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Abstract—The reliable and efficient transmission of high-
quality variable bit rate (VBR) video through the Internet
generally requires network resources be allocated in a dynamic
fashion. This includes the determination of when to renegotiate for
network resources, as well as how much to request at a given time.
The accuracy of any resource request method depends critically
on its prediction of future traffic patterns. Such a prediction can
be performed using the content and traffic information of short
video segments. This paper presents a systematic approach to
select the best features for prediction, indicating that while content
is important in predicting the bandwidth of a video bit stream, the
use of both content and available short-term bandwidth statistics
can yield significant improvements. A new framework for traffic
prediction is proposed in this paper; experimental results show a
smaller mean-square resource prediction error and higher overall
link utilization.

Index Terms—Bandwidth prediction, dynamic resource alloca-
tion, multimedia over IP, neural network (NN), VBR video.

I. INTRODUCTION

T RANSMISSION of digital video and other multimedia
information over the Internet is becoming increasingly

important. Applications such as video conferencing and multi-
media streaming have the potential to transform both learning
and entertainment worldwide. The high bandwidth of digital
video, one of the key components of most multimedia sources,
requires careful management of network resources in order to
keep utilization high while preserving any quality of service
(QoS) requirements. Variable bit rate (VBR) video, which in
general offers improved perceptual quality for a given average
bit rate, presents a particular challenge in time-varying resource
allocation.

Bandwidth allocation and management for individual streams
generally must be done at theedgesof the network, in order to
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conserve computational resources on network switches, as il-
lustrated in Fig. 1. Such systems will likely not have complete
knowledge of the network state, and must therefore make their
use of network resources as minimal as possible to maintain a
given QoS. If a source requests more bandwidth than it actu-
ally uses, the overall network utilization drops. Conversely, if
the source exceeds its bandwidth request, packet loss and delay
will become significant. While off-line systems could compute
the exact dynamic bandwidth requirements for a stream before
transmitting it, on-line processing is desirable in many applica-
tions. Systems such as video conferencing and live news-on-de-
mand absolutely require on-line processing. In addition, on-line
processing is needed in any system that dynamically transcodes
video, or that splices and combines segments in an interactive
manner. To keep delay and computational requirements low, the
information used to make bandwidth decisions should be di-
rectly available from the compressed video stream. The overall
goal is to have a resource management system that can accu-
rately estimate the required bandwidth in real time.

No one-time bit rate allocation will provide loss-free VBR
video transmission with high utilization and low delay. For
MPEG-1 and MPEG-2 streams, the bit rate variations can be
up to an order of magnitude and occur on two different time
scales. The shorter time scale corresponds to the duration of
the group of pictures (GoP); the variation is due to the fact that
intracoded frames (I-frames) generally require more bits than
forward predicted frames (P-frames), which in turn require
more bits than bidirectionally predicted frames (B-frames).
The brief spikes in traffic caused by I-frames are generally not
a problem for networks; as most MPEG compressors produce
only about two or three I-frames per second, a small buffer can
adequately smooth the traffic if some delay is tolerable. The
long-term variation is brought about by the changes in semantic
content of different shots and scenes. Such bandwidth changes
cannot be easily absorbed by reasonable-capacity network
buffers. This long-term bit rate variation is one of the biggest
challenges in VBR video transmission.

Traditional IP traffic, such as that generated by file transfers
and email communication, is supported by best-effort service
which does not have guaranteed delay, transfer rate, or other
QoS characteristics. To facilitate transmission of real-time mul-
timedia content across the Internet for future integrated ser-
vices, several new protocols have been proposed in recent years.
Among them, the resource reservation protocol (RSVP) is a net-
work-control protocol that allows Internet applications to obtain
a certain QoS for the corresponding data flow [1], [2]. Within
this protocol, a route reservation is created and periodically up-
dated in two stages: the sender multicasts PATH messages con-
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Fig. 1. Illustration of dynamic resource allocation for multiplexing VBR streams.

Fig. 2. Proposed resource allocation structure, containing two subsystems: 1) determination of renegotiation points (Section II) and 2) bandwidthrequests
(Sections III and IV). Section II describes the feature extraction and temporal segmentation, Section III details the feature selection and evaluation methods
used in training, and Section IV describes our NN-based per-interval traffic predictor.

taining traffic characteristics, then RESV messages containing
resource reservation requests are forwarded from the receiver
along a reverse path. In the context of QoS-guaranteed network
communication, it is crucial to quantify the video traffic char-
acteristics as precisely as possible (no matter what protocol is
being used). Such quantification generally involves prediction
of future and/or long-term traffic patterns because the frequency
of reservation adjustment is limited in practice.

This paper proposes a new resource allocation framework,
making use of content as well as short-term traffic statistics
and achieving better prediction accuracy than content- and
traffic-only approaches. Its overall structure is shown in Fig. 2,
which also serves as a road map of the paper. In Section II,
we shall discuss two major issues of dynamic resource rene-
gotiation and several candidate features that can be used
for predicting video traffic. Approaches for the selection of
relevant features are presented in Section III. Based on the
feature selection, we propose a new neural network (NN)
traffic predictor in Section IV, and demonstrate its effectiveness
in improving network utilization. Conclusions and possible
research directions are described in Section V.

II. DYNAMIC RESOURCERENEGOTIATION FORVBR VIDEO

As mentioned above, the hallmark of VBR video is that its
bandwidth undergoes both short- and long-term changes, in re-
action to the complexity—and therefore, compressibility—of
the underlying video. Allocating a constant amount of band-
width for a VBR stream will lead to one of the following:

1) inefficient use of network resources, due to over-allo-
cated bandwidth, OR

2) a requirement of large endpoint (and possibly internet-
work) buffers, causing variable delay proportional to the
complexity of the most recent frames.

In order to obtain high network utilization and low delay,
the bandwidth requests made by the VBR source must be
periodically renegotiated. Conventional approaches renegotiate
resources according to changes in bit stream level statistics [3].
In these approaches, it is common to use a parametric model
to predict future traffic, as described in [4] and [5]. Content-
based approaches have been introduced, motivated by the
high correlation between long-term traffic characteristics and
video content [6], [7]. Our study shows that while content is
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Fig. 3. Illustration of the two issues in dynamic resource allocation: choice of
renegotiation points and how much bandwidth to request at each point, in order
to track the source’s requirements as closely as possible.

a major factor controlling the bandwidth, content alone may
not be sufficient in predicting future traffic and in determining
resource requests.

In studying the dynamic nature of resource requirements
in VBR video, we shall look at the two issues illustrated in
Fig. 3:

1) at what points the bandwidth resource should be renego-
tiated, and

2) how much bandwidth resource to ask for at any given
point.

A. Bandwidth Renegotiation Points

Whenever the traffic characteristics of the transmitted VBR
stream change dramatically, the requested bandwidth should
be renegotiated. A tradeoff in overhead must be considered,
however: if the renegotiation is too often (say, every frame),
the request and negotiation packets themselves will be a signif-
icant source of traffic. In addition, the renegotiation process
likely involves delay itself, and is limited by the available
computational power. Renegotiating too infrequently leads to
dropped packets or frames, poorer overall network utilization,
and possibly wasted expense, if bandwidth is not a free com-
modity.

The on-line determination of bandwidth renegotiation points
in VBR video generally falls into one of three categories: 1) de-
terministic, 2) traffic-based, and 3) content-based. Determinis-
tically setting the renegotiation points is the simplest method:
bandwidth requests are made everyframes, where is an
empirically determined balance between request overhead and
correlation of frame bit rates. Traffic-based renegotiation, men-
tioned above, occurs when the stream violates a previously ne-
gotiated bandwidth request, or when utilization drops below
some level. Although traffic-based renegotiation tracks the real
bandwidth more closely, a single complex frame can cause the
requested bandwidth to remain elevated for some time, even if
successive frames require few bits. A more “natural” set of rene-
gotiation points is the set of shot boundaries in the video stream.
By studying the bits used per frame in VBR video, one sees that
the most dramatic changes occur at the beginning of new camera

shots [7]. Within a single shot, the traffic characteristics are rel-
atively constant.1

There exist many approaches to finding shot boundaries in the
compressed domain [8]. For simplicity, we consider only abrupt
transitions in this paper and adopt the compressed-domain cut
detector described in [9]. This method uses a windowed relative
threshold on the sum of absolute pixel differences

(1)

where the is the first-order estimate of the DC pixel
in frame . As discussed in [9], DC frame estimations

can be easily computed from the compressed data. This cut de-
tection scheme allows for fast, on-line computation of renegoti-
ation points.

B. Bandwidth Requests Per Interval

After selecting renegotiation points, the next step is to deter-
mine how much resource to request for each interval without
introducing significant delay. For natural renegotiation points
such as shot boundaries, past shots’ traffic generally cannot help
in determining how much resource to request as the traffic pat-
tern has changed. Exact traffic information for the new video
shot can be obtained by measuring every frame between the cur-
rent and the next renegotiation point, and using this as a basis
for the resource request. This is possible in an off-line situa-
tion where the future video is available, but is not suitable for
real-time applications because significant delay will be intro-
duced (particularly if the shots are long). With the requirement
of on-line processing in mind, one can predict the traffic for the
entire shot based on an observation of the first few frames. This
is illustrated in Fig. 4, where the shaded areas indicate obser-
vation periods. Renegotiation is performed after the short-term
observation, and if granted, the video will be transmitted using
the newly reserved bandwidth. (If the request is not granted, the
source could attempt to transcode the video in order to fit into
a smaller bandwidth for the single shot.) Note that the observa-
tion will inevitably introduce some delay in renegotiation, but
the video itself may be transmitted without delay, as in Fig. 4(a).
With this approach, unexpected bursty traffic during the shaded
periods can only be accommodated by adding extra capacity
to network buffers. For short-delay tolerable applications, the
video may be transmitted with a-second delay, as in Fig. 4(b),
so that the video traffic is always within the bounds of the ne-
gotiated agreement. While our approach can be applied to both
delayed and nondelayed transmission, the performance of de-
layed transmission is better. In this paper, we shall focus on the
delayed transmission case.

A content-based approach to per-interval prediction has been
proposed by Bochecket al., consisting of training and testing
stages [7]. In the training stage, content features are quantized
into a small number of levels (e.g., slow/medium/fast motion),
and every possible combination of significant features is labeled
as one content class for which the typical traffic pattern is com-
puted. After training, the content class of each shot in the test

1If a shot has a sudden change in content features, the change can be con-
sidered a boundary as far as renegotiation is concerned. For simplicity, we will
ignore such intrashot “boundaries.”
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Fig. 4. Two methods of handling the delay caused by short-term content and traffic observations: (a) delivery without delay but before renegotiationtakes place,
and (b) delivery witht-second delay. Thet-second delay includes the time spent on observation (shaded interval) and on renegotiation. Under scheme (a), large
network buffers may be needed to smooth any unexpected traffic bursts between the interval boundary and successful bandwidth renegotiationt seconds later. For
short-delay tolerable applications, scheme (b) achieves better performance because the video traffic is always within the bounds of the negotiatedagreement.

video is identified by extracting the same features, and the typ-
ical traffic pattern of that class is taken as the predicted traffic for
the shot. We notice some potential weaknesses of this approach.
First, the specific prediction structure via classification can only
feasibly incorporate a limited number of coarsely-quantized fea-
tures. Also, prediction based only on content may not be appli-
cable for video streams produced with different encoding algo-
rithms or parameters. Finally, some useful and readily available
information, such as the exact bandwidth statistics of the video
in the observation period, are not incorporated.

In order to alleviate these weaknesses, we take a more general
approach by using a NN with nonquantized features to predict
long-term traffic. Both short-term traffic and content are con-
sidered as candidate inputs to be used for prediction. Before we
address how to evaluate the relevance of each candidate to traffic
prediction, we shall discuss the traffic descriptors that we use to
quantify both the long-term traffic to be predicted and the ob-
served short-term traffic to be used as the candidate predictor in-
puts. We also describe 14 compressed-domain content features,
each of which has the potential to influence traffic and will be
used as a candidate prediction input.

1) Video Traffic Descriptors:Many traffic descriptors have
been proposed in literature. Among them, peak rate and average
rate are two very simple ones, but they do not capture the traffic
pattern over different time scales. To overcome this problem,
Knightly et al. proposed the deterministic bounding interval
dependent (D-BIND) descriptor for deterministic service,
providing a performance guarantee for the worst case [10]. The
D-BIND model is essentially a vector containing the maximum
allowed arrival rate for intervals of various lengths. It is defined
as follows: let be the cumulative number of bits
arriving during the -length interval beginning at time. The
tightest bound over all time, called theempirical envelope, is

(2)

A piecewise-linear bounding function is constructed,
where is the vector of [bit
arrival, interval] pairs. Given a set of , the tightest bounding
function is denoted , as shown in Fig. 5. The D-BIND
descriptor is usually expressed in terms of arrival rates, i.e.,

Fig. 5. Illustration of the D-BIND traffic descriptor:A(0; t) is the cumulative
arrival in the interval[0; t], B (t) is the empirical envelope of allA[�; � + t].
B (t) is any piecewise-linear bounding function ofB (t), andB (t) is
the tightest such function.

, where .
This descriptor captures both the short-term burstiness and the
long-term traffic characteristics of a video segment, while being
relativelysimple to implement inadmission control and policing.

We use the D-BIND descriptor and deterministic service in
our experiments, though the proposed framework is applicable
to other descriptors and policies. Fixing , the
D-BIND descriptor is simply a vector . When a
video segment is short, only the first several D-BIND elements
can be reliably computed. Therefore, we choosethrough

of the short observed traffic as candidate inputs for traffic
prediction. When describing the entire shot, the dimensionality
of D-BIND is large and the prediction complexity goes up.
Such an increase is rather wasteful as there is redundancy in
the D-BIND vector. For example, is close to the average bit
rate for all large . In order to remove the redundancy and to
reduce prediction complexity, we apply principal component
analysis (PCA) [11] on D-BIND and use the first principal
components as the desired predictor output. More specifically,
we estimate the covariance matrix of the D-BIND vectors

from training video shots. The eigenvalues
and the corresponding eigenvectors of the estimated co-
variance matrix are computed and sorted, i.e., ,
and for . The th principal compo-
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nent of a given D-BIND vector is the projection of
the D-BIND vector onto theth eigenvector

(3)

2) Content Features:Image complexity and motion have
been suggested by Bochecket al.as significant features related
to video traffic [7]. Keeping in mind the requirement of efficient
on-line processing, we extract fourteen features related to
complexity and motion by processing the video in the com-
pressed domain. This set of content features is likely more than
necessary, but we will rely on the selection methods in the next
section to weed out redundant features. Other features could be
incorporated as well, if they have a high relevance to traffic.

The spatial “complexity” of the I-frames is intuitively the
dominant factor determining a stream’s resource requirements,
because the number of bits required to encode the frame is
directly dependent on the energy compaction provided by the
DCT and the compaction is less dense in blocks with edges or
complex textures. In order to estimate complexity, we compute
the weighted sum of the magnitudes of AC coefficients in
the frame (DC coefficients are differentially encoded, so high
DC magnitudes do not exact much penalty in traffic). Any
weighting pattern giving more weight to higher frequency DCT
coefficients could be used; we chose to weight coefficients
according to the sum of their frequencies in each dimension
(the distance from the DC coefficient).

Motion vector magnitudes can dramatically effect the re-
sources required by predicted P- and B-frames; for simplicity
we shall consider only the forward predicted frames. Higher
magnitudes mean more intense motion, and consequently more
correction will likely be needed in the residue frames after
motion compensation. Motion direction, for the most part,
is irrelevant to traffic. We compute the mean motion vector
magnitude, for the whole frame, as follows:

(4)

where is the number of macroblocks in the video frame and
is frame ’s forward motion vector for the macroblock

. In order to identify segments with strong motion in part
of the frame, but not the entire frame, we also compute the value
of (4) for each of four spatial quadrants.

The coding efficiency of predicted frames can also be mea-
sured by counting the number of intracoded blocks in the frame;
areas that could not be adequately predicted from previous
frames must be encoded again, at some expense in bandwidth.
The fraction of P-frame macroblocks that must be intracoded,
instead of intercoded, therefore is another candidate feature.

Motion compensation is less efficient if the object or frame
motion is not “simple,” meaning that more correction must be
applied in the residue frames if different macroblocks’ motion
vectors point in radically different directions. We measure the
motion complexity in a number of ways, and rely on the fea-
ture selection process to find the ones most important to traffic
prediction. First, we form a simple directional histogram of the
motion vectors, in which each intercoded macroblock’s motion
vector is classified into five bins: up, down, left, right, or zero,
according to the dominant axis of the vector. Complex motion

corresponds to having roughly equal values in each bin, so we
use the variance over these five bins as a candidate feature. An
alternative way of measuring the coverage of the motion predic-
tion over the new frame is to compute the spatial variance of the
motion vector magnitudes

(5)

In addition, the spatial variances of theand motion vector
components, as well as their cross covariance, are calculated

(6)

(7)

(8)

Finally, as we are only able to observe the very beginning of
each new camera shot, the ways in which motion might change
throughout the shot are important to estimate. Even if the motion
magnitude is small in the first few frames, it can be large later
in the shot, requiring more bandwidth to represent. To make
this effect more manageable, we measure the object and frame
acceleration in two ways. First, motion vectors from adjacent
predicted frames are subtracted to form acceleration vectors, of
which we take the mean magnitude

(9)

A high value for this mean indicates that the motion in the video
is not simple, and that the residue frames will become increas-
ingly complex (thus requiring more bits). The second candi-
date acceleration feature places greater emphasis on changes in
speed, rather than changes in direction

(10)

The 18 candidate predictor inputs (14 content plus four
traffic) are summarized in Table I. None of the 14 content
features requires full decompression of the VBR stream to
compute; in MPEG-1 and MPEG-2, the amount of computation
required is quite low. There is, however, significant redundancy
in these features, and not all may be highly relevant to traffic
prediction. The importance of selecting the relevant subset
from the original feature set is closely related to thecurse of di-
mensionalityproblem in function approximation, where sample
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TABLE I
CANDIDATE CONTENT AND TRAFFIC FEATURES TOUSE IN PER-INTERVAL TRAFFIC PREDICTION

data points become increasingly sparse when the dimension-
ality of the function domain increases, such that the finite set
of samples may not be adequate for characterizing the original
mapping [12]. In addition, the computational requirement is
usually greater for implementing a high-dimensional mapping.
To alleviate these problems, we reduce the dimensionality of
the input domain in the next section by choosing a relevant
subset of features from the original set.

III. FEATURE SELECTION FORTRAFFIC PREDICTION

There exist several popular feature selection algorithms,
which can roughly be grouped into linear methods and non-
linear methods. Linear methods are normally mathematically
tractable and efficient; for example, principal component
analysis is one of the best choices in transform-domain feature
selection in the linear or minimum mean squared error (MSE)
sense. However, the nonlinearity inherent in content’s effects on
traffic prompts us to consider methods which select features in
a nonlinear fashion in order to achieve improved performance.
In this section, we first propose the adoption of an efficient
nonlinear one-pass selection procedure, the sequential forward
selection (SFS) method [13], and a specialized NN model, the
general regression neural network (GRNN) [14], [15], for the
purpose of selecting the relevant features for traffic prediction.
We then discuss some limitations of GRNN as the number
of selected features grows, and adopt a consistency-based
selection as a complementary approach.

Formally, we denote the original set with features as the
index set and let be the number of predicted
quantities. Our purpose is to approximate the original mapping

, where
are the vectors in the input domain, using the alternative map-
ping , where

is the relevant feature subset with , and
are the vectors in the associated func-

tion domain. To achieve this, the subsethas to be chosen in
such a way that for every and the
associated .

The simplest way to construct the subset is to select all the
possible combinations of features from the original set, re-
construct the mapping for each of these combinations, and
then evaluate the approximation accuracy using a set of sample
points. However, this approach is usually not feasible due to the
large number of possible feature combinations, which amounts
to for the features in . Previous at-
tempts to perform efficient sampling of this large combination
include the adoption of genetic algorithms [16] where a popula-
tion of subsets are generated and evaluated on the basis of the
proximity of their associated functionsto the original mapping

on a set of sample points. Those subsets resulting in a good
approximation are retained in the population and allowed to pro-
ceed into the next generation, while unsatisfactory subsets are
removed from the population. New subsets in the population are
then generated by slightly perturbing the successful subsets in a
random way. Although this approach does not require the eval-
uation of all the possible combinations, it may still take many
generations before a truly relevant feature subset emerges from
the population.

To further complicate this problem, the mappingassoci-
ated with each subset is usually not available in an analytical
form, and numerical approximations in the form of iterative al-
gorithms are required to reconstruct the mapping. For example,
a common approach for function approximation is to adopt an
artificial NN model to represent the mapping, where the sample
points from the original function are considered as training ex-
amples for the network. In particular, the multilayer perceptron
with the associated back-propagation (BP) training algorithm
is often used for such a purpose [12]. Due to the large number
of training iterations required to determine the network weights
and the generally slow convergence rate, BP will further accen-
tuate the difficulties in evaluating the relevancy of a potentially
large number of candidate subsets.

In summary, to allow effective identification of the rele-
vant feature subsets, a potential algorithm should satisfy the
following criteria:

1) To represent an efficient but possibly suboptimal ap-
proach to sample from the space of possible feature
subsets such that candidate subsets which characterize
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the original mapping with reasonably good accuracy can
be quickly identified.

2) To represent an efficient but possibly approximate ap-
proach for evaluating the relevancy of individual candi-
date subsets without requiring iterative identification of
the underlying mapping.

Due to the difficulties of the previously described approaches
in fulfilling these two conditions, we propose the adoption of
alternative approaches which specifically address these two cri-
teria. For the first criterion, we propose the adoption of the SFS
method [13] for incrementally constructing the relevant subset
starting from a single feature. For this approach, a candidate
subset with reasonably good relevancy to the current problem
can be constructed rapidly without requiring the observation
of a large number of possible subsets. For the second crite-
rion, we follow a two-step process: we first adopt the GRNN
[14] for evaluating the relevancy of the set of candidate subsets
generated by SFS. Unlike the alternative multilayer perceptron
model which requires iterative BP training, the parameters of
the GRNN model can be directly determined in a single pass of
training, which allows rapid evaluation of the individual feature
subsets in terms of their relevancies. However, when the number
of selected features is large, the GRNN approximation error in
the high-dimensional mapping becomes significant; this is evi-
dent in Fig. 7, where the error increases after the sixth feature is
added. Since the confidence in the SFS/GRNN approach to fea-
ture selection diminishes around and beyond the minimum MSE
point, we adopt a complementary follow-up step, discussed in
Section III-C. As we will see in Section IV-A, the traffic pre-
diction error is small when using the features selected by this
two-step process as inputs to the prediction mechanism.

A. Sequential Forward Selection (SFS)

The SFS procedure [13] allows construction of a suitable fea-
ture subset starting from a single feature. Specifically, given the
original feature set , the SFS algorithm generates a sequence
of subsets , with associated cardinalities

. In other words, the original subset is incremen-
tally expanded to accommodate new features. To begin with,
we require a measure to evaluate the relevancies of the candi-
date subsets . For this purpose, we are usually given a set of
training data , for the desired map-
ping, where denotes each sample vector in
the input domain incorporating the full set of features. To eval-
uate the relevancy of a particular feature subset, we con-
struct a mapping which minimizes a particular discrepancy
measure over the set of re-
duced dimension vectors corresponding
to each of the full dimension vectors . We can then regard
the value as a measure of the relevancy of . A common
candidate for is the MSE

(11)

Given the discrepancy measure and with the empty set
assigned as the initial subset , we generate the th
relevant subset from the th subset by individually evaluating

Fig. 6. General regression neural network (a special case of the RBF network)
which is used in the implementation of the SFS. The centers and widths of
the Gaussian kernels are deterministic functions of the training data; iterative
training is not needed.

the suitability of each remaining feature in the complement set
. Suppose we denote and

. For each remaining feature
, we form the new subset as follows:

(12)

The th relevant subset is then chosen from these candi-
date subsets using the following criterion:

where

(13)

In this way, a nested sequence of feature subsets
can be constructed, and the associated performance mea-

sure values indicate the relevancy of the cor-
responding subsets. As a result, we can select the subset con-
taining the minimum number of features and with its associated
discrepancy measure lower than a prescribed threshold.

As mentioned previously, one of the problems with the fea-
ture selection process is the necessity to reconstruct, usu-
ally by an iterative function approximation process, for the eval-
uation of in (11). In the next section, we propose the adop-
tion of the GRNN for representing . As a result, only a single
iteration is required to reconstruct for each subset al-
lowing rapid evaluation of their relevancies.

B. SFS Implemented with General Regression Neural Network
(GRNN)

The GRNN [14], [15] can be considered as a special example
of a radial basis function (RBF) network [17], where the first
layer units adopt the Gaussian kernel as the nonlinear transfer
function while the second layer consists of linear summation
units (Fig. 6). However, unlike conventional RBF networks
where the centers and widths of the Gaussian kernels are de-
termined by iterative clustering procedures, the corresponding
parameters in GRNN are represented as deterministic functions
of the training data. In other words, no iterative training pro-
cedures are required to reconstruct a mappingusing GRNN,
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Fig. 7. Cumulative error plot for SFS/GRNN feature selection; the table shows which features are included after each SFS step. Minimum MSE is achievedafter
selecting six features, as indicated by an arrow. Our simulation study indicates that with feature selection order different from that listed in thisfigure, the dropping
of MSE is less sharp. However, because of the increasing difficulties of characterizing mapping in high-dimensional space, the feature order aroundand beyond
the minimum may not reflect their actual importance, prompting the investigation of the alternative selection scheme for these features, discussedin Section III-C.

thus allowing rapid evaluation of the relevancy of different
feature subsets for our current problem.

To carry out function approximation using GRNN, we are
given a set of sample observations
from the original function. We then associate each sample point
with a single Gaussian kernel in the first network layer, with
the input vector assigned as the center of the kernel. In other
words, there are RBF units in the first network layer. For an
arbitrary input vector to the network, the output of theth
RBF unit is given by

(14)

where is a user-specified smoothing parameter. The GRNN
output which represents the estimated function value foris
given by the following convex combination:

(15)

where the coefficients are defined as follows:

(16)

Intuitively, the GRNN performs interpolation by linearly com-
bining the given training outputs using a set of adaptively
determined coefficients. If the current input vectoris close to
one of the training inputs in a Euclidean sense, the corre-
sponding coefficient given by (15) will also become large,
and the estimated outputwill be close to the associated func-
tion value for , which is a reasonable construction. On the
other hand, those sample points which are far away from the cur-
rent input vector do not appreciably contribute to the summation
due to the exponentially decaying weighting function.

1) Experimental Results Using SFS and GRNN:In this sec-
tion, we apply the SFS technique to select feature subsets from

the original set of four short-term D-BIND features and 14 con-
tent features in Table I, and use the GRNN to evaluate the rele-
vancies of each feature subset. Thus, corresponding to the orig-
inal set , we have an associated collection of training samples

where the input vector is of length 18 with each com-
ponent being either a D-BIND feature or a content feature, and,
for each shot, the output vector’s two components are the prin-
cipal components of the long-term D-BIND traffic descriptor. A
total of training samples are used
for the feature selection process. Using SFS, we construct the
nested sequence of subsets and evaluate their
relevancies via GRNN. In general, the evaluation of a particular
GRNN model requires an additional test data set, since by con-
struction the approximation error at each of the training samples
is negligibly small. In view of this, we adopt theleave-one-out
method, which is a special case of the cross validation approach
[12], for evaluating the approximation error. For the cross vali-
dation approach, the training set withsamples is divided into
an estimation subset with samples for determining the model,
and a validation subset with samples for validating the
model. The leave-one-out method represents a special example
of the above approach where , such that the vali-
dation set consists of only one sample. This is necessary when
the size of the training set is small to allow enough samples for
model construction. This process is repeated by successively
leaving out each of the samples for validation and then av-
eraging the associated error values.

Our experiments are performed on a 13 175-frame video
(about 7 min) digitized from cable television at 30 frames
per second. The video consists of a fast-action documentary
segment from “The Oprah Winfrey Show” and clips of the ABC
series “The Practice.” It is encoded via an MPEG-1 VBR coder
with fixed quantization step size, and the average encoding
rate is 2.1 Mb/s. Using the automatic shot boundary detection
algorithm reviewed in Section II-A and feature extraction ap-
proaches discussed in Section II-B, 177 shots are identified and
features are obtained. We plot the error values for each subset
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in Fig. 7. The numbers in the horizontal axis indicate the
total number of features selected after each SFS trial. The ac-
companying table shows which features were included in each
subset (cf. Table I for feature definitions). For example, the
fifth feature to be added is number 1, the I-frame complexity;
the subset consists of the features {1, 15, 16, 17, 18}. It
is seen that the error curve exhibits a distinct minimum point
at the feature subset , which in our case corresponds to the
index subset {1, 6, 15, 16, 17, 18}, beyond which the error starts
to increase again. A possible interpretation of this minimum is
that, due to the approximative nature of the GRNN, it will be
increasingly difficult for the NN to characterize the underlying
mapping beyond a certain maximum number of features. With
the limited number of training samples and their increasing
sparseness in high-dimensional spaces, the error starts to rise
beyond this point. In other words, although the sequence of
indices in Fig. 7 is supposed to indicate the importance of the
individual features in characterizing the long-term network
traffic, this may not be the case for those features around and
beyond the minimum point. As a result, it is natural to adopt

as a first approximation to our relevant feature subset due to
the smallness and comparative reliability of its associated error
value. Among the features in , it is observed that all four
short-term D-BIND statistics are included in the subset, which
implies that the short-term traffic statistics are essential for
predicting the long-term traffic patterns. It is next observed that
the complexity feature associated with the I-frames (feature 1)
is more important for prediction than other content features.

We have already pointed out that the order of features be-
yond the minimum point may not necessarily reflect their ac-
tual importance ranking because of the increasing difficulties of
characterizing mapping in high-dimensional space using a finite
training data set for the simple GRNN model, as indicated by
the rising error values. The approximation nature of the GRNN
model implies that the minimum itself is not exact; we therefore
need to consider more carefully the relevance of those features
around and beyond the minimum. More specifically, we use an
alternative approach in next section to review the potential use-
fulness of features 1–14, i.e., the entire set of candidate content
features.

C. Consistency-Based Feature Selection

In this section, we describe a consistency-based approach as
a complementary selection mechanism to evaluate the relevance
of content features with respect to video traffic. Consistency
measures were originally used to formulate class separability
and to select features which are most effective for preserving
class separability [18]. For the problem of traffic prediction, this
measure was used by Bochecket al. to evaluate the relevancy
of content features to video traffic [7]. The traffic classes gen-
erally indicate the average bit rate and typical bit rate pattern
of video segments, for example, classes of low, medium, and
high average rate, as well as of constant, semi-constant, and os-
cillating bit rate. The class information can provide insights on
how much network resource should be allocated. However, as
reviewed in Section II-B, there are some weaknesses and limi-
tations in the particular way of determining traffic classes sug-
gested by Bochecket al.

To overcome these weaknesses, we propose the following
evaluation procedure, using a different way to determine traffic
classes. In the first step, video shots are classified intotraffic
clusters based on a specific traffic descriptor. Classification can
be done by -mean, E–M, or other algorithms. In the second
step, a consistency measureof each feature is computed [7]

mean inter-class distance
mean intra-class distance

(17)

where the distances are in the space of the features under con-
sideration. A greater value of the consistency measure implies
a better feature, because the feature has a small intra-class dis-
tance and large inter-class distance.

1) Experimental Results Using Consistency-Based Selec-
tion: We apply -mean clustering to classify video shots’
traffic into four clusters. Using the first two principal compo-
nents of the D-BIND descriptor of each shot, the classification
result is presented in Fig. 8. Each cluster reflects a different
level of complexity and action. For example, the rightmost
cluster involves fast motion along with considerable com-
plexity. We then compute the consistency measure according to
(17), with the results shown in Fig. 9. We can see that I-frame
complexity (feature 1) has the highest consistency among
all content features, which is the same result as achieved by
SFS/GRNN approach in Section III-B1. Similarly, we find that
the average magnitude of P-frame motion acceleration (feature
5) is with the second highest consistency. We also notice that
features 7–10, the regional motion magnitudes have high cor-
relation with feature 2, the global motion magnitude, and both
of them have similar consistency. To reduce the redundancy in
the selected feature set and the prediction complexity, we prune
the regional motion features and get four highly consistent
features, namely, {1, 5, 2, and 13}.

It should be pointed out that the consistency-based approach
assumes features are uncorrelated and only considers features
that are related with the traffic descriptor in a monotonic way as
beneficial. For this class of features, a large distance in traffic
space implies a large distance in feature values. Although these
assumptions simplify the problem and provide a feasible way to
evaluate a certain kind of relevancy of features, more compli-
cated relations between features and traffic are not captured by
this approach. How to feasibly and reliably capture more com-
plex relations for feature selection will be studied in our future
work.

IV. NN TRAFFIC PREDICTOR FORIMPROVEMENT OFNETWORK

UTILIZATION

In this section, we present an NN traffic predictor utilizing
the features selected in the last section. That is, our prediction
takes into account both the significant content features and the
bandwidth statistics of the video in the observation periods. In
the context of dynamic resource allocation, the prediction re-
sults determine how much bandwidth to request. We shall first
discuss the architecture of the proposed traffic predictor and
present quantitative prediction results which demonstrate the
performance of our framework as well as verify the contribu-
tion of various inputs suggested by our feature selection scheme.
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Fig. 8. Four traffic classes derived byK-mean clustering on the two principal components of D-BIND, the first step in consistency-based feature selection.

Fig. 9. Sorted consistency measures for each candidate content feature, when used individually.

We then perform trace-driven simulation and show the enhance-
ment of network link utilization when incorporating the pro-
posed traffic predictor into the dynamic resource negotiation
mechanism.

A. NN Predictor Architecture and Prediction MSE

Although the problem of predicting long-term or future
traffic based on short-term traffic may be handled via para-
metric modeling, it is not easy to come up with a simple
and effective parametric model when incorporating content
features. For this reason, we use an NN to accomplish the pre-
diction task, as shown in Fig. 10. The input to the NN consists
of the selected content features and traffic descriptors from the
observation period. The outputs are the principal components
of the D-BIND traffic descriptor for the entire shot, as discussed
in Section II-B1. We adopt a multilayer-perceptron network

with a single hidden layer and apply the back-propagation (BP)
approach to determine the weights and biases of the network
in supervised training [11]. Recall, the overall system structure
is summarized in Fig. 2.

We shall demonstrate the performance of our proposed frame-
work by evaluating the prediction MSE, a commonly used cri-
terion. For the traffic prediction problem, the overestimation
of shot D-BIND descriptors could lower network utilization,
and the underestimation could degrade QoS or even cause net-
work buffer overflow. As mentioned before, our experiments are
performed on a 13 175-frame MPEG-1 VBR video consisting
of segments from a fast-action documentary and a television
drama.

To verify the selection results of the SFS/GRNN approach,
the feature subset {1, 6, 4-dim DBIND} {1, 6, 15,
16, 17, 18} (Section III-B1) is used for training a multilayer
perceptron to predict the long-term traffic statistics. Among the
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Fig. 10. Neural network-based traffic prediction using both content and traffic features from the first few frames of a shot to predict the entire shot’s traffic.

TABLE II
MSE TRAFFIC PREDICTION RESULTSUSING CONTENT/TRAFFIC FEATURES

SELECTED BY SFS/GRNN, TRAFFIC FEATURES ONLY, AND TWO

RANDOM FEATURE SETS

177 shots extracted from the video sequences, the first 50 shots
are used as training samples for the network, and the next 127
shots are used as test data. We have listed the prediction MSE
in normalized units for different numbers of hidden nodes in
Table II.2 For the purpose of comparison, we have also included
the prediction results by randomly choosing two sets of six fea-
tures from the original 18. We can observe that the six features
selected by SFS and GRNN achieve the smallest error in each
case. In addition, we also notice that increasing the number of
hidden nodes from 10 to 20 does not significantly improve the
prediction results, and for some particular feature combinations
the prediction error even increases for a large hidden layer, in-
dicating the possibility of overfitting. As all the D-BIND fea-
tures rank close to the top of the feature list, it is reasonable to
suggest that most of the useful information for predicting the fu-
ture traffic is already embedded in these short-term statistics. To
confirm this, we have also included the prediction results using
the four short-term D-BIND features only. We can observe that
the resulting errors are only slightly greater than those of the
original selected subset , indicating that these short-term fea-
tures are the most essential for predicting the long term network
traffic.

2Note that the D-BIND principal values are on the order of 10bits per frame,
and the prediction MSE of these principal values is on the order of 10.

TABLE III
MSE TRAFFIC PREDICTION RESULTS, COMPARING FEATURESSELECTED BY

SFS/GRNNAND BY THE COMBINED SFS/GRNN/CONSISTENCYAPPROACH

From these results, we can conclude that the SFS/GRNN se-
lection mechanism is capable of identifying the most important
features, namely, the short-term D-BIND statistics for the cur-
rent prediction problem. On the other hand, we can observe that
the addition of content features to the D-BIND subset serves
to improve the prediction result. The fact that only two of the
14 content features are included in the selected subset is due to
our previous decision not to adopt those content features beyond
the GRNN minimum error point. As explained before, there
are increasing difficulties in characterizing a high-dimensional
mapping using a finite training data set for the simple GRNN
model, and we have employed consistency-based selection to
augment the SFS/GRNN process. To demonstrate the improve-
ment, we list the prediction MSEs of the feature setsof the
SFS/GRNN approach and {1, 2, 5, 13, 4-dim, D-BIND}
of the combined approach (Section III-C1) in Table III, where
the number of hidden nodes is 20. The prediction MSE using

selected by the combined approach is smaller than those se-
lected by SFS/GRNN alone, especially for predicting the most
significant component of D-BIND. This confirms that incorpo-
rating the alternative selection approach can enhance prediction
performance.

Finally, using feature set selected by the combined
approach, we compared the prediction MSE under four dif-
ferent strategies. With respect to renegotiation points, we
consider: A) using equal-length request intervals (one request
every 75 frames, which is the average shot length), and B)
using shot boundaries from temporal segmentation. We also
consider three different NN inputs for traffic prediction: I) the
four-dimension content feature (feature {1, 2, 5, 13}) of the
observed video, II) the four-dimension D-BIND (feature {15,
16, 17, 18 }) of the observed video, and III) both of the above.
Two sets of comparisons are shown in Fig. 11. Comparing
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Fig. 11. Traffic prediction MSE with renegotiation points (A) at fixed intervals and (B) determined by shot-boundaries; (I) uses content features only, (II) uses
short-term traffic only, while (III) uses both for prediction. For each of the six cases, the dark colored bar indicates the MSE for predicting the first principal
component of the D-BIND for the entire shot, and the light colored bar indicates the sum of the MSEs for predicting the first two principal components.

the two leftmost columns, (A-III) and (B-III), we observe that
(B-III) gives much smaller MSE, meaning that content-based
renegotiation points are by far superior to noncontent-based
ones. Comparing the three rightmost columns, we observe that
short-term traffic (B-II) gives better prediction than content
features (B-I) alone. In addition, we found again that using both
content and short-term bandwidth of observed video (B-III) is
only marginally better than using short-term bandwidth alone
(B-II). This implies that most of the useful information in
content features for predicting traffic is already inherent in the
short-term bandwidth statistics.

B. Improvement of Network Link Utilization

We shall compare with a static peak-rate allocation and a bit-
stream-level dynamic scheme to demonstrate the improvement
of network link utilization achievable by our proposed approach.
The R-VBR scheme, a heuristic dynamic renegotiation algo-
rithm using D-BIND descriptors, was proposed in [3], claiming
significant improvement over static peak rate allocation. It raises
the reserved bandwidth (described by D-BIND) by a factor
when the real bandwidth exceeds the reserved resource, and
lowers it by a factor when the real bandwidth remains below
the reserved resource for frames. The average R-VBR rene-
gotiation frequency is determined by the triplet . In
contrast, our proposed scheme uses the shot boundaries, ob-
tained from content-based temporal segmentation, as renegotia-
tion points, and an NN traffic predictor to determine how much
resource to ask for at each point. For the 177-shot video used
in our experiments, the full D-BIND vector of each entire shot
is estimated from the two principal components which are the
outputs of NN traffic predictor. These predicted D-BIND de-
scriptors are used for determining how much bandwidth to ask
for in renegotiation.

Link utilization is obtained by trace-driven simulation, sim-
ilar to that described in [7]. Multiple video sources, based on the
above mentioned sample video but with random starting points,
are multiplexed into a T3 line (link speed Mb/s). For

simplicity, the current simulation blocks a source when its re-
source request is rejected, and a new request is generated at the
next renegotiation point. More sophisticated admission control
is certainly possible, a subject for future research. A network
buffer with maximum capacity and FCFS queuing policy is
used to smooth out the bursty traffic. When a renegotiation re-
quest is received from theth source, the worse case buffer oc-
cupancy is computed

(18)

where
source index;
index of D-BIND components;
dimension of D-BIND descriptor;

th D-BIND components of theth source;
is set to 1 if the th source is admitted and 0 otherwise.

The requested resource is granted only ifis below . Given a
bound of rejection probability (e.g., 1% in our simulation), link
utilization is defined as

max number of admitted sources
number of admittable CBR sources with rate

(19)

where is the average rate of the entire video sequence. The
simulation result of utilization versus buffer capacity is shown in
Fig. 12. With three parameter settings,

, , and
, the R-VBR scheme generates requests at av-

erage rates of 0.81, 1.54, and 2.32 s, respectively. The corre-
sponding utilization is shown as the dashed curves. The bottom
straight line shows the utilization if the peak bandwidth were
allocated to each sequence. The upper solid curve is the uti-
lization of our proposed scheme, which renegotiates once every
2.48 s on average. The figure shows that our proposed scheme

Correction
Correction of Production Error:
The sentence below Eq(18) should be:  "The requested resource is granted only if the currently available buffer space is no less than Q1."
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Fig. 12. Network utilization for multiplexed sources using the proposed scheme, as well as the renegotiated VBR and the peak-rate allocation.

obtains much higher link utilization compared with peak-rate
allocation scheme. Furthermore, our proposal outperforms the
R-VBR scheme of similar renegotiation frequency by 18%, and
by 9% against the R-VBR with tripled renegotiation frequency.

V. CONCLUSION AND FUTURE RESEARCH

We have proposed a new framework for resource allocation
of VBR video, and presented systematic ways of evaluating fea-
tures for video traffic prediction. According to our experiments,
we found that:

1) sequential feature selection with a GRNN is capable of
identifying the most relevant features, and incorporating
alternative selection approaches further enhances predic-
tion performance;

2) in determining optimal renegotiation points, a content-
based approach is preferred over noncontent-based ones;

3) in traffic prediction, using short-term bandwidth statistics
as NN inputs is more effective than using content; and

4) this approach to dynamic resource allocation significantly
outperforms bit stream level approaches.

The proposed traffic prediction framework has the potential to
be used with network control protocols such as RSVP to fa-
cilitate transmission of QoS-guaranteed multimedia transmis-
sion across the Internet and the quickly growing wireless data
network. It can also be extended to communication over asyn-
chronous transfer mode (ATM) networks, which make use of
virtual circuit routing to reserve resources needed by each con-
nection, achieving tight control over resource allocation and
QoS [19].

In addition to the deterministic service and D-BIND traffic
descriptor that are used in our experiments as proof-of-concept,
our proposal is also applicable to other traffic descriptors and
service policies. For example, probabilistic traffic descriptors

and nondeterministic services may be pursued in future work as
alternatives to deterministic methods. The prediction NN may
be trained beforehand, and be steadily updated on-line. Further-
more, our work can be applied to other problems related to video
traffic modeling, such as utility function estimation [20] and
transcoding.
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