) inefficient use of network resources, due to over-allo-
This paper proposes a new resource allocation framework,  ¢ated bandwidth, OR . o
making use of content as well as short-term traffic statistics 2) & requirement of large endpoint (and possibly internet-
and achieving better prediction accuracy than content- and  WOrK) buffers, causing variable delay proportional to the
traffic-only approaches. Its overall structure is shown in Fig. 2, ~ cOmplexity of the most recent frames.
which also serves as a road map of the paper. In Section!n, order to obtain high network utilization and low delay,
we shall discuss two major issues of dynamic resource reifee bandwidth requests made by the VBR source must be
gotiation and several candidate features that can be ugesdiodically renegotiated. Conventional approaches renegotiate
for predicting video traffic. Approaches for the selection ofesources according to changes in bit stream level statistics [3].
relevant features are presented in Section Ill. Based on ihethese approaches, it is common to use a parametric model
feature selection, we propose a new neural network (NI&) predict future traffic, as described in [4] and [5]. Content-
traffic predictor in Section 1V, and demonstrate its effectivenetssed approaches have been introduced, motivated by the
in improving network utilization. Conclusions and possibl@igh correlation between long-term traffic characteristics and

research directions are described in Section V. video content [6], [7]. Our study shows that while content is

s mentioned above, the hallmark of VBR video is that its
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shots [7]. Within a single shot, the traffic characteristics are rel-
atively constant.

There exist many approaches to finding shot boundaries in the
compressed domain [8]. For simplicity, we consider only abrupt
transitions in this paper and adopt the compressed-domain cut
detector described in [9]. This method uses a windowed relative
threshold on the sum of absolute pixel differences

dy = Z |z (2, J) — zr—1(4, J) 1)
- (%]
1 t 1 time where thex, (7, 7) is the first-order estimate of the DC pixel
R_—'V—t. “on Point (¢, 7) in framek. As discussed in [9], DC frame estimations
enegotiation Foifs can be easily computed from the compressed data. This cut de-
Fig. 3. lllustration of the two issues in dynamic resource allocation: choice [‘)?Ctlon scheme allows for fast, on-line computation of renegoti-

renegotiation points and how much bandwidth to request at each point, in orééton points.
to track the source’s requirements as closely as possible.

{

Reserved
Bandwidth

14

B. Bandwidth Requests Per Interval

a major factor controlling the bandwidth, content alone may_After selecting renegotiation points, the next _step is to c_ieter-

not be sufficient in predicting future traffic and in determiningnine how much resource to request for each interval without

resource requests. introducing significant delay. For natural renegotiation points
In studying the dynamic nature of resource requiremeriych as shotboundaries, past shots’ traffic generally cannot help

in VBR video, we shall look at the two issues illustrated i determining how much resource to request as the traffic pat-
Fig. 3: tern has changed. Exact traffic information for the new video

shot can be obtained by measuring every frame between the cur-

1) atwhat points the bandwidth resource should be renquht and the next renegotiation point, and using this as a basis

tiated, and . . . . .
2) how much bandwidth resource to ask for at any giv frc1)r the resource request. This is possible in an off-line situa-
point Y 9VEIHn where the future video is available, but is not suitable for

real-time applications because significant delay will be intro-
. o . duced (particularly if the shots are long). With the requirement
A. Bandwidth Renegotiation Points of on-line processing in mind, one can predict the traffic for the

Whenever the traffic characteristics of the transmitted VB@ntire shot based on an observation of the first few frames. This

stream change dramatically, the requested bandwidth shol§id!ustrated in Fig. 4, where the shaded areas indicate obser-

be renegotiated. A tradeoff in overhead must be consideré(a,tion periods. Renegotiation is performed after the short-term
E‘I;eservation, and if granted, the video will be transmitted using

however: if the renegotiation is too often (say, every frame | d bandwidth. (Ifth i . ted. th
the request and negotiation packets themselves will be a signif= newly reserved bandwidth. (If the request is not granted, the

icant source of traffic. In addition, the renegotiation processééjsunrf;lg?gfn:tt?é?ﬂ;?ttr::rf.goldeesr; \)/II(\jI(ce)(t)el?hZ;dtﬁ;tgt:Ist(alptg
likely involves delay itself, and is limited by the available’ Wi ng ' v

computational power. Renegotiating too infrequently leads g(?n Wi" iqevitably introduce some d_elay in renegot.iatic_)n, but
' o We video itself may be transmitted without delay, as in Fig. 4(a).

) : o ith this approach, unexpected bursty traffic during the shaded
and .possmly wasted expense, if bandwidth is not a free Co%riods caaponly be acc?)mmodatedyby adding e?dra capacity
modity. ) o ) o _ to network buffers. For short-delay tolerable applications, the

The on-line determination of bandwidth renegotiation POIN{S a0 may be transmitted withtasecond delay, as in Fig. 4(b),
in VBR video generally falls into one of three categories: 1) dey, that the video traffic is always within the bounds of the ne-
terministic, 2) traffic-based, and 3) content-based. Determmg(—)tiated agreement. While our approach can be applied to both
tically setting the renegotiation points is the simplest_ metho elayed and nondelayed transmission, the performance of de-
bandwidth requests are made everjrames, where: is an |ayed transmission is better. In this paper, we shall focus on the
empirically determined balance between request overhead @%yed transmission case.
correlation of frame bit rates. Traffic-based renegotiation, men-a content-based approach to per-interval prediction has been
tioned above, occurs when the stream violates a previously RPoposed by Bocheckt al, consisting of training and testing
gotiated bandwidth request, or when utilization drops belogtages [7]. In the training stage, content features are quantized
some level. Although traffic-based renegotiation tracks the reato a small number of levels (e.g., slow/medium/fast motion),
bandwidth more closely, a single complex frame can cause #d every possible combination of significant features is labeled
requested bandwidth to remain elevated for some time, eved one content class for which the typical traffic pattern is com-
successive frames require few bits. A more “natural” set of rengated. After training, the content class of each shot in the test

gotiation points is the set of shot boundaries in the video stream,. ,
1if a shot has a sudden change in content features, the change can be con-

By StUdy'ng the F"ts used per frame in VBR Y'dgo' one sees trl"FHered a boundary as far as renegotiation is concerned. For simplicity, we will
the most dramatic changes occur at the beginning of new camignare such intrashot “boundaries.”
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Fig. 4. Two methods of handling the delay caused by short-term content and traffic observations: (a) delivery without delay but before retaigediatare,

and (b) delivery with¢-second delay. The-second delay includes the time spent on observation (shaded interval) and on renegotiation. Under scheme (a), large
network buffers may be needed to smooth any unexpected traffic bursts between the interval boundary and successful bandwidth resegotiatdater. For
short-delay tolerable applications, scheme (b) achieves better performance because the video traffic is always within the bounds of thagregotieted

video is identified by extracting the same features, and the typcl;‘_'mmaﬁ‘/e arrival Bu+(t)
ical traffic pattern of that class is taken as the predicted traffic forP1ts) / Bur(t)
the shot. We notice some potential weaknesses of this approac x

*

A1)

First, the specific prediction structure via classification can only
feasibly incorporate a limited number of coarsely-quantized fea
tures. Also, prediction based only on content may not be appli
cable for video streams produced with different encoding algo
rithms or parameters. Finally, some useful and readily availabli
information, such as the exact bandwidth statistics of the vide:
in the observation period, are not incorporated.
In order to alleviate these weaknesses, we take a more genel |
approach by using a NN with nonquantized features to predict
long-term traffic. Both short-term traffic and content are corrig. 5. lllustration of the D-BIND traffic descriptori (0, t) is the cumulative
sidered as candidate inputs to be used for prediction. Before §jféva! in the interva(0. 7], 5" (#) is the empirical envelope of all[r, 7 +1].
. (t) is any piecewise-linear bounding function Bf (¢), andByy, (t)is
address how to evaluate the relevance of each candidate to trg#fiGigntest such function.
prediction, we shall discuss the traffic descriptors that we use to
quantify both the long-term traffic to be predicted and the ohs ~ _
served short-term traffic to be used as the candidate predictorJrl?’]F—.
: : is des
puts. We also describe 14 compressed-domain content featu
each of which has the potential to influence traffic and will b

Qir

i tk time interval

{(7’k, tk)|]<: = 1,2 ..., p}, wherer;, = Qk/tk-
criptor captures both the short-term burstiness and the
Ir(?ﬁc’g—term traffic characteristics of a video segment, while being
used as a candidate prediction input ?elativelysimpleto impIement_in admission con'trc.JIa.md policing.

' We use the D-BIND descriptor and deterministic service in

b 1) Video Trgffflcl.?estcrlpt(;rs:Man¥htraﬁ|c deicrltptors dhave our experiments, though the proposed framework is applicable
€en proposed in fiterature. Among them, peak rate an aver%geother descriptors and policies. Fixing., ..., t,], the

rate are two very simple ones, but they do not capture the tra CBIND descriptor is simply a vectofry, ..., r,]. When a

pattern over different time scales. To overcome this proble teo segment is short, only the first several D-BIND elements

Knightly et al. proposed the_deterministic b‘“ﬂr!diﬂg inter_va an be reliably computed. Therefore, we choesehrough
depgndent (D-BIND) descriptor for deterministic service, of the short observed traffic as candidate inputs for traffic
providing a performance_ guarantee for the yvprst case [19]- T A?ediction. When describing the entire shot, the dimensionality
D-BIND model is essentially a vector containing the maximu

lowed arrival rate for intervals of vari lengths. It is defin f D-BIND is large and the prediction complexity goes up.
allowed arrivai rate for Intervals otvarious 'engths. IS Aelineg, ., o, jncrease is rather wasteful as there is redundancy in
as follows: letA[r, 7 4+ ¢] be the cumulative number of bits

o . . L . the D-BIND vector. For exampley, is close to the average bit
arriving during thet-length interval beginning at time. The Pl g

tiahtest bound It lled teenpirical lobei rate for all largek. In order to remove the redundancy and to
Ightest bound over all ime, calle pirical envelopas reduce prediction complexity, we apply principal component

B*(t) = sup A[r, 7+ 1]. (2) analysis (PCA) [11] on D-BIND and use the firat principal
g components as the desired predictor output. More specifically,
A piecewise-linear bounding functiomy,. is constructed, we estimate the covariance matdix of the D-BIND vectors
whereWr = {(qx, t)|k = 1, 2, ..., p}isthevector of [bit [r, ..., r,] from training video shots. The eigenvalugs; }
arrival, interval] pairs. Given a set of, the tightest bounding and the corresponding eigenvectdes } of the estimated co-
function is denotedBy;, , as shown in Fig. 5. The D-BIND variance matrix are computed and sorted, de.> Ay > - -,
descriptor is usually expressed in terms of arrival rates, i.andi,,@ = A\g; fori =1, ..., p. Thejth principal compo-
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nent of a given D-BIND vectojr, . .., 7,] is the projection of corresponds to having roughly equal values in each bin, so we
the D-BIND vector onto thgth eigenvector use the variance over these five bins as a candidate feature. An
alternative way of measuring the coverage of the motion predic-

a =, -, Tf’]ﬂ' ®) tion over the new frame is to compute the spatial variance of the

2) Content Featuresimage complexity and motion havemotion vector magnitudes
been suggested by Bocheekal. as significant features related

to video traffic [7]. Keeping in mind the requirement of efficient var (||jmy||) = Z lmy (i, j ||2

on-line processing, we extract fourteen features related to

complexity and motion by processing the video in the com- 2
pressed domain. This set of content features is likely more than (1 Z Ilms(i, 7)]] (5)
necessary, but we will rely on the selection methods in the next M 2] ’

section to weed out redundant features. Other features could be - ) ] ]
incorporated as well, if they have a high relevance to traffic. In addition, the spatial variances of th@ndy motion vector

The spatial “complexity” of the I-frames is intuitively theComponents, as well as their cross covariance, are calculated
dominant factor determining a stream’s resource requirements, 2
because the number of bits required to encode the frame is
directly dependent on the energy compaction provided by the var (m,) M ka i) M ka i)
DCT and the compaction is less dense in blocks with edges or 6)
complex textures. In order to estimate complexity, we compute
the weighted sum of the magnitudes of AC coefficients in
the frame (DC coefficients are differentially encoded, so high  var ( ka i, j) ka i, )
DC magnitudes do not exact much penalty in traffic). Any
weighting pattern giving more weight to higher frequency DCT 7
coefficients could be used; we chose to weight coefficients 1
according to the sum of their frequencies in each dimensioov (mx, , M, ) = i ka (4, J)yma, (4, J)
(the L, distance from the DC coefficient). i)

Motion vector magnitudes can dramatically effect the re- 1
sources required by predicted P- and B-frames; for simplicity e kar (4, 4) kay (6, 7). (8)
we shall consider only the forward predicted frames. Higher J J
magnitudes mean more intense motion, and consequently mpireally, as we are only able to observe the very beginning of
correction will likely be needed in the residue frames aftaxach new camera shot, the ways in which motion might change
motion compensation. Motion direction, for the most parthroughoutthe shot are important to estimate. Even if the motion
is irrelevant to traffic. We compute the mean motion vectanagnitude is small in the first few frames, it can be large later

2

magnitude, for the whole frame, as follows: in the shot, requiring more bandwidth to represent. To make
1 o this effect more manageable, we measure the object and frame
vl = i Z [ TACANI| (4)  acceleration in two ways. First, motion vectors from adjacent

predicted frames are subtracted to form acceleration vectors, of
whereM is the number of macroblocks in the video frame andhich we take the mean magnitude
my (i, j)is framek’s forward motion vector for the macroblock

(4, 7). In order to identify segments with strong motion in part [Jaccel]] = Z llmye(é, ) — my—1 (4, J)Il - 9)
of the frame, but not the entire frame, we also compute the value
of (4) for each of four spatial quadrants. A high value for this mean indicates that the motion in the video

The coding efficiency of predicted frames can also be meia-not simple, and that the residue frames will become increas-
sured by counting the number of intracoded blocks in the framiegly complex (thus requiring more bits). The second candi-
areas that could not be adequately predicted from previatate acceleration feature places greater emphasis on changes in
frames must be encoded again, at some expense in bandwisieed, rather than changes in direction
The fraction of P-frame macroblocks that must be intracoded, _______
instead of intercoded, therefore is another candidate feature. A [lmll = - Z ([P (e, DI = g (@, I . (20)

Motion compensation is less efficient if the object or frame i
motion is not “simple,” meaning that more correction must be The 18 candidate predictor inputs (14 content plus four
applied in the residue frames if different macroblocks’ motiotraffic) are summarized in Table I. None of the 14 content
vectors point in radically different directions. We measure tHeatures requires full decompression of the VBR stream to
motion complexity in a number of ways, and rely on the feawompute; in MPEG-1 and MPEG-2, the amount of computation
ture selection process to find the ones most important to traffequired is quite low. There is, however, significant redundancy
prediction. First, we form a simple directional histogram of thim these features, and not all may be highly relevant to traffic
motion vectors, in which each intercoded macroblock’s motigerediction. The importance of selecting the relevant subset
vector is classified into five bins: up, down, left, right, or zerofrom the original feature set is closely related to tlese of di-
according to the dominant axis of the vector. Complex motianensionalityproblem in function approximation, where sample
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TABLE |
CANDIDATE CONTENT AND TRAFFIC FEATURES TOUSE IN PER-INTERVAL TRAFFIC PREDICTION

Feature | Description H Feature | Description
1 I frame complexity 10 Mean MV magnitude, lower-right
2 Mean MV magnitude 11 Var. of MV z components
3 Var. of MV directional histogram 12 Var. of MV y components
4 Fraction of intracoded MB’s 13 Cov. of MV z and y comp.
5 Mean magnitude of accel vectors 14 Var. of MV magnitudes
6 Mean change in MV magnitudes 15 Short-term D-BIND r;
7 Mean MV magnitude, upper-left 16 Short-term D-BIND r,
8 Mean MV magnitude, upper-right 17 Short-term D-BIND rg
9 Mean MV magnitude, lower-left 18 Short-term D-BIND r4

data points become increasingly sparse when the dimensionThe simplest way to construct the subset is to select all the
ality of the function domain increases, such that the finite spossible combinations of features from the original Bete-
of samples may not be adequate for characterizing the origicahstruct the mapping for each of these combinations, and
mapping [12]. In addition, the computational requirement then evaluate the approximation accuracy using a set of sample
usually greater for implementing a high-dimensional mappingoints. However, this approach is usually not feasible due to the
To alleviate these problems, we reduce the dimensionality lafge number of possible feature combinations, which amounts
the input domain in the next section by choosing a relevataizf:i:l(f:i) = 2N — 1 for the N features inF'. Previous at-
subset of features from the original set. tempts to perform efficient sampling of this large combination
include the adoption of genetic algorithms [16] where a popula-
tion of subsetd™ are generated and evaluated on the basis of the
lll. FEATURE SELECTION FORTRAFFIC PREDICTION proximity of their associated functioggo the original mapping

There exist several popular feature selection algorithn‘fgon a set of sample points. Those subsets resulting in a good

. . . approximation are retained in the population and allowed to pro-
which can roughly be grouped into linear methods and non*t™ - . . :
. . . __ceed into the next generation, while unsatisfactory subsets are
linear methods. Linear methods are normally mathematica : ; :

L L removed from the population. New subsets in the population are
tractable and efficient; for example, principal componer) ; . :
then generated by slightly perturbing the successful subsetsin a

analysis is one of the best choices in transform-domain featyre - way. Although this approach does not require the eval-

selection in the linear or minimum mean squared error (MSE tion of all the possible combinations, it may still take many

SENse. However, the nonh'neanty inherent In content's effects §Bnerations before a truly relevant feature subset emerges from
traffic prompts us to consider methods which select features:tmE population

a nonlinear fashion in order to achieve improved performance.1g f,rther complicate this problem, the mappipgssoci-
In this section, we first propose the adoption of an efficienfieq with each subset is usually not available in an analytical
nonlinear one-pass selection procedure, the sequential forwgygh, and numerical approximations in the form of iterative al-
selection (SFS) method [13], and a specialized NN model, thgyithms are required to reconstruct the mapping. For example,
general regression neural network (GRNN) [14], [15], for thg common approach for function approximation is to adopt an
purpose of selecting the relevant features for traffic predictiogtificial NN model to represent the mapping, where the sample
We then discuss some limitations of GRNN as the numbggints from the original function are considered as training ex-
of selected features grows, and adopt a consistency-baggshles for the network. In particular, the multilayer perceptron
selection as a complementary approach. with the associated back-propagation (BP) training algorithm
Formally, we denote the original set wifki features as the is often used for such a purpose [12]. Due to the large number
indexsetr’ = {1, ..., N} and letS be the number of predicted of training iterations required to determine the network weights
guantities. Our purpose is to approximate the original mappiagd the generally slow convergence rate, BP will further accen-
f: Er ¢ RN — R”, wherexp = [z1, ..., zn]7 € Ep tuate the difficulties in evaluating the relevancy of a potentially
are the vectors in the input domain, using the alternative mdprge number of candidate subsets.
pingg: Er» ¢ RM — RS, whereF’ = {i, ..., iy} C In summary, to allow effective identification of the rele-
F is the relevant feature subset wifi < N, andxy = Vvant feature subsets, a potential algorithm should satisfy the
[@irs ..., Tiy )t € Ep are the vectors in the associated fundollowing criteria:
tion domain. To achieve this, the subgéthas to be chosenin 1) To represent an efficient but possibly suboptimal ap-
such a way thaf (xr) =~ g(xp) for everyxy € E and the proach to sample from the space of possible feature
associatecky € Ep. subsets such that candidate subsets which characterize
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the original mapping with reasonably good accuracy can Network Output y
be quickly identified.

2) To represent an efficient but possibly approximate ap-
proach for evaluating the relevancy of individual candi-
date subsets without requiring iterative identification of
the underlying mapping.

Due to the difficulties of the previously described approaches
in fulfilling these two conditions, we propose the adoption of
alternative approaches which specifically address these two cri-
teria. For the first criterion, we propose the adoption of the SFS
method [13] for incrementally constructing the relevant subset
starting from a single feature. For this approach, a candidate
subset with reasonably good relevancy to the current problem
can be constructed rapidly without requiring the observation LNetwork Input x |
of a large number of possible subsets. For the second crite-
rion, we follow a two-step process: we first adopt the GRNNig. 6. General regression neural network (a special case of the RBF network)
[14] for evaluating the relevancy of the set of candidate subs&fdch is used in the implementation of the SFS. The centers and widths of

. . . € Gaussian kernels are deterministic functions of the training data; iterative
generated by SFS. Unlike the alternative multilayer perceptr@Rining is not needed.
model which requires iterative BP training, the parameters of

the GRNN model can be directly determined in a single passk suitability of each remaining feature in the complement set

training, which allows rapid evaluation of the individual featurg”  — p — £’ Suppose we denote’, = {i1, ..., in,} and
subsets in terms of their relevancies. However, whenthe number  — ;. . iy}. For each remaining featuig, j =
of selected features is large, the GRNN approximation errorjn 1 N, we form the new subsé’__ , . as follows:

the high-dimensional mapping becomes significant; this is evi- , , ) ) mLg

dentin Fig. 7, where the error increases after the sixth feature is mt1,5 = En Ui i=m+1, ..., N 12)
added. Since the confidence in the SFS/GRNN approach to fgge (mm 4 1)th relevant subset is then chosen from these candi-
ture selection diminishes around and beyond the minimum M$jfate subsets using the following criterion:

point, we adopt a complementary follow-up step, discussed in

/ L
Section IlI-C. As we will see in Section IV-A, the traffic pre- P = Gomgy o
diction error is small when using the features selected by thihere
two-step process as inputs to the prediction mechanism. j* = argmin D¢y o d=mEL N, (13)
J ety
A. Sequential Forward Selection (SFS) In this way, a nested sequence of feature subBgts ... C
The SFS procedure [13] allows construction of a suitable fefa can be constructed, and the associated performance mea-
ture subset starting from a single feature. Specifically, given tRereé valuesDr,, ..., Dp, indicate the relevancy of the cor-

original feature sef”, the SFS algorithm generates a sequené@Sponding subsets. As a result, we can select the subset con-
of subsetsF” ., N with associated cardinalities t2ining the minimum number of features and with its associated

mrm =0, . .
|F’ | = m. In other words, the original subset is incremendlscrepangy measure_lowerthan a prescribed threghold.

tally expanded to accommodate new features. To begin withAS ment'|oned preV|o.ust, one of the problems with the fea-
we require a measure to evaluate the relevancies of the cafidi€ Selection process is the necessity to reconsyfiict usu-
date subsets”, . For this purpose, we are usually given a set (ﬁlly_ by an iterative function approximation process, for the eval-
training data(xr. ,, y,), p = 1, ..., P for the desired map- uation ofDp; in(11). Inthe next section, we propose th(—; adop-
ping, wherexy , € Er C RN denotes each sample vector irfion o_ftthRNl\_l forrepresenting- . As aresult, only asingle
the input domain incorporating the full set of features. To evdferation is required to reconstrugt, for each subset;, al-
uate the relevancy of a particular feature sudget we con- 10wing rapid evaluation of their relevancies.

structa mappmgpyprwhmh minimizes a particular dlscrepancyB. SFS Implemented with General Regression Neural Network
measureDr;, =3 _, d(yp, gr; (Xr7,,,)) OVer the set of re- (GRNN)

duced dimension vectossy: , € Er C R™ corresponding _ .
to each of the full dimension vectoxs- ,. We can then regard  The GRNN [14], [15] can be considered as a special example

candidate forDy is the MSE layer units adopt the Gaussian kernel as the nonlinear transfer

function while the second layer consists of linear summation
1 <& ) units (Fig. 6). However, unlike conventional RBF networks
D, =5 > llyp = glxry I (11)  where the centers and widths of the Gaussian kernels are de-
p=t termined by iterative clustering procedures, the corresponding
Given the discrepancy measufg» and with the empty set  parameters in GRNN are represented as deterministic functions
assigned as the initial subsgy}, we generate thén + 1)th of the training data. In other words, no iterative training pro-
relevant subset from theth subset by individually evaluating cedures are required to reconstruct a mapginging GRNN,
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Fig. 7. Cumulative error plot for SFS/GRNN feature selection; the table shows which features are included after each SFS step. Minimum MSEastechieved
selecting six features, as indicated by an arrow. Our simulation study indicates that with feature selection order different from that listgdre this dropping

of MSE is less sharp. However, because of the increasing difficulties of characterizing mapping in high-dimensional space, the feature oetet beyond

the minimum may not reflect their actual importance, prompting the investigation of the alternative selection scheme for these featuresndientiesed|-C.

thus allowing rapid evaluation of the relevancy of differenthe original set of four short-term D-BIND features and 14 con-

feature subsets for our current problem. tent features in Table |, and use the GRNN to evaluate the rele-
To carry out function approximation using GRNN, we argancies of each feature subset. Thus, corresponding to the orig-
given a set of sample observatiofs,, y,),p = 1, ..., P inal set#', we have an associated collection of training samples

from the original function. We then associate each sample pofnt, y } where the input vectax is of length 18 with each com-
with a single Gaussian kernel in the first network layer, witponent being either a D-BIND feature or a content feature, and,
the input vectok,, assigned as the center of the kernel. In othéor each shot, the output vectpis two components are the prin-
words, there aré’> RBF units in the first network layer. For ancipal components of the long-term D-BIND traffic descriptor. A

arbitrary input vectorx to the network, the output of theth total of P training sampledx,, y,}, p = 1, ..., P are used
RBF unit is given by for the feature selection process. Using SFS, we construct the
T nested sequence of subsétsC --- C F{; and evaluate their
B, = exp [_ (x —%p)" (x — Xp)} (14) relevancies via GRNN. In general, the evaluation of a particular
202 GRNN model requires an additional test data set, since by con-

Nﬂruction the approximation error at each of the training samples
is negligibly small. In view of this, we adopt theave-one-out
method, which is a special case of the cross validation approach
[12], for evaluating the approximation error. For the cross vali-

P P dation approach, the training set wikthsamples is divided into

y= Z apYp, 0<a, <1, Z ap =1 (15) anestimation subsetwith’ samples for determining the model,

p=1 p=1 and a validation subset witR — P’ samples for validating the
model. The leave-one-out method represents a special example

of the above approach whefé = P — 1, such that the vali-
Bp _ P (16) datio_n set consist_s .of only.one sample. This is necessary when

ZP— 3 ’ P=L4 e the size of the trgmmg s_et is small t_o allow enough samples_ for

p=1Tp model construction. This process is repeated by successively

Intuitively, the GRNN performs interpolation by linearly com{eaving out each of thé” samples for validation and then av-

bining the given training outputg, using a set of adaptively eraging the associated error values.

determined coefficients. If the current input vectois close to Our experiments are performed on a 13175-frame video

one of the training inputx, in a Euclidean sense, the corre{about 7 min) digitized from cable television at 30 frames

sponding coefficienty, given by (15) will also become large, per second. The video consists of a fast-action documentary
and the estimated outpwgtwill be close to the associated func-segment from “The Oprah Winfrey Show” and clips of the ABC
tion valuey,, for x,,, which is a reasonable construction. On theeries “The Practice.” It is encoded via an MPEG-1 VBR coder
other hand, those sample points which are far away from the cwith fixed quantization step size, and the average encoding
rent input vector do not appreciably contribute to the summatioate is 2.1 Mb/s. Using the automatic shot boundary detection
due to the exponentially decaying weighting functign algorithm reviewed in Section II-A and feature extraction ap-
1) Experimental Results Using SFS and GRNNthis sec- proaches discussed in Section II-B, 177 shots are identified and
tion, we apply the SFS technique to select feature subsets frimatures are obtained. We plot the error values for each subset

whereo is a user-specified smoothing parameter. The GR
output which represents the estimated function valuexfos
given by the following convex combination:

where the coefficients,, are defined as follows:

Oép:
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L in Fig. 7. The numbers in the horizontal axis indicate the To overcome these weaknesses, we propose the following
total number of features selected after each SFS trial. The awaluation procedure, using a different way to determine traffic
companying table shows which features were included in eaglasses. In the first step, video shots are classifiedirtaffic
subsetF”, (cf. Table | for feature definitions). For example, theclusters based on a specific traffic descriptor. Classification can
fifth feature to be added is number 1, the I-frame complexitpe done byk-mean, E-M, or other algorithms. In the second
the subset} consists of the features {1, 15, 16, 17, 18}. Isstep, a consistency measudtef each feature is computed [7]

is seen that the error curve exhibits a distinct minimum point ) )

at the feature subsét;, which in our case corresponds to the ¢ — mean inter-class distance 17
index subset {1, 6, 15, 16, 17, 18}, beyond which the error starts mean intra-class distance

to increase again. A possible interpretation of this minimum js

that, due to the approximative nature of the GRNN, it will bgvhere the distances are in the space of the features under con-

increasingly difficult for the NN to characterize the underlyin 3 deration. A greater value of the consistency measure implies

. . . better feature, because the feature has a small intra-class dis-
mapping beyond a certain maximum number of features. Wi . .
tance and large inter-class distance.

the limited r?“"”'.oer O.f trammg samples and their Increasing ]e) Experimental Results Using Consistency-Based Selec-
sparseness in high-dimensional spaces, the error starts to fis

beyond this point. In other words, although the sequence t'oqn'. We apply k-mean clqsterlng _to CIaSS'fY v_|deo shots
o - . S . traffic into four clusters. Using the first two principal compo-
indices in Fig. 7 is supposed to indicate the importance of the : e
Lo : - ents of the D-BIND descriptor of each shot, the classification
individual features in characterizing the long-term networ

. . re&ult is presented in Fig. 8. Each cluster reflects a different
traffic, this may not be the case for those features around andy| of complexity and action. For example, the rightmost

beyond the minimum point. As a result, it is natural to adop . . ; .
¥ : N uster involves fast motion along with considerable com-
Iy as afirst approximation to our relevant feature subset due {0 ~. . )
exity. We then compute the consistency measure according to

the smallness and comparative reliability of its associated erf : .
value. Among the features iR, it is observed that all four (%) with the results shown in Fig. 9. We can see that |-frame

short-term D-BIND statistics are included in the subset, whic omplexity (feature 1) has the highest consistency among

oo , o . .all content features, which is the same result as achieved by
implies that the short-term traffic statistics are essential f . . o )

o ) . FS/GRNN approach in Section I1I-B1. Similarly, we find that
predicting the long-term traffic patterns. It is next observed thg&

the complexity feature associated with the I-frames (feature ¢ average magnitude of P-frame motion acceleration (feature

. ; _ is with the second highest consistency. We also notice that
is more important for prediction than other content features. . : . .
. features 7-10, the regional motion magnitudes have high cor-
We have already pointed out that the order of features be- . . . .
. . : -~ _rélation with feature 2, the global motion magnitude, and both
yond the minimum point may not necessarily reflect their ac- o . :
o; them have similar consistency. To reduce the redundancy in

tual importance ranking because of the increasing difficulties . .
. L2 i . ) - the selected feature set and the prediction complexity, we prune
characterizing mapping in high-dimensional space using aflnl e

training data set for the simple GRNN model, as indicated k% e regional motion features and get four highly consistent

- o atures, namely, {1, 5, 2, and 13}.
the rising error values. The approximation nature of the GRN : .
N - . : i It should be pointed out that the consistency-based approach
model implies that the minimum itself is not exact; we therefore

assumes features are uncorrelated and only considers features
L o [R5t are related with the traffic descriptor in a monotonic way as
around and beyond the minimum. More specifically, we use an__ . ~. . ) . )
. i ) ) . eneficial. For this class of features, a large distance in traffic
alternative approach in next section to review the potential use=_ ~ > " . . :
: . ; space implies a large distance in feature values. Although these
fulness of features 1-14, i.e., the entire set of candidate conten . oo . .
assumptions simplify the problem and provide a feasible way to
features. L :
evaluate a certain kind of relevancy of features, more compli-
C. Consistency-Based Feature Selection cated relations between features and traffic are not captured by

this approach. How to feasibly and reliably capture more com-

In this section, we describe a consistency-based approacyas yelations for feature selection will be studied in our future
a complementary selection mechanism to evaluate the relevajee,

of content features with respect to video traffic. Consistency
measures were originally used to formulate class separabiljt
and to select features which are most effective for preservi
class separability [18]. For the problem of traffic prediction, this
measure was used by Bochesikal. to evaluate the relevancy In this section, we present an NN traffic predictor utilizing
of content features to video traffic [7]. The traffic classes gefthe features selected in the last section. That is, our prediction
erally indicate the average bit rate and typical bit rate pattetakes into account both the significant content features and the
of video segments, for example, classes of low, medium, ahdndwidth statistics of the video in the observation periods. In
high average rate, as well as of constant, semi-constant, andths-context of dynamic resource allocation, the prediction re-
cillating bit rate. The class information can provide insights osults determine how much bandwidth to request. We shall first
how much network resource should be allocated. However, discuss the architecture of the proposed traffic predictor and
reviewed in Section II-B, there are some weaknesses and lippiesent quantitative prediction results which demonstrate the
tations in the particular way of determining traffic classes sugerformance of our framework as well as verify the contribu-
gested by Bocheckt al. tion of various inputs suggested by our feature selection scheme.

NN TRAFFIC PREDICTOR FORIMPROVEMENT OFNETWORK
UTILIZATION
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Fig. 8. Four traffic classes derived y-mean clustering on the two principal components of D-BIND, the first step in consistency-based feature selection.
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Fig. 9. Sorted consistency measures for each candidate content feature, when used individually.

We then perform trace-driven simulation and show the enhanedth a single hidden layer and apply the back-propagation (BP)
ment of network link utilization when incorporating the proapproach to determine the weights and biases of the network
posed traffic predictor into the dynamic resource negotiation supervised training [11]. Recall, the overall system structure

mechanism. is summarized in Fig. 2.
We shall demonstrate the performance of our proposed frame-
A. NN Predictor Architecture and Prediction MSE work by evaluating the prediction MSE, a commonly used cri-

terion. For the traffic prediction problem, the overestimation

Although the problem of predicting long-term or futureof shot D-BIND descriptors could lower network utilization,
traffic based on short-term traffic may be handled via parand the underestimation could degrade QoS or even cause net-
metric modeling, it is not easy to come up with a simpleork buffer overflow. As mentioned before, our experiments are
and effective parametric model when incorporating contepérformed on a 13 175-frame MPEG-1 VBR video consisting
features. For this reason, we use an NN to accomplish the ppésegments from a fast-action documentary and a television
diction task, as shown in Fig. 10. The input to the NN consistBama.
of the selected content features and traffic descriptors from theTo verify the selection results of the SFS/GRNN approach,
observation period. The outputs are the principal componetie feature subset! = {1, 6, 4-dim DBIND} = {1, 6, 15,
of the D-BIND traffic descriptor for the entire shot, as discussetb, 17, 18} (Section 111-B1) is used for training a multilayer
in Section 1I-B1. We adopt a multilayer-perceptron networgerceptron to predict the long-term traffic statistics. Among the
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Fig. 10. Neural network-based traffic prediction using both content and traffic features from the first few frames of a shot to predict the &ntiiedgfishot

TABLE 1l TABLE Il
MSE TRAFFIC PREDICTION RESULTS USING CONTENT/TRAFFIC FEATURES MSE TRAFFIC PREDICTION RESULTS, COMPARING FEATURES SELECTED BY
SELECTED BY SFS/GRNN, RAFFIC FEATURES ONLY, AND TWO SFS/GRNNAND BY THE COMBINED SFS/GRNN/ONSISTENCYAPPROACH

RANDOM FEATURE SETS

Feature Subset | MSE (1st PCA) | MSE (1st and 2nd PCA)

Feature Subset | no.of hidden units | MSE (st PCA}) | MSE (1st and 2nd PCA) R 0.0232 0.0268
F§ 10 0.0238 0.0277 Fé 0.0215 0.0257
D-BIND 10 0.0247 0.0281
Random Set 1 10 0.0559 0.0695
Random Set 2 10 0.04%6 0.0545 From these results, we can conclude that the SFS/GRNN se-
= " 0,023 00208 lection mechanism is capable of identifying thg most important
DBIND " Py Py features,_na_lmely, the short-term D-BIND statistics for the cur-
rent prediction problem. On the other hand, we can observe that
Random Set 1 2 0.0579 00719 the addition of content features to the D-BIND subset serves
Random Set, 2 20 0.0488 0.0617 to improve the prediction result. The fact that only two of the

14 content features are included in the selected subset is due to
) ] our previous decision not to adopt those content features beyond
177 shots extracted from the video sequences, the first 50 shats GRNN minimum error point. As explained before, there
are used as training samples for the network, and the next 134 increasing difficulties in characterizing a high-dimensional
shots are used as test data. We have listed the prediction M3Eyhing using a finite training data set for the simple GRNN
in normalized units for different numbers of hidden nodes ifqdel. and we have employed consistency-based selection to
Table I12 For the purpose of comparison, we have also includeghgment the SFS/GRNN process. To demonstrate the improve-
the prediction results by randomly choosing two sets of six fth'ent, we list the prediction MSEs of the feature s&{f the
tures from the original 18. We can observe that the six featurggg/GrRNN approach anék = {1, 2, 5, 13, 4-dim, D-BIND}
selected by SFS and GRNN achieve the smallest error in €gghhe combined approach (Section 111-C1) in Table IlI, where
case. In addition, we also notice that increasing the numberigk number of hidden nodes is 20. The prediction MSE using
hidden nodes from 10 to 20 does not significantly improve thg, sejected by the combined approach is smaller than those se-
prediction results, and for some particular feature combinatiopg.eq by SFS/GRNN alone, especially for predicting the most
the prediction error even increases for a large hidden layer, Bgificant component of D-BIND. This confirms that incorpo-
dicating the possibility of overfitting. As all the D-BIND fea- 4ing the alternative selection approach can enhance prediction
tures rank close to the top of the feature list, it is reasonab'%@rformance.
suggest that most of the useful information for predicting the fu- Finally, using feature sef selected by the combined
ture traffic is already embedded in these short-term statistics.a'lgproach we compared the prediction MSE under four dif-
confirm this, we have also included the prediction results usifigrant str,ategies. With respect to renegotiation points, we
the four short-term D-BIND features only. We can observe thagnsider: A) using equal-length request intervals (one request
thg _resultlng errors are o'nIy. shghtly greater than those of trégery 75 frames, which is the average shot length), and B)
original selected subség, indicating that these short-term feay,ging shot boundaries from temporal segmentation. We also
tures are the most essential for predicting the long term netwoiknsider three different NN inputs for traffic prediction: 1) the
traffic. four-dimension content feature (feature {1, 2, 5, 13}) of the
observed video, Il) the four-dimension D-BIND (feature {15,
2Note that the D-BIND principal values are on the order of bids per frame, 16,17,18 }) of the ObserVed video, and_ ”l) _bOth of the aboye.
and the prediction MSE of these principal values is on the order ¥f.10 Two sets of comparisons are shown in Fig. 11. Comparing
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Fig. 11. Traffic prediction MSE with renegotiation points (A) at fixed intervals and (B) determined by shot-boundaries; (I) uses content féat(iesses
short-term traffic only, while (Ill) uses both for prediction. For each of the six cases, the dark colored bar indicates the MSE for predictingtimeified
component of the D-BIND for the entire shot, and the light colored bar indicates the sum of the MSEs for predicting the first two principal components.

the two leftmost columns, (A-lll) and (B-I111), we observe thasimplicity, the current simulation blocks a source when its re-
(B-111) gives much smaller MSE, meaning that content-basesburce request is rejected, and a new request is generated at the
renegotiation points are by far superior to noncontent-baseext renegotiation point. More sophisticated admission control
ones. Comparing the three rightmost columns, we observe tlsatertainly possible, a subject for future research. A network
short-term traffic (B-11) gives better prediction than contenbbuffer with maximum capacity) and FCFS queuing policy is
features (B-I) alone. In addition, we found again that using botlsed to smooth out the bursty traffic. When a renegotiation re-
content and short-term bandwidth of observed video (B-I1l) iguest is received from theth source, the worse case buffer oc-
only marginally better than using short-term bandwidth aloreipancy is computed

(B-1l). This implies that most of the useful information in

content features for predicting traffic is already inherent in the®! —

short-term bandwidth statistics.

max < 0, max gt Z a; - 1i(4) +re(n) —c
SREP

B. Improvement of Network Link Utilization iZn
We shall compare with a static peak-rate allocation and a bit- (18)
stream-level dynamic scheme to demonstrate the improvemgiere
of network link utilization achievable by our proposed approach. ,; source index:
The R-VBR scheme, a heuristic dynamic renegotiation algo- ;. index of D-BIND components:

ri'thm.using D-BIND descriptors, was proposed in [3], cIaimi.ng P dimension of D-BIND descriptor:
significantimprovement over static peak rate allocation. It raises,. (;) kth D-BIND components of théth source;

the reserved bandwidth (described by D-BIND) by a faector ,** i5 setto 1 if theith source is admitted and 0 otherwise.

when the real bandwidth exceeds the reserved resource, gg requested resource is granted ontyifis below. Given a
lowers it by a factors when the real bandwidth remains below,, nd of rejection probability (e.g., 1% in our simulation), Iin@
the reserved resource féf frames. The average R-VBR renevilization is defined as

gotiation frequency is determined by the triplet, 3, K). In
contrast, our proposed scheme uses the shot boundaries, ab—
tained from content-based temporal segmentation, as renegotia-
tion points, and an NN traffic predictor to determine how mucivherer,,,, is the average rate of the entire video sequence. The
resource to ask for at each point. For the 177-shot video ussithulation result of utilization versus buffer capacity is shown in
in our experiments, the full D-BIND vector of each entire shdtig. 12. With three parameter settings,= 1.3, 5 = 0.7, K =
is estimated from the two principal components which are t138), (« = 1.3, 8 = 0.7, K = 60), and(o« = 14,3 =
outputs of NN traffic predictor. These predicted D-BIND def.7, K = 90), the R-VBR scheme generates requests at av-
scriptors are used for determining how much bandwidth to askage rates of 0.81, 1.54, and 2.32 s, respectively. The corre-
for in renegotiation. sponding utilization is shown as the dashed curves. The bottom
Link utilization is obtained by trace-driven simulation, simstraight line shows the utilization if the peak bandwidth were
ilar to that described in [7]. Multiple video sources, based on tledlocated to each sequence. The upper solid curve is the uti-
above mentioned sample video but with random starting poinkigation of our proposed scheme, which renegotiates once every
are multiplexed into a T3 line (link speed= 45 Mb/s). For 2.48 s on average. The figure shows that our proposed scheme

max number of admitted sources
number of admittable CBR sources with ratg,,

(19)


Correction
Correction of Production Error:
The sentence below Eq(18) should be:  "The requested resource is granted only if the currently available buffer space is no less than Q1."
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Fig. 12. Network utilization for multiplexed sources using the proposed scheme, as well as the renegotiated VBR and the peak-rate allocation.

obtains much higher link utilization compared with peak-ratend nondeterministic services may be pursued in future work as
allocation scheme. Furthermore, our proposal outperforms hléernatives to deterministic methods. The prediction NN may
R-VBR scheme of similar renegotiation frequency by 18%, arixk trained beforehand, and be steadily updated on-line. Further-
by 9% against the R-VBR with tripled renegotiation frequencynore, our work can be applied to other problems related to video
traffic modeling, such as utility function estimation [20] and
V. CONCLUSION AND FUTURE RESEARCH transcoding.

We have proposed a new framework for resource allocation
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