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ABSTRACT * 

This paper presents a new, classification-based spatial 
error concealment algorithm for images.  The proposed 
scheme takes advantage of two state-of-the-art 
concealment schemes and adaptively selects a better 
suitable concealment scheme for each corrupted block.  
Using a Support Vector Machine (SVM) classifier, our 
proposed approach outperforms the prior art in terms of 
the concealment quality and has moderate computational 
complexity. 

1. INTRODUCTION 

    Due to various kinds of noise and failures, part of a 
compressed image can be damaged or lost during 
transmission or storage. The widely used block-based 
visual coding systems have prompted a need of block-
based error concealment on the decoder side. A number 
of concealment approaches have been proposed in recent 
years [1][2][3]. The smoothness and continuity properties 
in spatial or frequency domain, the repeating patterns, and 
other properties of visual data have been exploited to 
recover corrupted blocks from the survived surroundings. 
In this paper, we focus on the spatial domain block-based 
error concealment.  
    Through a benchmarking effort on existing error 
concealment approaches that will be detailed in Section 2, 
we have observed that different approaches are suitable 
for different image characteristics of a corrupted block 
and its surroundings, and none of the existing approaches 
is an all-time champion.  This motivates us to explore a 
classification-based concealment approach that can 
combine the better performance of two state-of-the-art 
schemes in literature.  For each corrupted block, we 
propose in Section 3 to use the survived surrounding 
pixels to determine which of the candidate concealment 
schemes would give better concealment quality.  As shall 
be seen later in Section 4, the overall concealment quality 
by our approach can outperform each candidate scheme 
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alone.   The classification-based approach also helps us 
keep the computational complexity low.  This is because 
some state-of-the-art scheme has rather high complexity; 
our approach spends computation power more 
strategically by performing expensive computations only 
when they offer potential gain in concealment quality. 

2.  MOTIVATIONS 

Prior Work   Early explorations on spatial domain image 
concealment were reviewed in [1].  Among them, the 
multi-directional interpolation (MDI) approach performs 
pixel domain interpolation along eight possible edge 
directions and considers the cases of both single edge and 
multiple edges. The projection-onto-convex-sets  (POCS) 
approach constrains the feasible solution set based on 
such priori information as smoothness and neighborhood 
consistency. And the maximally smooth recovery (MSR) 
method makes use of the smoothness property of visual 
signals and formulates the concealment as a constrained 
energy minimization problem. 
    Two recent works by Zeng et al. [2] and Li et al. [3] 
demonstrated performance improvement on classic 
images such as Lena over the earlier approaches.  The 
geometric-structure-based error concealment (GSB) by 
Zeng et al.[2] is a spatial directional interpolation scheme, 
which makes use of the local geometric information 
extracted from the surroundings. Two nearest 
surrounding pixel layers of a corrupted block are 
converted to a binary pattern to reveal the local geometric 
structure and to classify the block as flat or non-flat.  For 
flat blocks, projective interpolation of [4] is applied.  And 
for non-flat block, the edges inside the lost block are 
estimated by pairing significant transition points and the 
lost pixels are recovered by bilinear interpolation along 
the edge directions. 
    The orientation adaptive sequential interpolation 
(OASI) scheme by Li et al. [3] employs a linear 
regression model.  It first estimates the local 
characteristics from a neighborhood of about four layers 
of uncorrupted pixels, and then uses the model 
parameters obtained to estimate each individual missing 
pixel from its surrounding pixels. More specifically, the 
interpolation can be characterized by 
                            S = ∑ ak Sk  ,                                                         (1) 



where S is the missing pixel to be estimated, and {Sk} are 
N pixels surrounding S. The interpolation coefficients 
{ak} forms a vector a, which can be determined using the 
classical least square method from an M-pixel 
neighborhood Mn with M > N: 
                            a = (CTC)-1 CT y  .                              (2) 
Here, y is an Mx1 vector representing M pixels in the 
training area Mn; C is an MxN matrix, and each of its M 
rows consists of N neighbors around the corresponding 
pixel in y. When CTC is singular, ak is set as 1/N. 
Performance Benchmarking   Since GSB and OASI 
employ quite different “philosophies” toward 
concealment, it was not conclusive from literature which 
one is better.  We attempt to address this issue through a 
benchmarking effort, which also sheds light on the design 
direction of a new concealment algorithm that can 
outperform the existing approaches. 
    We use a collection of images with different 
characteristics to evaluate the performance of the five 
above-mentioned algorithms 1.  We compare both the 
quality of concealed images in terms of PSNR and the 
computational complexity in terms of the concealment 
speed. The speed is evaluated on a 1.20GHz Pentium-4 
PC. Due to space limitation, we only show the 
comparison result for the case of 25% block loss.  The 
lost blocks are in checkerboard pattern shown in Figure 1, 
and each lost block has a size of 8x8.  The results of other 
loss patterns are similar. 
 

 
Figure 1. “Bassharbor” image shown with 25% block loss in 
checkerboard pattern. 

    As can be seen from Table 1, the GSB and OASI 
approaches significantly outperform other three classical 
approaches on these natural images.  However, none of 
the two gives the best performance for all images, which 
indicates that the image characteristics of the blocks that 
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each of the existing concealment approaches is best suited 
for are considerably different.  This motivated us to go 
one step further and assemble a concealed image in which 
each concealed block is the better one selected between 
the GSB and OASI concealment results.  As shown in the 
last column (“Better-2”) of Table 1, this endeavor gives a 
higher overall concealment quality than using GSB or 
OASI alone.  The detailed selection is shown in Figure 2, 
where the white blocks indicate that OASI has better 
performance than GSB for concealing the corresponding 
blocks, and the black blocks indicate that GSB is better. 
  

Table 1. Concealment quality in terms of PSNR (dB) for 25% 
block loss in checkerboard pattern.  For each image, the scheme 
achieving the best performance among the first five schemes is 
highlighted with shade and bold font.  
 MDI POCS MSR GSB OASI Better-2 
Lena 32.28 29.49 29.20 34.43 35.12 35.73 
Babara 27.41 23.35 27.14 29.26 30.79 31.63 
Bassharbor 29.47 28.12 28.83 30.69 30.37 31.18 
Elaine 33.39 32.58 30.41 35.17 35.93 36.34 
Nickel 27.12 25.19 24.98 29.15 28.55 30.50 

 

Table 2.  Computation speed (seconds) for concealing the Lena 
image with a loss of 25% blocks. The scheme achieving the best 
performance is highlighted with shade and bold font. 

 MDI POCS MSR GSB OASI 
Lena 3.03 219.58 0.59 0.56 7.12 

 

 
Figure 2. Performance comparison of GSB and OASI on Lenna:  
white blocks indicate that OASI has better concealment 
performance than GSB, and black blocks indicate GSB is better. 

The Need of Classification   We have to, however, 
realize that picking the better one among the two is non-
trivial in practice.  This is because a concealment system 
would not have the original undamaged image to compare 
with. Available to a concealment system are only the 
survived pixels that surround each corrupted block. If we 
could establish before-hand the connection between the 
image characteristics of the survived surrounding pixels 
and the concealment performance that which one between 



GSB and OASI is better for the corrupted blocks, we 
could estimate which scheme is likely to perform better 
based only on the knowledge of survived pixels. This 
leads to our proposing a general classification-based 
concealment framework.  Developing concealment 
schemes under this framework would help us not only 
improve the concealment quality, but also speed up the 
concealment.  This is because according to our 
benchmarking result in Table 2, some high-performance 
schemes such as OASI have computational complexity of 
about a magnitude higher than other schemes such as 
GSB.  Using classification-based concealment allows us 
to perform expensive computations only when they can 
offer potential gain in concealment quality. 

3.  PROPOSED CLASSIFICATION-BASED  
BLOCK CONCEALMENT 

3.1   Support-Vector-Machine (SVM) Classifier   

    We formulate the choice of concealment schemes for 
each block as a supervised classification problem. Each 
error concealment method is considered as a class, and a 
feature vector is extracted from the pixels that surround 
an image block. In the training stage, we collect a number 
of feature vectors from training images, and label every 
feature vector xi with a ground-truth class corresponding 
to the best concealment method for the associated block.  
We train the classifier using these feature-class pairs.   
    We adopt Support Vector Machines (SVM) classifiers, 
as it can be boiled down to a convex quadratic 
programming problem with global optimal solutions in 
training and often exhibits good generalization 
performance [5].  For our two-class pattern classification 
problem that decides between the GSB and OASI 
concealment approaches, we start with a linear SVM.  
The linear SVM determines a linear discriminant function 
(parameterized by a vector w and a scalar b) that gives the 
maximum separation margin between the two classes of 
training data (equivalently to minimizing ||w||2). More 
specifically, we look for w and b to minimize ||w||2 subject 
to the following constraints: 
                       Yi ( wT xi + b ) - 1+ ξi  ≥ 0 ,                    (3) 
where xi is the i th training feature vector, Yi ∈{-1,1} the 
class index, and ξi ≥ 0 the slack variable [5]. 
    Nonlinear classification functions can be obtained by 
replacing a dot-product term in the SVM training by an 
appropriate kernel function, which is equivalent to 
mapping feature vectors to a higher dimensional space 
and then find a linear SVM classifier in this new space 
[5]. It is interesting to explore as future work what kernel 
function gives the best performance for our classification 
problem.  An effective alternative, as used in our work 
and detailed below, is to partition the feature space into 

several subsets and find a linear discrimination function 
for each subset.   
 

3.2   Algorithm Details 

Selection of Training Data   To ensure the reliability of 
training data, we select the training data only from the 
blocks on which the GSB and OASI schemes have 
significant performance difference.  In addition, since the 
GSB and OASI schemes may use different set of pixels 
surrounding a block, the feature vectors derived for 
classification should come from the union of the sets of 
pixels used by these two schemes. For example, GSB 
often uses two surrounding layers to extract the geometric 
structure information, while OASI uses four surrounding 
layers to compute the interpolation coefficients. The 
classification region should therefore include four 
surrounding layers of pixels.  For block size of 8x8, 192 
pixels are involved in classification. 
Construction of Feature Vectors   A feature vector 
should include the information that distinguishes the two 
classes. While the pixel values can be used directly as 
features, they often pose high computational complexity 
and require a sophisticated kernel function to ensure 
linear separability.  We propose a lower-dimension 
feature vector derived from pixel values as the follows. 
We first convert the four surrounding layers of pixels into 
a vector through a circular scanning order from outer 
layers to inner ones. We then partition the vector into 
segments of m pixels, and use “1” to indicate a busy 
segment and “0” a flat segment.  For example, 192 pixels 
surrounding an 8x8 block can be reduced to a feature 
vector of length 28.  For every 7 pixels, if the difference 
between the minimum and maximum values exceeds a 
threshold, we use “1” to represent these 7 pixels, and “0” 
otherwise.  
Classification and Concealment via SVM   We use the 
mySVM toolkit [6] to accomplish the classification task.  
mySVM is an implementation of SVM based on the 
optimization algorithm of SVMlight in [7].  To facilitate 
finding a reliable boundary separating the two classes 
over a wide range of feature values, we partition the 
feature space into n subsets according to the weight of a 
feature vector (i.e., the number of 1’s) and find one linear 
discriminant function for each subset.  As each 
discriminant function has 29 parameters, we arrive at a 
total of 29n parameters at the end of the training process.   
n=5 is used in our experiments. 
    To conceal a block in a test image, we construct a 
feature vector in the same way as in training, and feed it 
into the appropriate one of the n trained SVM classifiers 
according to the vector’s weight.  The classification result 
will then determine which concealment scheme to use. 



4.  EXPERIMENTAL RESULTS 

    We use the images of “Lena”, “Babara”, and 
“Bassharbor” to train the classifier, and use the images of 
“Elaine”, “Baboon”, “Bellflower”, and “Nickel” for 
testing.  The concealment performance is summarized in 
Table 3.  We can see that our proposed classification 
scheme outperforms both GSB and OASI, which are two 
best schemes in literature.  Even with our simple feature 
selection and classification, we have achieved quality 
improvement of up to 0.4dB in PSNR over the best 
performance by the existing approaches.  The only 
exception is the “Nickel” image, for which the proposed 
scheme can improve the visual quality for some blocks as 
shown in Figure 3, but has an overall PSNR of about 
0.1dB worse than GSB.  This is due to some special  
patterns in the “Nickel” image, which requires a richer 
feature and more sophisticated classification to yield 
more accurate classification result.  
 

Table 3.  Error concealment result on images with 25% block 
loss in checkerboard pattern. The scheme achieving the best 
performance for each image is highlighted in shade and bold. 
 GSB 

(dB) 
OASI 
(dB) 

Classif.-based 
(dB) 

Classif. 
Accuracy 

Lena 34.43 35.12 35.51 82.8% 
Barbara   29.26 30.79 30.83 82.0% 

Tr
ai

ni
ng

 

Bassharbor 30.69 30.37 30.84 79.4% 
Elaine 35.17 35.93 36.18 86.8% 
Baboon 26.11 26.48 26.54 70.9% 
Bellflower 33.27 33.70 33.74 66.3% Te

st
in

g 

Nickel 29.15 28.55 29.03 59.4% 

5. CONCLUSIONS AND EXTENSIONS 

    In this paper, we have presented a new, classification-
based spatial error concealment algorithm for images.  
Our proposed scheme takes advantage of two state-of-
the-art concealment schemes and adaptively selects the 

best suitable one for each corrupted block.  Using a multi-
subset linear SVM classifier, our proposed approach has 
outperformed the prior art in terms of the concealment 
quality and relatively low computational complexity. 
    Our proposed framework of classification-based error 
concealment is general and can be extended in many 
directions.  For example, we can incorporate more than 
two candidate concealment schemes, and explore 
different feature selections and other classification tools. 
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Figure 3.  Concealment results on the “Nickel” image: (a) zoomed-in view of the original image, (b) by the GSB concealment scheme 
with notable artifacts on the letters, (c) by the OASI concealment scheme with notable artifacts on the rim of the nickel, and (d) by the 
proposed classification-based scheme with reduced artifacts than GSB and OASI. 


