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Abstract— This paper discusses encryption operations that se-

lectively encrypt content-carrying segments of multimedia data

stream. We propose and analyze three techniques that work

in different domains, namely, a syntax-aware selective bitstream

encryption tool with bit stuffing, a generalized index mapping

encryption tool with controlled overhead, and an intra-bitplane

encryption tool compatible with fine granularity scalable coding.

The designs of these proposed encryption operations take into

consideration the inherent structure and syntax of multimedia

sources and have improved friendliness to communications, com-

pression, and computation.

I. Introduction

In the past decade, there has been significant progress in the
coding and communications technologies for digital multime-
dia. The security of multimedia information, however, remains
rather limited, which seriously curtails wider availability of mul-
timedia information and the commercialization of information
technologies. This paper focuses on protecting the confiden-
tiality and achieving access control of multimedia information,
which is one of the crucial security elements for many appli-
cations. Content confidentiality and access control is generally
addressed by encryption, through which only authorized parties
holding decryption keys can access content in clear text.

Traditional encryptions, which are primarily text based, treat
data as a character string or a bit stream and generally do not
utilize the inherent structures or the syntax of the data [1].
Perceptual multimedia data, such as image, video, and audio,
distinguish themselves from generic data in that they can be
represented in a lossy way with graceful quality degradation.
The transmission of multimedia is no longer limited to deliver-
ing the exact version of a data stream from sender to receiver,
but possibly involves such intermediate processing as bandwidth
adaptation, unequal error protection, and transcoding in uni-
cast, multicast, and broadcast scenarios over wired and wireless
networks [2]-[4].

As illustrated in Fig. 1, there are two straightforward places
to apply generic encryption to multimedia. The first possibility
is to encrypt multimedia samples before any lossy or lossless
compression (i.e. Stage#1 in Fig. 1). The main problem with
this approach is that encryption often changes significantly the
statistical and structural characteristics of the original multi-
media source, resulting in much reduced compressibility. The
second possibility is to apply encryption to the encoded bit-
stream after lossy or lossless compression (i.e., Stage#5 and #6
in Fig. 1) [5]. This approach introduces little overhead, but may
scramble the structures and syntax readily available in the un-
encrypted bitstream. These structures, often indicated by spe-
cial header/marker patterns or the context, would have enabled
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many processing desired in the intermediate network links, such
as bandwidth adaptation via transcoding, unequal error protec-
tion, and random access [2]-[4][6]. The obvious approach of
decrypting the stream, applying those processings, and then re-
encrypting the stream requires the encryption/decryption keys
to be possessed by the possibly non-trustworthy intermediate
links, which raises security concerns and is not desirable in many
applications. Applying generic data encryption directly to mul-
timedia information that often has large data volume also re-
quires a tremendous amount of computation resources that is
not be available in mobile devices [5].
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Fig. 1. Candidate domains to apply encryption to multimedia

Selective encryption, by which only a portion of the original
data are scrambled, has been proposed to alleviate the prob-
lem of high computational complexity. By its name, selective
encryption schemes only encrypt portions of multimedia data
stream that carry rich content. For example, intra-coded frames
and blocks of an MPEG video can be selected and encrypted
using a classic DES cipher [7] or its variations [5], DC and se-
lected AC coefficients in each block of a JPEG image or an
MPEG video frame can be shuffled within the block[8] or across
blocks [9], the codeword indices of the motion vectors can be
encrypted by DES [6], and the Huffman codewords of coeffi-
cients and/or motion vectors can be encrypted by alternating
among several Huffman codebooks in a cryptographically se-
cure fashion [10]. Unfortunately, very few existing approaches
are communication-friendly. And for those designed with com-
munication issues in mind, there have been little analytic study
on the tradeoffs such as the overhead in compressibility. Nei-
ther is there much comparison regarding encryption at different
stages of multimedia representation process.

In this paper, we investigate possible domains at which en-
cryptions can be applied. We consider quantized multimedia
transform domain, intermediate bit planes, and bitstream do-
main. We propose and analyze three encryption operations,
namely, a syntax-aware selective bitstream encryption tool with
bit stuffing (Sec. II), a generalized index mapping encryption
tool with controlled overhead (Sec. III), and an intra-bitplane
encryption tool compatible with fine granularity scalable coding
(Sec. IV). These operations can be used as building blocks and
combined to form an encryption system for multimedia data.
Our designs of these proposed encryption operations take into
consideration the inherent structure and the underlying syntax
of multimedia sources to achieve improved friendliness to com-
munications, compression, and computation.



II. Syntax-Aware Selective Bitstream Encryption
With Bit Stuffing

In this section, we discuss realizing selective encryption in
bitstream domain (Stage #5 and #6 of Fig. 1). We have
mentioned that headers and markers are special bit patterns
in a compressed bitstream for indicating different logical units
of the bitstream, providing side information, enabling random
access, and assisting synchronization in error-prone transmis-
sion [4]. A natural way to realize selective encryption is to
encrypt only the content-carrying fields of the multimedia bit-
stream, such as the fields of motion vectors and DCT coefficients
in MPEG video, and keep the structure and headers/markers
of the bitstream unchanged. Some parts of the encrypted mul-
timedia data could, however, become identical to certain head-
ers/markers, causing a potentially serious emulation problem
as raised in [6] when the multimedia data go through certain
network protocols, transcoding, and/or during error recovery.
For example, the intermediate processing nodes may wrongly
identify an encrypted version of a content-carrying segment as
a header/marker thus retrieving, skipping, or dropping wrong
fields. The content-carrying fields are often tightly interleaved
with headers/markers whose occurrence in a bitstream is quite
frequent. The introduction of an additional pair of markers in-
dicating the beginning and the end of each encrypted segment
will bring significant overhead in bitrate.

We propose to apply bit stuffing in conjunction with the
above selective bitstream encryption to overcome the emula-
tion problem. Let [p1, ..., pn] be a bit pattern with which the
encrypted content-carrying field is to avoid emulating. When-
ever we encounter a segment in an encrypted content-carrying
field [bi+1, bi+2, ..., bi+n−1] that is identical to [p1, ..., pn−1], we
insert a complement bit pn

c between bi+n−1 and bi+n. This will
guarantee no emulation of [p1, ..., pn] in the encrypted content-
carrying field. The end-user will perform inverse stuffing by
deleting pn

c that immediately follows a pattern of [p1, ..., pn−1],
then perform decryption on the content-carrying fields. The
selection of the pattern [p1, ..., pn] should also avoid generat-
ing new emulation at the following bitstream segments after bit
stuffing.

Assuming each encrypted bit is equally likely to be 1 or 0 and
independent to each other, we can show that the expected rela-
tive overhead of using bit-stuffing to avoid emulating [p1, ..., pn]
is approximately 2−(n−1), which is 0.8% for n = 8 and 3×10−3%
for n = 16. This implies that the overhead is almost negligi-
ble for reasonably large n. If there are more than one header
or marker to be avoided emulation and if they do not share a
relatively long prefix, we will need to perform bit stuffing with
respect to each pattern and the expected overhead will increase
linearly with respect to the number of such headers/markers.

The above calculation shows that bit stuffing technique pre-
vents header/marker being emulated by encrypted content-
carrying field at a cost of very small bitrate overhead. In such
a selectively encrypted stream with bit-stuffing, if headers and
markers alone are sufficient to indicate layered coding struc-
tures, error protection demands and/or content structures, in-
termediate processing units will then be able to parse these
headers/markers from the selectively encrypted bitstream and
use them to accomplish such tasks as bandwidth adaption (by
ripping of enhancement layers), unequal error protection, and
random access. It is, however, important to notice that while
bit stuffing itself introduces little bitrate overhead, the intensive

use of headers and markers bring a non-trivial amount of over-
head to video encoding [4]. This implicit overhead should not be
ignored in a fair comparison with other encryption approaches.

Additionally, format compliance is not preserved by syntax-
aware selective bitstream encryption with bit stuffing. Taking
MPEG video as an example, bit-stream domain encryption of
motion vector fields and DCT coefficient fields will in general no
longer be a valid sequence of valid codewords conforming to the
MPEG standard. Bit stuffing will also lead to non-compliance in
syntax. There have been interests recently on studying how to
encrypt multimedia data in such a way that the encrypted data
can still be represented in a meaningful, standard-compliant
format [11]. Such encryption techniques are likely to emerge
from elegant combinations and interplays between multimedia
signal processing and contemporary cryptography. They are
useful for secure multimedia communications that prefer han-
dling standard-compliant streams and/or performing more so-
phisticated processing than what a reasonable number of head-
ers/markers can help [6]. In the following sections, we propose
an index mapping encryption tool generalized from a work by
Wen et al. [6] and a new, bit-plane encryption tool compatible
with fine granularity scalable coding. We are particularly inter-
ested in how much price in terms of compressibility these tech-
niques have to pay to achieve standard-compliant encryption.
We will answer this question through analysis and simulation.

III. Generalized Index Mapping with
Controlled Overhead

A. Encryption via Index Mapping & Generalization

In [6], Wen et al. proposed a standard-compliant encryption
operation by assigning to each variable-length-codeword (VLC)
a fixed-length index, encrypting the indices using a standard
block or stream cipher, and finally mapping the encrypted in-
dices back to codeword domain. Wen’s approach would work
well with such codes as Huffman codes and Golomb-Rice codes,
which associate each symbol in a finite set with a unique code-
word of integer length. However, the application of this en-
cryption tool to VLCs that allow fractional codeword length
per symbol, such as the arithmetic codes, is difficult. In addi-
tion, analytic study is not available regarding the overhead in
compressibility introduced by encryption.

The first problem can be overcome by extending the index
encryption idea so that the encryption can be applied directly
to symbols that take values from a finite set before getting into
VLC codeword domain. This may include working with quan-
tized coefficients, quantized prediction residues (Stage #3 in
Fig. 1) and run-length coding symbols (Stage #4 in Fig. 1). As
a simple example, we consider the symbols come from a finite
set {A, B, C, D} and the symbol sequence to be encrypted is
“ABBDC”. We first assign a fixed-length index to each symbol:
A→[00], B →[01], C→[10], D→[11]. We then convert symbol
sequence to index sequence “00 01 01 11 10”, and encrypt the
index sequence using an appropriate core encryption algorithm
such as a stream cipher with a one-time pad [0100 1011 1001
...]. Finally we convert the encrypted index sequence “01 01 11
00 00” back to symbol sequence “BBDAA”. After encryption,
any appropriate VLC coding can be applied on the encrypted
symbol sequence. Index encryption may also be extended from
scalar to vector, where N symbols can be treated as a whole
in index assignment and encryption, as long as the possible N-
dimension vector values form a finite set. Block ciphers with



high cryptographic strength, such as the DES, the AES, or the
RSA public-key encryption [1], can also be used as the core
encryption algorithm to encrypt concatenated indices.

In the next subsection, we will address the second problem of
the analysis and control of overhead.

B. Analysis & Control of Overhead

The encryption’s impact on compressibility can be quanti-
fied by the changes in average code length before and after en-
crypting a sequence of symbols. Many multimedia standards
provide default entropy codebooks, which are obtained from
a set of representative signals and are used most of the time
for the simplicity of implementations. We assume that the
probability mass function of the symbol prior to encryption
is {pi}, that of the symbols after encryption is {qi}, and the
code length designed for distribution {pi} is {li}. If {qi} is a
piecewise uniform approximation of {pi}, i.e., for each subset
Sj of a non-overlapped partition of symbol’s range, we have∑

i∈Sj
pi =

∑
i∈Sj

qi = |Sj |q(Sj) and qi = q(Sj) for all i ∈ Sj ,

where | · | denotes the cardinality of a set. Assuming encryption
changes the symbol distribution from {pi} to the above {qi} and
the same codebook of code length {li} is used both before and
after encryption, we can show that the changes of the expected
code length δL is

δL =
∑

i

(qi − pi)li = D(p||q) + D(q||r)−D(p||r), (1)

where D(·||·) represents the Kullback-Leibler divergence, and r
denotes a probability distribution of P (R = i) = 2−li/

∑
k
2−lk .

The rationale of the above formulation lies on the fact that en-
cryption tends to flatten the probability distribution of a source:
we can show that the ciphertext symbols from a truly random
one-time pad is uniformly distributed regardless of the source’s
distribution before encryption; and uniform distribution is often
a good assumption for ciphertext produced by many other con-
temporary ciphers. If encryption is done on an index represent-
ing the full range of symbol values, the distribution of ciphertext
symbols, q, will be uniform over the entire range. Alternatively,
as illustrated in Fig. 2, we can partition the range of symbol
value into mutually exclusive subsets {Sj} and restrict the en-
cryption of a symbol x ∈ Sj to be done within the subset, i.e.,
Encrypt(x) ∈ Sj . The distribution q will be a piecewise uniform
approximation of p. Restricting the encryption output to be in
the same subset as the input symbol, the complexity for brute
force attack per symbol is reduced from 2C(S) to 2C(Sj). On the
other hand, the overhead is also reduced because the distance
from the piecewise uniform distribution q to the original distri-
bution p is closer than that to a completely uniform distribution
in the Kullback-Leibler divergence sense. Thus by controlling
the set partitioning, we can have a tradeoff between the secu-
rity and the overhead. In addition, Eq. 1 also indicates that the
optimality of the codelength {li} designed for probability distri-
bution {pi} affects the changes of the expected code length after
encryption. If the code is optimal for {pi}, i.e., li = − log pi,
then D(p||r) = 0 and Eq. 1 becomes δL = D(p||q) + D(q||p).

We now use the DC coefficients of a JPEG-like representa-
tion of the 512× 512 Lenna image to demonstrate the proposed
approach. The DC coefficient in each block captures collec-
tively the coarse information of an image and is differentially
encoded to reduce the redundancy among them. For natu-
ral images, DC differential residues are approximately Lapla-
cianly distributed with very small probability outside the range
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Fig. 2. Encryption via index mapping within subsets gives piecewise

constant approximation of source distribution and controlled overhead.

of [−63, 64]. Before encryption, the average code length for
encoding DCs is 5.78 bits. We apply the proposed generalized
index encryption to the DC differential residues within [−63, 64]
without further set partitioning. The index encryption is real-
ized via one-time pad, resulting in an average code length of
8.60 bits, or an increase of 2.82 bits. In a second test, we par-
tition the symbol range of [−63, 64] into two subsets [−31, 32]
and [−63,−32] ∪ [33, 64], and restrict the input and output of
index encryption to be in the same subset. Fig. 3 shows the
encryption result of the Lenna image 1. With set partitioning,
the overhead in average code length is reduced from 2.82 bits to
1.53 bits. In both cases the experimental results coincide with
the analytic results from Eq. 1 within ±0.01 bits.

Fig. 3. Encryption results on the Lenna image based on generalized index

mapping of DC differential residues: (left) original, (right) encrypted.

IV. Intra Bit-plane Shuffling

Fine granularity scalability (FGS) is desirable in multimedia
communications to provide a near-continuous tradeoff between
bitrate and quality. FGS is commonly achieved by bit-plane
coding, as used in the Embedded Zero-tree Wavelet (EZW)
coder and the recently adopted MPEG-4 FGS coder [12]. We
shall use MPEG-4 FGS as an example and the extension to
other FGS coder is quite straightforward. As surveyed in [12],
FGS is a functionality provided in the MPEG-4 streaming video
profile. A video is first encoded into two layers, namely, a base
layer that provides a basic quality level at low bit rate and an
enhancement layer that provides refinement. The enhancement
layer is encoded bitplane by bitplane from most significant bit-
planes to least significant ones to achieve fine granularity scal-
ability. Each bitplane within an image block is represented by
(Ri, EOPi) symbols, where Ri is the run of zeros before the ith

“1”, and EOPi is a flag indicating whether the current “1” is
the last “1” bit in the current bitplane. The run-EOP symbols

1Encrypting DC alone is not secure enough as an attacker can still get the edge

information by setting the DCs to constant and observing the resulting image.

We encrypt DC only in this experiment for the purpose of demonstrating the

proposed approach as one potential operations. A complete encryption system

should encrypt both DCs and other information.



are encoded using variable-length codes and interleaved with
sign bits in an elegant way.

To encrypt FGS encoded enhancement layers, we can apply
the index-based encryption discussed in the last section to each
run-EOP symbol. The overhead is rather independent from
symbol to symbol and can be analyzed using Eq. 1. In the
remaining part of this section, we propose an alternative en-
cryption by shuffling each bit-plane according to a set of cryp-
tographically secure shuffle tables. We will demonstrate that by
allowing the joint consideration of symbols in the same bitplane,
the encryption via intra-bitplane shuffling introduces smaller ex-
pected overhead.

More specifically, we perform random shuffling on each bit-
plane of n bits and the shuffled bitplane will then be encoded
using run-EOP approach. For example, a bitplane “0 1 0 0
0 1 0 0 0 0” having n1 = 2 bits of value “1” out of a total of
n = 10 bits will lead to

(
n
n1

)
= 45 different permutated patterns.

An important property of shuffling is that the set of elements
before and after shuffling are identical. For intra-bitplane shuf-
fling, this implies that the number of ones is preserved hence
the number of run-EOP symbols for representing the encrypted
bitplane is unchanged, ensuring no overhead coming from the
increase of run-EOP symbols. In addition, assuming for a spe-
cific n-bit bitplane, each of the n! shuffles is equally likely, we
can show that the expected number of occurrences that the run
of zeros before a “one” equals to d is

E(Nd|n1) =

(
d−1∏
k=0

(1− n1

n− k
)

)
n1

2

n− d
. (2)

We therefore arrive at an expected histogram {E(Nd|n1)} in-
dicating the likelihood of getting different zero-run length d.
Shuffling can also be done in a larger spatial range than the
run-EOP encoding, for example, we can shuffle the same bit-
plane of n = 256 bits within a macroblock and then perform
run-EOP encoding in a smaller block of nB = 64 bits. In this
case, the expected zero-run histogram within an encoding block
will become

E(Nd|n1) =

d−1∏
k=0

(1− n1

n− k
) · n1

n− d
·
[
n1 −

(n− nB)(n1 − 1)

n− d− 1

]
.

From the histogram before and after encryption we can obtain
the expected overhead per symbol.

As a proof-of-concept, we experiment on the FGS encoded en-
hancement layer of two QCIF video sequences. One is the “Fore-
man” sequence with 10 frames, and the other is the “Carphone”
sequence with 100 frames. We use intra bitplane shuffling to en-
crypt each bitplane of the enhancement bitstream, where shuf-
fling is performed on a macroblock (n = 256) followed by encod-
ing of blocks (nB = 64). The expected histograms {E(Nd|n1)},
presented in Fig. 4, show that the experimental results match
the above analysis very well. The overhead for each bitplane is
determined by the overhead of each symbol and the number of
symbols in that bitplane (n1). For the “Foreman” sequence, the
relative overhead for encrypting the first three most significant
bitplanes, which provides sufficient visual scrambling, is 7.0%,
while the overhead by the index-mapping approach in Sec. III
is 14.3%. The overhead reduction is more significant for lower
bitplanes and when compared with applying generic encryption
directly to bitplanes.
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Fig. 4. Expected histograms of zero-run lengths after intra-bitplane shuf-

fling: solid line indicates the analytic result, and circles indicate the ex-

perimental result; the number of “1”s per macroblock (n1) is 28 bits,

which is the average of the 2nd MSB bitplane of the “Foreman”.

V. Conclusions

In summary, we studied selective encryption of multimedia
with a focus on communication and compression issues. We
identified a set of domains along the representation and commu-
nication process of multimedia where encryption can be applied,
and proposed three encryption operations. We first showed that
using bit stuffing technique, a bitstream domain selective en-
cryption prevents header/marker emulation problem at a cost
of little bitrate overhead. On the other hand, by moving the en-
cryption domain from bitstream to upper levels and therefore
preserving standard compliance, more sophisticated intermedi-
ate processing can be applied directly on the encrypted data.
Under such a framework, we proposed an encryption tool via
generalized index mapping, which can be applied to any scalar
or vector symbols with a finite value range. The compression
overhead can be adjusted and confined to a moderate amount.
We also proposed and analyzed intra-bitplane shuffling, which
is a promising encryption tool compatible with fine granularity
scalable coding.
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