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Stability Properties of Constrained Queueing
Systems and Scheduling Policies for
Maximum Throughput in Multihop

Radio Networks

Leandros Tassiulas and Anthony Ephremides, Member, IEEE

Abstract—The stability of a queueing neiwork with interde-
pendent servers is considered. The dependency of servers is
described by the definition of their subsets that can be activated
simultaneously. Multihop packet radio networks (PRN’s) pro-
vide a motivation for the consideration of this system. We study
the problem of scheduling the server activation under the con-
straints imposed by the dependency amoig them. The perfor-
mance criterion of a scheduling policy = is its throughput that
is characterized by its stability region C_, that is, the set of
vectors of arrival rates for which the system is stable. A policy
w, is obtained which is eptimal in the sense that its stability
region C_ is a superset of the stability region of every other
scheduling policy. The stability region C is characterized.
Finally, we study the behavior of the network for arrival rates
that lie outside the stability region. Implications of the resuits in
certain types of concurrent database and parallel processing
systems are discussed.

1. INTRODUCTION

E consider a queueing network model that is suit-

able for communication networks with interde-
pendent service components. The queueing network has
arbitrary topology and multiple servers. The servers are
interdependent in that they cannot provide service simul-
taneously. The dependency among them is reflected on
the constraints which specify exactly which subsets of
servers may be active simultaneously. For example, when
the constrained queueing system is used as a model of a
radio network, the servers correspond to the links and the
constraints disallow simultaneous transmissions for neigh-
boring links. We consider slotted time. At each time slot,
routing decisions are taken for the served customers and
eligible sets of servers are selected for activation. We
assume that these decisions are made in a centralized
fashion and are based on global knowledge of the queue
lengths in the entire network. We assume that buffering
at each queue is infinite. We consider the system to be
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stable if the queues do not tend to increase withuut
Lound. We wish to find control policies under which the
system is stable for given arrival and service rates. Indeed,
we characterize the region of arrival and service rate
vectors for which there exists some stabilizing policy, and
do find a policy which in fact stabilizes the system for ali
arrival and service rate vectors in that region. Such a
policy is in a sense optimal as far as throughput is con-
cerned.

Our main motivation for the consideration of this cc:i-
strained queueing network model is to study the resource
allocation problem in multihop radio networks. We are
interested in scheduled link activation schemes, as op-
posed to random access methods, for sharing a common
channel among neighboring nodes. In scheduled link acti-
vation, a sequence S,, t = 1,2,---, of sets of links which
may transmit simultaneously without conflicts is specified
(the schedule) and at each slot ¢ the links of the set §, are
allowed to transmit. The link activation scheduling prob-
Jem is to determine the sequence S, in a fashion that
optimizes some performance index. Most of the schemes
for the scheduling problem have the following form. A
sequence S;,"--, Sy of eligible link sets is selected and the
entire schedule consists of periodic repetition of that
sequence. Several approaches have been taken for the
determination of the basic schedule sequence S, S .
In [4], {6], [16], [18], and [20] different performance criteri:
are adopted and either optimal or suboptimal computa-
tion of S,,---, S, follows. Special emphasis has been given
in obtaining distributedly implementable algorithms for
the design of S,,---,Sy. In [19] the problem of optimal
design of a fixed (state independent) schedule is consid-
ered and results analogous to the golden ratio policy in a
single-hop network [10] are obtained. In [5] scheduling
schemes are considered where the set of activated links «*
each slot is selected based on the network state in that
slot. In this work, we consider dynamic link activation
scheduling where the activated links at each slot are
selected based on the queue lengths at all network nodes.
The maximum throughput policy that we obtain for the
constrained queueing model provides a link activation
method that stabilizes the network for all arrival rates for
which it is stabilizable.
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In addition to multihop radio networks, the constrained

peueing model is appropriate for other resource alioca-
fion problems as well. A model of a database with concur-
rency control and locking has been considered in [11],
(14]. and {15): the constrained queueing system ihui we
qudy in this paper captures that database model where
the constraints reflect the locking constraints of the
gatabase and the policy that we propose provides a
concurrenicy control algorithm that achieves maximum
throughiput. In [3], a generalized multiserver queuve is
proposed as a model of certain paraliel processing sys-
tems: that multiserver queue can also be modeled bv an
appropriate constrained queueing system.

This paper is organized as follows. In Section 1. we
describe the constrained queueing model. In Section 11,
we statc: the stability performance criteria and we present
the optimality results. In Section IV, the behavior of the
svstem in the instability region is investigated. In Section

V, we demonstrate how the constrained queueing svstem-

appropriately models multihop radio networks and certain
computer systems. A few words about the notation before
we proceed. The random quantities are denoted by upper
case letters; for the nonrandom guantities we resene the
Jlower case letters. Vectors are denoted by boldface char-
acters. A random process, that is, a sequence of random
variables indexed by time is denoted by the same symbol
as the random variables without the time index.

11. THE CONSTRAINED QUEUEING MODEL

We consider a network consisting of L nodes and N
links. The connectivity of the system is represented by the
directed graph G = (V, E), where V is the set of nodes
and E is the set of links (Fig. 1). Each link corresponds to
a server that serves customers residing at the origin node
of the link: after service, the customers are directed to the
destination node of the link. The origin and destinztion
nodes of link 7 are denoted by ¢(i) and A(i), respectively.
The terms servers and links are used interchangeablv in
the following. A customer may enter the network at any
node. 1ts destination is a subset of the network nodes in
the sense that as long as the customer reaches anv of
these nodes it leaves the system. Each customer reaches
its destination by appropriate routing through the net-
work. There are J customer classes which are distin-
guished by the destinations of the customers. The set of
destination nodes for class j is I/. At each node / cus-
tomers of all classes are queued. except of those classes |
for which node [ is a destination, that is / € V; (any
customer of the latter classes leaves the system as long as
it reaches node /). We consider slotted time. At each slot
t certain links originating from node [ provide service:
those are the active links at slot 7. Notice that the cus-
tomers are not committed to specific outgoing links of a
node / by the time they reach [/ but at the beginning of
each slot a decision is taken which customers (of which
classes) are allocated at which links. This decision corre-
Sponds to routing.
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Fig. 1. The connectivity graph of 4 constrained queueing network.

There are constraints in the simultaneous activation of
the serves in the sense that certain servers cannot provide
service at the same time. An activation set is a set of
servers which can be activated in the same siot. An
activation set is represented by its activation vector, that is
a binary vector with N elements; the /th element corre-
sponds to server I, and is eaval to 1 if server ¢ helongs t¢
the activation set and to () otherwise. The terms activation
set and activation vector will be used interchangeably in
the rest of the paper. The constraint ser S consists of all
activation vectors of the system; this set completely speci-
fles the activation constraints. We make the following
assumption about the structure of the constraint set which
is natural in the systems we consider.

C.1 Every subset of an activation set is an activation set
itself.

At the beginning of each slot an activation set of links
is selected that provide service during the slot. This is
referred as scheduling in the following.

A. Queue Length Dynamics

P

The servers are synchronized to start service at the
beginning of a time slot. At each slot, we control the
system through the selection of the activation set and of
the class of the customer assigned to each activated server
for service. The binary variable E; (1) indicates whether
server / 1s activated in slot ¢ or not and which customer
class it serves; if E; (1) = 1 server / is activated and serves
a customer of class j otherwise it is not. A customer
served by server 1 in slot ¢ completes service with some
probability m,. More specifically, we consider a binary
variable M,(¢) and a customer served by server { during
slot 1 completes service and moves from queue ¢{(/) to
queue h(i) if MJ(r) = 1; otherwise it remains at queue
g(i). The vector E(r) = (E;(t): i =1, N, j=1.-7),
indicates which class each server serves at slot 1. A binary
vector e = (e i =1, N, j=1.J) is a muliclass
activation vector if the corresponding vectors e/ = (e,
i=1:+N), j=1,J are such that ¥/_ e/ € S. Let &
by the collection of all multiclass activation vectors. At
each slot ¢ the vector E(7) is selected from the set &. The
decisions are based on the number of customers of each
class in each queue. This information is represented as
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follows. Let X,(¢) be the number of customers of class j
at queue [ by the end of slot ¢ (or the beginning of slot
t + 1). The vector X(¢) = (X, (e): L = L. L,j=1-J)
consists of the lengths of the qucucs of all customer
classes and is called the muiticlass qucue length vector at
slot 1. We denote by & the space where the vector X(t)
lies.

Consider a function g:2— &; if glx) =¢= (e 1=
1, N, j = 1,--,J) then denote the vector e/ by g/(x).
An activation rule is a function g:.2' — & with the prop-
erty that no servers are considered activated for nonexist-
ing customers, that is to say, the number of servers of
queue / activated by the activation vector g/(x) are less
than or equal to x;;; where servers of queue l are those
servers i for which g(i) = [ An activation policy is a
collection of activation rules g, ¢ = 1.2, ; atslot £ we
have E(1) = g(X(t — 1)). Until Section V, we consider
stationary policies that is policies which use the same
activation rule at each slot. In Section V, it will become
clear that we do not gain anything with respect to stability
if we consider nonstationary policics in addition 10 sta-
tionary. The class of all stationary activation policies is
denoted by H. When the network is operated by policy 7
with activation rule g, at slot ¢ + 1 we have E/(t + 1? =
g/(X(¢)) where E/(1) = (E(1): i = l.---, N) is the activa-
tion vector of class j at slot . The state of the system
evolves according to the following cquation:

Xi(t + 1) = X/(1) + R'M(t + DE/(r + 1)

+ At + 1) f =010 =10 (2.1
where M(¢) is a diagonal matrix, the ith diagonal element
of which is equal to M,(¢),X/(t) = (N (0: L= 1=, L)is
the vector of the queue lengths of class J by the end of
ot £, M) = (4,000 =1, L) is o vector with its [th
element A4,(t) being equal to the number of customers of
class j arriving at queue ! during stot ¢ and R’ is an
L % N matrix that reflects the connectivities of the queues
among themselves and with the destimation node of class
j. Matrix R’ is called the routing matrix of class j. The
element of R in its /th row and ith column is

1, if h(i) =1 and quene ! is not co::nected
= with the destination node of class I.
-1, if g(i) =1

0, otherwise.

We assume that {A,j(t)}fz.l,{M,(:Y;;,._ are i.i.d. sequences
of random variables for all (= Lo Lo j =170, 0=
1,---, N. Furthermore, ‘~e assume that the above processes
are independent among themselves and the second mo-
ments of the arrival processes E[.A;1/) are finite. Under
those statistical assumptions and for any policy in H the
queue length process {X()f; is a Markov chain. Finally.
we make the following assumption concerning the topol-
ogy of the network.

C.2 If a customer of class j, ma roach some queue Ly
then this customer may be forwardicd rom queue Iy to
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some destination node of class j, if an appropriate -
is selected. More specifically, if there is a sequenc
servers iy, i, such that E[Ag(i)j{0)] >0, Al
g(i. ), m=1,-,n—1 then there exists a sequen:
servers #,,--, i’ such that the queue g(i) receives nor
traffic of class j,, A(i,) = q(i, . ), m =1, n" — 1
there exists a link in E, from h({,) to the destin.
node of class j,.

111. STABILITY CONSIDERATIONS

The system is stable if the queue length process rez
a steady state and does not blow to infinity. Wher
Markov chain X is irreducible, stability of the syste
equivalent to ergodicity of X. Under the general asst
tions we made about the constraint set and the topc
of the queueing system we cannot guarantee irreducil
of the queue length process. In the general case, the -
space is partitioned in transient and recurrent states.
consider the system to be stable if all recurrent states
positive recurrent and the queue length process hits
recurrent states with probability one; that is, X does
remain in the set of transient states forever. In the fol
ing, we state our definition of stability after we r
some basic facts from Markov chain theory ([12]).

A state x is reachable by some state y if P(X(¢ +/
x[X(1) = y) > O for some n > 1. The states x and y ¢
municate if they are reachable by each other. A se
states R is closed if P(X(t + 1) =xX(t1) =y) =0 fo
y € R, x € R. The state space of the chain is partitic
in the sets T, R, R,,"--, where R, j = 1,2,---, are ck
sets of communicating states and T contains all st
which do not belong to any closed set of communica
states and therefore are transient. For any x € T assi
that X(0) = x and consider the time

, iftX(t) eT,ve>
T =

X min {¢t > 0: X(¢) & T}, otherwise

at which the chain hits some of the ses R/ for the
time when it starts at ¢ = 0 from state x. If Ux,_R; =
then clearly r, = ©. We can now define stability as
lows. _

Definition 3.1: The system is stable if for the qu
length process X we have

P(r, <=) =1 YveT 3

%

and all states x € U7 R; are positive recurrent.
The next theorem states sufficient conditions for
stability of the system according to Definition 3.1. Th
conditions involve the drift of a test (Lyapunov) funct
on the state space of the chain.
Theorem 3.1 Consider a Markov chain X(¢) with st
space 2. If there exists a lower bounded real funct
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.2 — Roan €~ 0 and a finite subset 7, of 2 such that

SVKU 1) - V@)X =yl = —e Ty e
(3.2)
EIV(X(r + DX(1) =¥l <= iy €70 (39)

then for the time 7, as defined in (3.1) we have

P(r,<=) =1 vxeT
and all states X & U7 R, are positive recurrent.

Proof: The theorem is a trivial extension of Foster’s
criteria for irreducible chains ({2]).

A. Scheduling for Maximium Throughpur

We would like the system to be stable for a wide range
of arrival rates. The arrival rate of class j to queue l,
E[A,j(r)] is denoted by a,. The multiclass arrival rate
vector a = (4 =1L, = 1,---,J) consists of the
arrival rates of all classes at all queues. We quantify the
performance of an activation policy by its stability region.

Definition 3.2: Stability. region C_ of policy 7 is the set
of multiclass arrival rate vectors a for which the system 1s
stable under 7.

We wish a policy =
Roughly speaking. the largest
better the policy 1s.

Definition 3.3: A policy 7, dominates another policy 7,
itC,. cC,.

If policy 7, dominates policy 7, the system is stable
under 7, whenever it is ctable under =, (Fig. 2). Two
policies are not always comparable since it may be that no
one dominates the other. This is the case for policies ;3
and =, in Fig. 2.

Definition 3.4: The stability region of the system is

to have a large stability region.
the stability region the

c= U C..

weC

The set C contains all arrival rate vectors for which there
exists a policy in H that stabilizes the system. An optimal
policy, that is, one which dominates any other policy in H,
should have stability region that is a superset of the
stability region of any other policy in H; therefore, it
should have stability region equal to C. Such a policy is
called a maximum throughput policy in the test of the
paper. Notice that since two policies may not have compa-
rable stability regions. it is not clear at all whether a

maximum throughput policy exists of not. One of our
main results is that an optimal policy indeed exists.

B. Maximum Throughput Policy

The policy 7, that we specify next achieves maximum
throughput. The activation rule for m, is denoted by
go(+); the vector E(1) = g, (X(z — 1)) is selected in three
stages. Let us denote the service rate EIM ()] by m;; the
service rate vector is m = (m; 0 =1, N).

Stage 1. For each server i a weight D,(1) is selected as
follows. For each class j and server i consider the follow-
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Fig. 2.

Stability region diagram.

ing quantity:

b (o) = (X (1= 1) =Xy (1 = D) it h(i) €V,
! {qu_,-(t—l)mi, if h(i) €V;.

Lei D) = max; - (D, ()} be the wveight of server !
and D() = (D{1): i = 1,--~. N) the weight vector at slot 1.

Stage 2. A maximum weighted activation vector ¢ is
selected from §

¢ = arg max{D7(r)c}.
ceS

If more than one vector ¢ achieves the maximum, ¢ is
selected arbitrarily among them.

Stage 3. Let j; be the class for which D (1) = D,{t) for
each server i; if more than one class satisfies the above
inequality then j; can be any of these classes. The multi-
class activation vector E(t) is as follows,

1. if & =1,j =7 and X, (1~ 1) s

E.(1) = greater than the number of servers

i that serve queue (i)
L0, otherwise.

Remarks:

1) If D, (¢) is greater than zero and server I Serves a
customer of class j during slot ¢ then the quantity D, j(t)
tends to be reduced. That is, the difference between
X (1) and X i) is diminished. Policy 7, selects E(1)
such that the servers i and the corresponding classes J for
which D, j-(t) is larger are activated. In other words, 7
tends for each class to equalize the queue lengths of the
same class in different network nodes, giving priority to
the servers and classes for which this difference is larger.

2) The implementation of policy g requires the solu-
tion of the following optimization problem at each time
slot 1:

max {D7(1)c} (3.4)

ceS
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‘The number of possible activation vectors (the cardinality
of ) is usually largely compared to the number of servers;
in fact, it is of exponential order with respect to the
number of servers most of the times. Therefore, the
solution of the above optimization problem by exhaustive
search of all activation vectors is usually out of the ques-
tion. In certain cases, the constraint set S has a specific
structure that can be utilized for the solution of (3.4). In
Section V, the constraint sets are illustrated for several
communication and computer systems. Finding efficient
algorithms for the solution of (3.4) given the constraint set
S in each particular application is important for the
implementation ot .

C. Characterization of the Stability Region

We proceed now to characterize the system stability
region C. The set €’ that we specify next plays an essen-
tial role in the characterization of C since, as it will be
shown later C' € C © C', where C is the closure of c’;
the closure of C' is well defined since C' is a subset of
RY7. The definition of C’ involves deterministic flows in
the graph & and the heuristic discussion that precedes its
definition provides some intuition.

Assume that the constrained queueing system is stable
under some scheduling policy 7 and that it operates in

steady state. Let f; be the rate with which customers of

class j are served by server i. Since the system is in steady
state, the rate with which customers of class j enter some
queue [ should be equal to the rate with which customers
of the same class leave the queue /; that is, the rates f;;
should satisfy the flow conservation equations in each
network node. Consider a multicommodity arrival rate
vecior a and lev a’ = (ay;: { = 1,--, L) be the vector which
contains the arrival rates of class j at all network queues
for j =1,---,J. The vector f/ = (fir i=1.N) that
consists of nonnegative numbers and satisfies the flow
conservation equations which are written in a matrix form
as

fJA

a’ = -R/f/ (3.3)
is called an a-admissible flow vector for class j. The vector
f={(f;:i=1,,N,j=1,--,J) that consists of nonnega-
tive numbers and is such that the corresponding vectors £’
satisfy (3.3) for j = 1,---,/ is an a-admissible multicom-
modity flow vector. Let F, be the set of all a-admissibie
multicommodity flow" vectors. associaied with a vector
f = F, is the vector f= ,ﬂf/ The component of f that
corresponds to server { is the total rate with which cus-
tomers are served by server i, irrespectively of their
classes: therefore, fis called rotal flow vector. The set '
is defined now as follows:

¢ = {:l: there exists f € F,, ¢ € co(S) such that for the

corresponding £ we have m; 'f, < ¢, if f, > 0 and

Fepif e =0l
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where cot ) the convex hull of the constraint set S. The

closure of C' is characterized in the following lemma.
Lemma 3.1 The closure C’ of C' is as follows:

eexistsan f &

5'={a:ther F,.andac € co(S),

such that M~ 'f < c}
where M is the diagonal matrix with ith diagonal element
equal to 71, i = 1.+, V.

Proor: [t appears in the appendix.

D. Optimality Results

The optimality of 7, and the characterization of C are
stated in this section. Two lemmas precede the theorem,
In the following lemma, we show that under =, the
system is stable in C'. It is shown that a quadratic func-
tion of the queue length vector satisfies the conditions
(3.2) and (3.3) therefore, stability follows from Theorem
3.L

Lemma 3.2
everva & '

: Under policy m, the system is stable for

ccc,.

Proof: It appears in the appendix.
Lemma 3.3: If a € (C'), then the system is unstable
for anv policy in H.
Proof: It appears in the appendix.
Policy =, achieves indeed maximum throughput as it is
stated in the following theorem.
Theorem 3.2: The set C’ characterizes the system stabil-
ity region in the sense

CcCcC
and for the stability region of policy m, we have
¢ c Cﬁn cCc Eﬂ‘o

Proof: By definition of the system stability region we

have € < C and from Lemma 3.2
cCcC, cC. (3.6)
From Lemmas 3.2 and 3.3 we have the following:
cC c 5‘_,”. (3.7)
The theorem foliows from (3.6) and (3.7). 2

Remarks: B

D) From the first part of Theorem 3.2 we have ¢’ — C
c "= C'. Tt is argued in the following that C' — C' 1
the boundary of C" which is a surface (has no inteiior‘f in
the space where a lies. We claim that fornoa € C' - -
there exists no ball centered in a which belongs to ¢’ — C".
If a belongs to €' — ' then da does not belong to C' for
any 3> 1. This is because if éa e C then from the
definition of ¢’ and Lemma 3.1 we have that a belongs =0
€' In this case a does net helong to ©F — 7 which i+ 1




3 of Theorem 3.2 determines ¢ within a surface in the
spacc where a lies. therefore, provides complete charac-
erization of the stability region for any practical purpose.
gimilarly. part b implies that C_ differs from C at most
by @ surface therefore. 7, achieves optimal throughput.

2} In the definition of C'. the condition {or & pair a of
grrival und service rate vectors to belong to ¢’ is an
existential one. It is desirable to have an algorithm to
decide if a particular pair a belongs to C. Whether an
efficient algorithm exists or not for this problem depends
highly on the structure of S. This problem has been
studied in a different context in {1) and [7] for two specific
constraint sets. For a constraint queueing system that
corresponds to a packet radio network with no secondary
interference tolerance (in the next section both the radio
network and the corresponding queueing system are spec-
ified), deciding whether an arrival rate vector a {(m; = 1.
j=1,--.N) belongs to C’ or not is an NP-hard problem
as it has been shown in {1]. When secondary interference
is tolerated. the corresponding problem has been shown
in [7] to be solvable by an algorithm of polynomial time
complexity.

3) In the above study of the stability regions we did not
take into account the time which is spent in the concen-
irotion and disseination of conol information as well
as on the computation of the activation vector in every
slot. If a time equal to a fraction f of the slot length is
needed for the above functions then the transmission of &
packet needs 1 + [ slots. Clearly. in this case an arrival
rate vector a belongs to the stability region of the system
if the vector (1 + f)a belongs to C as it has been defined
earlier.

IV. BEHAVIOR OF THE SYSTEM UNDER
NONSTATIONARY POLICIES

In this section, the behavior of the svstem under non-
stationary policies is studied. We focus on systems with a
single class of customers and we show that for arrival
rates in (C)¢ the total number of customers in the system
grows to infinity a.s. for any possible scheduling policy.
Since there is a stationarv policy that stabilizes the system
within C’ the above result implies that we do not gain
anything in stability by considering nonstationary policies.

Consider a system with one class of incoming customers
and assume that the service time of a customer is equal to
one slot that is M, (1) = 1 as. fori =1, N, =12 .
Let us denote by G the class of all policies = = {gJ/_;
where g, is some rule for selecting E(r) basec on the
whole history of queue lengths up to time . Since we have
just one class of customers. we will denote the unique
arrival rate vector and queue length vector of the class by
a and X(1). respectively, in the following: the multiclass
activation vector E(7) at slot 1 coincides with the activa-
tion vector for the unique customer class and a multicom-
modity flow coincides with the corresponding total flow
vector and both vectors are denoted by f. The following
theorem is the main result of this section.

T !

Theorem 4.1: For every policy w € G and arrival rate
vector a € C¢ the total number of customers in the svs-
tem T X (1) grows to infinity

L
[lirrl YA (ry == as. (4.1)
=1
In the proof of the theorem we use some results from
deterministic network fiow theory on a flow network that
corresponds to the constrained queueing system. We
briefly state that next. For more details the reader is
referred to [17]. v _

For each arrival rate vector a and flow vector f, we
consider a network N, that consists of a graph Y =
(17. E), specifying the topology of the network and a
capacity assignment to the edges C it E — R™. Graph Y
is very similar to the tonolegy graph of the queueing
network. The set of nodes I contains one node 7 for each
gueue ! of the network, an orginator node o and a
terminal node d. The set of edges E contains one edge
(1. j) for each server that serves queue / and directs traffic
1o queus j. one edge /,d) for each server that serves
queue [ and directs traffic out of the system and one edge
(0.1) for each queue /. The topology graph Y is the same
for zl] vectors a and f. The capacities of the edges depend
on the vectors a and f as follows. Each edge that corre-
spords to server k has capacity f;: each edge (0,1) has
capacity a,. The vector g = (g;:7 € E) which is such that
0 < g, < C,(i) and which satisfies the flow conservation
eguations

Yog= Y g ifleW-{od})) (42
i terminates i originates

ai / at l

is a feasible fiow vector for the network N,;. Let Q. be
the set of feasible flows. The flow transfer g of a flow
vector q is defined by g = L= 1q,,.,,- We need to consider
the maximum flow transfer over all feasible flows in Q.
That is, denoted by

max g (4.3)

Gar =
qE€ Qar

and is called maxflow in the following. An alternative
characterization of the maxflow, which we need in the
foliowing. is given by the maxflow-mincut theorem. We
need the notion of a cut to state that theorem. A cut
(W, W) of the network N, is a partition of V" such that
o € W and d € W'. The capacity C,,((W,W")) of the cut
(W.1"") is defined as the sum of the capacities of the
edges which are directed from W to W. (We denote both
the capacity of an edge and the capacity of a cut by
C,().) A mincur of the network N, is a cut of minimum
capacity. In the following (W, W'),, denotes a mincut of
N,; and W, Wy refer to the sets W, W', respectively, of
(W W'y
Maxflow-Mincut Theorem ([1 71):

Gar = Cor (W, W' )ar).

The next lemma precedes the proof of Theorem 4.1.
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Lemma 4.1: 1f a = (C),
such that

then there cxists £, &€ co(S)

L
Yoa,— max C,((W. W)
[=1 t=cols)
L
=Y a = C, (W, 1)) > 0.
Proof: Since the set of edges {(o,): [ = 1. L} is a

cut with capacity T ,a,, for every f € co(§) we have the

following:

1=

a, = max C,({(W. W ).

! )
/ f=colS)

(4.4)

It is enough for the proof of the lemma to show that the
equality in (4.4) does not hold and that the maximum is
actually achieved. The capacity of a cut is a continuous
function of f. The capucity of a mincut C (5. ")) is
continuous in f as a maximum of finitely many continuous
functions. Since C,, (W, W"), ) is continuous in f. its maxi—
mum value when f & co(§) is achieved for some f,

co(S). It is enough to show that ¥ h]_la, > C (VW ),f )
> 0. Assume that C, (W, W', ) = L a,. Thaen, from

the maxflow-mincut theorem, there exists q° € Q¢ such
that

L L

S ‘1'(2;41) = Caf‘.,((W’ W'at,) = Z a. (4.3)

=1 =1
Since g” = Q.. wehave 0 < ¢,y <a /=1, Landin
view of (4.3), we have

g, n=a; i=1L L. (4.5a)

From (4.32) and the flow conservation equations (1.2)
which should be satisfied by qY, we conclude that the
clements of ° that correspond to the servers (recall that
some of the links of Y correspond to the servers). consti-
tute a vector that belongs to F,. That vector belongs to
co(S) as well, as it is impiied by the capacity constraints
and the fact that £, € co(S). This is a contradiction since
ae(C). &

Corollary 4.1: There exists an e > 0 such that for every
f € co(S), we have

Ya-ex X
W i=Wy. je W,

i=0(i.j)=E

fu RN

Proof: From Lemma 4.1 we have the following:

L
Y. a;, — max C,
[=1 JEeols)

l/ - C‘.\f((Wr W,)nf)

v

(W ar)

Jt

e

0

=¢e> 0. (4.6)

In the left-hand side of (4.6) the capacities of the forward
TN L ovh

edoes of (1 WoAarioinats fram a cancal e seivh
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the corresponding a's and we have

which completes the proof of the corollary. O
Now we proceed to the proof of Theorem (4.1).
Proof of Theorem 4.1: We show first the following:

L
Y X(r)= min
=1 e S N EYY,
For each O < {1,

T X

leQ -Q

-, L}, from (2.1) we have

Y X (e~ 1)+ ¥ (RE() ~ L Al1).

leQ I

L=}

(4.8)

Each edge which has both end nodes in @ contributes a |
and a —1in ¥,. ,{ RE()),, each edge directed to a node
in Q from a nodv outside of Q contributes a 1 and each
edge directed from a node of Q to a node out of ¢

contributes a — L; hence, we have

€0 £0.j€Q ’
(l.))gE

where £, ;{z) deivics the compouent ot E(/) that corre-
sponds 10 the link (/, ). From (4.8) and (4.9) after iterative
substitutions we get the following:

LA - X E )

(=0 r=1 1120

Consider the vector A(z) = (1/6)TL_ E(7) that belongs 1€
co(8) and the flow network N, ,,. From Corollary 4.1 w¢
get the following:

v Ag () <

2 a, — € (4.11)

=1,

AN

where ¢ is as defined there. From relations (4.10) and
(4.11) we get the tollowing:

(A7) —a) =<

Y oxn=Y | T
r=1{

)
=i \WE=g!
[—"n\\:) “’VJ\\H

that shows (4.7). For any set Q < {L.+, i} the raniom

P NN A [ I | E . L
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with expected value e > 0 hence, we have the following:

lim XI:(

=% 1=

L (A(r) —a)+ 6) =o  as.
leQ

vQ e {1,-,L}. (4.12)

From (4.7) and (4.11) we get (4.1). O

Remark: A similar result can be obtained in the same
manner for the case with multiple classes of traffic. The
graph Y of the corresponding flow network should contain
one node for every network node and traffic class of the
constrained queueing system.

V. APPLICATIONS

In this section, we present some practical systems for
which the constrained queueing system is an appropriate
model. Before we proceed to specific examples of con-
strained queueing systems we discuss one class of activa-
tion constraints which are encountered in several practical
svstems: those are -the constraints of the conflicting pair
_type. In those kinds of constraints, certain pairs of servers,
the conflicting pairs, are specified: no two servers that
constitute a conflicting pair can be activated simultane-
ously. An activation set is any set of servers that does not
include any conflicting pair of servers. In this case, the
constraint set has a nice representation. Consider an
undirected graph G = (I7. E) where V is the set of servers
and E contains a link (i, ) if servers [ and j are a
conflicting pair. The constrzint set contains all indepen-
dent sets of nodes, that is, all sets such that no two nodes
of the set are connected by a link. If the constraints are of
the conflicting pair type, then the solution of the opti-
mization Problem 3.4 is equivalent to the computation of
the maximum weighted independent set of the graph that
represents the constraints.

A. Multihop Radio Networks

A radio network consists of N nodes the radio connec-
tivities of which are specified by the topology graph G =
(V, E). Each node of V corresponds to a radio node and a
directed link (v, w) from node ¢ to node w denotes that
node w is within the transmission range of node r. A
node v may communicate directly with node w if node w
i within the transmission range of node v; otherwise the
message from node v has to be forwarded to node w
through other nodes. A link of the topology graph corre-
sponds to a radio link. A packet entering the system at
some node i may have as eventual destination any node of
a set of nodes S; in the sense that whichever node of §;
the packet reaches it leaves the system. This assumption
corresponds to the case where the actual destination of
the packet is some node outside of the radio network
which is connected through wired link connections with
all nodes of §;. Therefore, after a packet reaches a node
of §; it does not need the resources of the radio network
any more. We consider a multidestination system with J
sets of eventual destinations S;,---,S,. Notice that two
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destination sets §; and §,, may overlap. We distinguish
the packets in different classes according to their eventual
destinations. The packet length is constant and the system
is slotted with slot length equal to the packet length. The
transmissions are synchronized to start in the beginning of
a slot. At each slot, t A4,;,(¢) packets of class j arrive at
node i from outside. There are constraiiits in the simulta-
neous transmissions of neighboring links. Those con-
straints depend on several different factors; some of them
are the number of transceivers per node, the signaling
forms used, the available frequency bands etc. The con-
straints vary in different networks. Two typical conflict
constraints are the following:

1) If there is a single transceiver per node then at each
time instant node { may either transmit to exactly one
other node j or receive from exactly one other node j
without conflicts.

2) If there is a single frequency band then the transmis-
sion of node i to node j is received without conflicts only
if all the other nodes that have in their range node j are
silent.

In a network with a single frequency band and one’

' transceiver per node both constraints should be satisfied

at each time in order to have conflict free transmissions.
We refer to those networks as networks with no secondary
interference tolerance. If spread spectrum signaling is
used, then a node which is within the transmission range
of several transmitting nodes may lock in the transmission
of one of them which receives without interference from
the others. In this case, the second constraint is not
necessary for conflict free transmissions and we say that
secondary interference is tolerated. Any set of links can
transmit simultaneously without conflicts if the conflict
constraints are satisfied; any such set is called a transmis-
sion set. When secondary interference is tolerated, trans-
mission set is any set of links such that no two links of the
set share a common node; any such set is a matching of
graph G.

The radio network is modeled by a constrained queue-
ing system with |V| queues and |E| servers. Each queue
corresponds to a network node and each server to a radio
link. There are J customer classes; each class contains
packets with a specific destination. The service process
{M{(0)f-_, of a link i has the following interpretation. If
link i transmits at slot ¢ the packet is correctly received if
M,(1) = 1, otherwise, it is lost and has to be retransmitted.
Note that since we select the transmitting links at each
slot such that conflicts are avoided, the possible packet
losses which are modeled by the service process are due
to channel inefficiencies. A set of servers constitute an
activation set if the corresponding set of links of the radio
network is a transmission set. The topology graph G' =
(V', E') of the constrained queueing system is very similar
to G. The set of nodes V' is the union of V] and ¥
where V] is identical to V/ and V, contains one node for
each packet class. The set of links is E' = E, U E; where
E' is identical to E and Ej contains a link (r',w) from
node v € V, to node w &V, if node v of the radio
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network belongs to the destination set S; of the class of
packets that correspond to node w € V. When secondary
interference is tolerated the constrained set § contains all
matchings of G where the weights are updated at each
slot.

B. Databases with Concurrency Control

In databases where concurrent processing of several
transactions is possible a control mechanism is needed to
prevent contlicting transactions (transactions which may
trv to alter the same items of the database) from being
executed simultaneously. The constrained queueing model
that is considered provides a model for concurrent pro-
cessing in databases and the constraints in the simultane-
ous server activation captures the constraint in the simul-
taneous processing of conflicting transactions; further-
more the maximum throughput policy m, that we have
specified earlier provides a concurrency control mecha-
nism that achieves maximum - throughput. The following
model for databases with concurrency control has been
considered in [11], {14}, and [15].

The database consists of N items. The processing of a
transaction requires a set of the items of the database;
some of these items need to be exclusively allocated to
the transaction while the rest may be used by several
transactions simultaneously as long as no transaction de-
mands them exclusively. A transaction j specifies by two
disjoint sets of items W, and R, where W is the set of
items that should be exclusively allocated (locked) during
the processing of j and R; the set of items that need not
be exclusively locked by j. Two transactions j and [ may
be processed simultaneously if no transaction needs to
lock exclusively the items which are needed by the other
transaction: that is, the two transactions may be processed
simultaneously if

(W, oWy u(W,nR) Y (W,NR)Y=O. (3.1
There are J different transaction classes. Each class is
characterized by the set of items that ihe cransactions
need to lock exclusively and nonexclusively. Transactions
of each class are generated according to Poisson point
processes. A transaction may be queued for processing if
it cannot be processed at the time that it is generated.
Assume that the processing time of a transaction is con-
stant and the same for all classes. The processing of all
transactions is svnchronized to start at the same time. At
the time instant that a new processing phase is initiated, a
decision is taken which et of nonconflicting transactions
should be selected; this decision can be based on the
number +f transactions of each class which are in the
system at that time. The above database model corre-
sponds to a constrained queueing system with J parallel
queues. J servers one for each queue and J customer
(transaction) classes. Each queue i receives customers of
class i only and a served customer is always routed out of
the systam. Activation set is any set of servers that senve
nonconflicting transaction classes. Note that the con-
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straints in this case are of the conflicting pair type. The
policy 7, selects for processing at each slot the eligible
set of transaction classes for which the sum of queue
lengths is maximum. The stability region of the system is
equal to the convex hull of the constraint set S.

C. Parallel Processing

The generalized muitiserver queue has been proposed
in [3] as a model for certain parallel processing systems.
The multiserver queue has N servers; the customers
arrive with rate A; each customer requests to Sngage a
random number & of servers (processors) for its service;
the arrival rate of customers that request & servers is Ap,
where ), p, = L. The total number of servers requested
by the customers which are served simultaneously should
be less than or equal to N at each time instant ¢.

The multiserver queue as specified above corresponds
to the following constrained queueing system. There are
N classes of arriving customers and NV queues. Customers
of class k arrive exclusively in queue & with rate Ap, and
they correspond to the customers of the multiserver queue
that need to engage k servers. There are N servers at
cach queue. After service completion a customer leaves
the system. The element of an activation vector i that
correspond to server m of queue [ is denoted by i,,. The
necessary and sufficient condition for a binary vector with
N? elements to be an activation vector is

N N .
Zl( Y i,m) < N.
=1

\\m:l

/

In [3]. under the assumptions of stationarity and ergodic-
ity of the arrival processes and the service times a
scheduling policy that stabilizes the queue is obtained.

Under the assumption of Fomsson arrivats and constant
service times, the policy 7, that we propose here stabi-
lizes the svstem as well. The assumption about the statis-
tics of the arrival and service processes are more restric-
tive in the latter case. The corresponding policy 7, though
stabilizes the system without knowledge of the parameters
{ p.e, py)- The knowledge of these parameters is neces-
sary for the stabilization of the system by the policy
proposed in [3].

V1. DIsCUSSION

In this paper. a constrained queueing system has been
considered that models the resource-allocation problem in
multihop radio networks. A maximum throughput policy-
7, has been obrained and the stability region of the
svstem has been characterized. Policy 7, decides which
servers are activated at each slot. The decisions are taken
in a centralized manner, therefore, the queue length
information needs to be concentrated; furthermore, the
computation of the maximum weighted activation set can
be complex depending on the structure of the constraint
set. The centralized nature of the policy makes its imple-
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mentation difficult in cases where the state information is
distributed in different nodes like in the case of radio
networks. It is of interest to find simpler scheduling poli-
cies with the same stabilizability properties that are
amenable 1o distributed implementation.

We have studied the constrained queueing system un-
der the assumption of slotted operation where the servers
~_are synchronized to start service simultaneously in the
peginning of the slot. This assumption 2appears to be
restrictive in certain cases. For example, in the database
model, in order for this assumption to hold, all the trans-
actions should have the same length such that they finish
their processing simultaneously. Obtaining stabilizing
policies in the case where customers have different service
times is a problem for further investigation.

APPENDIX

The property of the convex hull of the constraint set,
stated in the next lemma is used in the proofs of this
section.

Lemma A.1: If a vector ¢ belongs to co(S), then any
vector a such that 0 < a <-c belongs to co(§) as well.

Proof: The proof of the lemma follows easily from
assumption C.1 and is omitted for brevity.

Proof of Lemma 3.1: We denote by B the set which we
want to show that is equal C'. We first show that all points
of B are points of closure of C', therefore. B ¢ C'.
Suppose that for the vector a there exist f € F,, ¢ € co(S)
such that M~ 'f < c. Consider the vectors a,. n = 1,
such that a, = (1 — (A/m) a2 j =171 j= 1,-, N)
and the multicommodity flows f, = (1 = (1/n)) fi;: j =
1L, J, i=1,+,N). We can easily verify that f € F,,
implies that f, € F, . Furthermore, since M™'f < ¢ we
get (M1 — (1/n), <¢; if (M), > 0. Hence, we
have a, € C for every n =1,---. The limit of the se-
quence a, is a, therefore we have a € C.

Now we show that all points of closure of C" belong to
B therefore C' C B. Suppose that a, € C', then there
exists a sequence a, n = 1, such that a, € C and
lim,_.a,, = a. Since a, € C, there exist f, €F, . ¢, €
co(S) such that (M), < ¢ if (M'{,),>0. We show
that there exist f € F,, ¢ € co(S) such that Mif<e
which imply that a belongs to B. We can assume that for
each class j. the server utilization vector f) is. acyclic in
the sense that there is no sequence of queues ¢;,""*: g,
such that there exists a server i that directs traffic of class
j from g, to g., [ =11 —1 g, to g, and (£), > 0,
| = 1,---,n. If some f} is not acyclic, we can easily make it
without violating the rest of the conditions that {, satis-
fies. Note, furthermore, that if f; is acyclic, then

liE/IF < gliall] (A.4)

where ||| is the square norm of R" and g depends only
on the topological structure of the system that is numbers
of servers, queues, customer classes, and the connectivity.
Since a/ — a’ the sequence of flows f/ is bounded be-
cause of (A.4) therefore there exists a subsequence f'}ﬂ
that converges to some vector f/. Notice that f/ is a flow
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vector for class j since
J gt = llg/ gl — (a/ + Rif!
la/ + Rt/ = la’ + R'f/ — (a) + R £ )l
<o/ —al I+ IRt/ — £ )l =0

therefore we have

’ al = —RIfI.
Since the above holds for every f/ we conclude that there
exist a subsequence of multicommodity fows f,, such that

f, €F, . f, 1 M7, <c,. (A.5)

Since ¢, € co(§), 1 =1, and co(S) is closed and
hounded there exists a subsequence ¢, , k = 1,--. that
converges to a vector ¢ & co(S). From (A.5) we have
M7'f, <c, and by taking the limits on both sides of
the inequality we get M™'f < c. <&

Proof of Lenuna 3.2: For each vector a &€ C we show
that the queue length process satisfies the conditions of
Theorem 3.1. Consider the function 1:2"— R™ defined
as VX(1) = TH, T/ (X,(1))°. We show that if a € C
and € > 0 there exists a positive number b which may be
a function of €, a and of the second-order moments of tiie
arrival process, such that

E[V(X(r + 1)) — V(X(1))X(1)] < ¢

if V(X(1)) = b. (A.6)
Furthermore we show that
E[V(X(t+ 1)) — V(X())X(r)] <= vX(1) €2
(A7)

Note that the set S, = {x:V(x) < b} is finite; therefore.
relations (A.6) and (A.7) are the sufficient conditions for
stability stated in Theorem 3.1. We now proceed to show
(A.6) and (A.7). After some calculations and using (2.1)
we get the following:

E[V(X(1 + 1)) = V(X(1))X(1)]

J
¥ E[ = ) X+ 1)
i=1

X)X X))

J .
- Y e[+ - Xy

j=1

(X1 = 1) + X()K()]

J
- Y E[(RMG + DB+ D)

j=1
SA(r 1)) (2X()
FRIM(t + DE/(1 + 1) + Al(r + 1))|X(r)}

J
- T E[(RM(+ DEI(r+1) + A1+ 1)

j=1

(RIM(1 + DE/(1 + 1) + Al(r + 1D)X(D)]

J
+ ¥ E[2(R/M(1 + DE(t + 1)
j=1

LA+ 1) XX (A.8)
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where a” is the transpose of vector a. The first term in the
sum in the right-hand side of (A.8) can be bounded for all
states X(¢) by a constant, let us say b;, as we show in the
following. By simple calculations we have

J
Y E[(RM(1 + DEI(t + 1) + Al(e + 1))
j=1

(RIM(t+ DE/(c + 1) + A/(r + 1D)X(0)]

J L ; J L
= ¥ TE[(4;(t+ D) +2 T TE[4,( + 1)
j=11=1 j=11=1
CE[(R'M(t + DE/(t + 1)),X(8)]
J
+ 2.

L bl
T E[((RM(1 + DE/(c + 1)) X(0)]
1/=1

i

(A.9)

where the notation (a), denotes the /th element of vector
a inside the parenthesis. The term (R/M(: + DE/(¢ + 1)),
is upper bounded by the number of servers that direct
traffic to queue [ thus by N as well. Similarly, ((R/M(¢ +
DE/(t + 1)),)* is upperbounded by N?. Thus, from (A.9),
we have the following:

J
Y E[(RM(t + DE/(e + 1) + A/(r + 1)

Jj=1

(R'M(t+ DE/(t + 1) + A/(r + 1))X(1)

iE[(A,j(z + )]

I=1

SAZ

j=

—

M

+2N Y

Jj=

E[A;(t+1)] + LIN* =b,.

—

=1

(A.10)

For the second term of the sum in the right-hand side of
(A.8) we have the fellowing:

J
Y E[2(R'M(t + DE/(z + 1)
j=1

+AI(r+ 13T XI(OX()]
J

= Y 2xi(e) E[R'M(t + DE/(t + DIX()]
j=1

+ ¥ X)) E[A/(s + DIX(0)]
j=1
J ’, T__. . K T .
= Y AX/(0) RIMgi(X(1) + ¥ 2(X'(1)) &
j=1 j=1
(A.11)

where g, is the activation rule that corresponds to 7, and
M = E[M(1)]. From (A.8), (A.10), and (A.11) the relation
(A7) follows. It remains to show (A.6). Notice that the /th
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element of the vector X/(¢)’R’M is equal to =D, (r + 1}
where D, (¢t + 1) is as it has been defined in stage 1 of
policy ‘7,. From the definition of 7, we have for aj
j=1,7

X)) RIMg(X(1)) = —(D(¢ + 1) g{(X(1))

therefore for the first term in the right-hand side of (A.11)
we have the following:

el

J
2X/(0)TRIMg{(X(1)) = —=2(D(¢ + 1) X gh(X())
J j=1

(A.12)

Since a € C, there exists a multiclass flow f with corre-
sponding total flow vector f, and a vector q € co(S) such
that = F, and m;'f, <gq, if ¢.>0, fi=01if g,=0.
Hence, we have

a/ = —Rit/

j=1,7 (A.13)

and there exist 8 > | such that forall i = 1,---, N

sm7f, <q  ifg,>0. (A.14)
Relation (A.14) together with Lemma A.l imply that

SM'f € co(8). Thus, we have

1§
M=) yc,
i=1
where ¢; € S, v, = 0 for i = 1,---,|S| and T v, < 1. Al-
ternatively, we have

(A.15)

where A; = (y,/8), that is A, > 0, £/, A; < 1. The second
term of the sum in the right-hand side of (A.11), after
substitutions from (A.13) and (A.13), becomes

J ; J
Y 2AX/(2) al = = T 2X/(0)) R
j=1 j=1
d T
= Y 2D/t + 1)) M~ 't
j=1
, I
<2 max ((D/(¢+ 1) )M~ Lt/

j=1i,07 / i=1

2D(t + 1) M (A.16)

where D/(t) = (D,(1), i = 1,+, N). By replacing M~ 'fin
(A.16) from (A.15), we get

7 1St
Y 2xi(e) al < 2D + 1)7 ¥ Ac,. (A16)
i=1 i=1
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From (A.11), (A12). and (A.16) we get the following: C.2. Then. we have

J . ) ) ‘ ne-
_E E[2(R'M(r+ DE(r+ 1) + A+ 1] )Xf(mxu)] X, (=2 (X0 =X, (D)X, (1) (A2D)

=1 m=0

—

; o From (A.20), (A.21), and (A.22), we get
< —2D0+ 1) T eXe) o e
i=1 max -\( A ,(T) =X, 1)) )‘[,‘.j(,(’ )

m=G.on—1

$
2D+ 1IN L A (A7) S X L) . X, (1) oL jb (A7)
. - n o L - L \/ JL )
From the definition of the 7, we have From the definition of , we have
i ! - i
max (D + 1)) ¢} = (Dr + 1)) Y gl (X(1)) 12'1;1?{(1)(1 + 1)) ¢}
ces o z |
J > min_ m;
< IT‘,&;‘?{(D(’* l))'c} _ N°? i=10 N |
c= L . max {( 1\{1,,“!,(»‘1) . );l’”‘ y (1\\) ‘\., /\ \>
o iDi- 1) e— N VoS, =0 |
3 1 b
(%16) < — [ — min n,. (AA24)
L\ JL i=1.- N

The first reletion in (Adw) is an inequality instead of

equality since & certzin number of links which should be From (A.19) and (A.24), we get

activated according to the vector ¢ selected in stage 2 0of  J

7, are deffered from sciivetion in stage 3. The second 3 E{Z(R-’M(z + DE(1+1) + A+ 1'))TXJ(I)%X(1)]
relation helds since the defferment from activation of J=1!

certain links mentioned €eTiRT, decreases the quantity sioV1 (B
max . ¢ (DU + D7e) et most by NZ. Relations (A.17) and < —2(1 - Y X )—— v — min m, + N-.
(A.18) imply that i L JL i=1.N
\i : ‘ - (A.25)
I2(RIM{r— LHE 2 =1 i XX ‘
_L:‘!EX“KR M= DE G- +al(t 1) X (T)‘X([)] From (A.8), (A.10), and (A.25), we have
- E[V(X{(1 + 1)) — V(X(1))D
< —Zmax{(D(:—'_ el [ f \ \T ) (X())X(1)]
csS ! Si 1 [ b
s S—2(1— ZA)ZVTL_ min m, + N* + b,
NI D - ‘»'Z/\:Ci i=1 ’ i=1, N
=1 if V(X(1)) 2b. (A206)
- . 7 R If we take
< -2 L == D1+ 1)) c} + N-. .
T b i L(e+b +N7) \
(A.19) - 2(1 - TELA ming .
The term —201 - - - =ex (DG + 1)7c} can be  then (A.6) follows. <&
as smal! as we ke o X s sufficiently large. Note Proof of Lemma 3.3: Suppose that a € (C')° and the
f”j“ that, as | \ IR s components of X(7) grow  system is stable under some policy 7. There is a closed sct
as well, that is il ws Zs - X0)) 2 b then we get of communicating states R, such that all states in R; arc
; positive recurrent. For the rest of the proof we consider
~r 3oz \,./ —_—. (A20) the Markov chain restricted in R,. The restricted Markov
T VL chain is positive recurrent and therefore ergodic. We can
Le easily see that since X(¢) is ergodic Markov chain, M(7) an
' 1., process and M(1) is independent of (X(0),--. Xt
(L= romex (x,(1)}. (A.21) ‘1)), the process (X(r = .1),M(z)) is a Markov chain \:vhxch
=k A is ergodic as well. Consider the vector Ei(1) = M(1)g/(X(1
' — 1)) where g is the activation rule of 7. Its ith element
Consider a sequsnze o2 Z-zuzs [, Ly, n<sL such is equal to 1 if during slot ¢ a customer of class j which is
that there is g semver == s-zcts traffic of class j, from served by server i completes service and moves from
Queue /, to gusiz - "~ m <n and from queue /, queue g(i) 10 h(i). The vector £'_ E/(r) indicates how

Out of the sysierm: soT = zIUEnce exists by assumption  many customers of class j have crossed each server during
‘?
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slots 1 to ¢. Since (X(t — 1), M(1)) is ergodic. the normal-
ized sum | /¢3! E(7) converges a.s. as ¢ — * to a vector
f/ which indicates the average number of class j cus-
tomers that cross each server i. In each queue / and for
each class | the average number of incoming customers
should be equal to the average number of outgoing cus-
tomers since otherwise X, (#) goes as. to infinity and the
chain cannot be positive recurrent. Hence, we have a’ =
— Rt/ and :he vector £={f . Lo N = L))
belongs to £, where f; is thé '[h element of vector f.
We show now that f = T':gi" is such that W~ i = colS)
therefore we get a = C' which is a contradiction. Con-
sider the vector I{r) = f_,/,;lE {r). W have

1
hm—yl()

tmm bagy (el g j

1 ¢ J J ‘
lim~ Y Y E(7)= Yt/ =t
and because of the ergodicity of (X(¢ — 1), M(r)) we have
7

f:E%m)Z§mm~U>
L=t

(A27)

where the expectation is taken with respect to the station-
ary probability distribution of (X(+ — 3, M(¢)). Since for
each siot £, X(r — 1) and M(¢) are independent, we have

J ] J
E|M() ¥ 3(X(r ~ 1y} = EDM(D]E] T 2(X(e = 1)
j=1 | j=

(A.28)

Since for all X(r — 1) we have T/, g(X(¢ = 1)) € co(S),
clearly E[T! ‘ EX(e = e co(§) as well and from
(A27) ard U—\.Zb.\ we et that M~ 'fbelongs to co(8Y. <
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