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systems considered is assumed to have the defiped Lyapunov de-
tectability property and a dividability condition. If those conditions
are satisfied, a switching observer can be constructed so that the
state variables can be estimated without prior knowledge of the
parameters or the structure of the systems. This type of estimation
is particularly useful in the cases where there is no detailed system
model, where there exislt potential component failures, or where some
of the system structure or properties are manually shifted. Whenever
those happen, the proposed observer can adaptively detect changes
in the system and adaptively switch to a new configuration. The
overall observer constructed is proved to be an asymptotic observer
with bounded estimation error. This makes the proposed observer
suitable in many practical control designs with fault tolerance or gain-
scheduling. It should be noted that the main contribution of the paper
lies on the claim of the possibility of constructing an overall observer
based on individual observers, rather than each individual observer
design.

A key restriction of this scheme is due to the assumption that
each plant in the set is Lyapunov detectable. The successfully
constructed switching observer requires the successful output in-
jection design for each individual system in the system set. It is
noted that the Lyapunov direct method-based observer design for
nonlinear systems is in general a difficult problem. Therefore, the
usefulness of the proposed method may be limited to some special
applications. ‘
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Optimal Scheduling with Deadline
Constraints in Tree Networks

Partha P. Bhattacharya, Leandros Tassiulas, and Anthony Ephremides

Abstract— The problem of scheduling time-critical messages over a
tree network is considered. Messages arrive at any of the nodes and
have to reach the root node before their deadlines expire, else they are
considered lost. The network is assumed to be operating in discrete time
and the messages need one time unit for transmission from one node to
the next along its path. The arrival and deadline processes are arbitrary.
The policy which transmits messages with smallest extinction (arrival +
deadline) time at every link is shown to minimize the number of lost
messages over all time intervals and for every sample path.

Index Terms— Optimal scheduling, real time communications, tree
networks.

1. INTRODUCTION

There are several applications of packet switched communication
networks where a high variability in end-to-end packet delivery
delay is undesirable. In packetized voice communication systems for
example, the quality of the speech signal degrades considerably when
the end-to-end delay exceeds a prescribed threshold. In networks
carrying control information, a packet incurring a delay larger than
the time within which the system state changes becomes useless for
control purposes. An important problem in these systems concems the
design of network controls so as to minimize the number of packets
reaching the destination after a prescribed threshold.

Queueing systems with impatient customers are appropriate mod-
els for communication networks with time-critical messages. Such
systems have received moderate attention in the literature. In (1] and
(2], the authors consider a first-come/first-served (FCFS) single server
queue with customers that have deadlines on their waiting times. If the
waiting time of a customer exceeds its deadline, the customer departs
from the system and is considered lost. Performance measures such
as the steady-state probability of loss of a customer and expected time
until the rejection of the first customer were computed. In [3], [5],
{7, and [8] the problem of optimal scheduling in a muitiserver queue
was considered, and the policy that serves the customer with smallest
extinction time (arrival time + deadline) was shown to minimize
the number of lost customers. In (6], the authors consider in-forest
networks where customers are not lost and receive service even when
their deadlines expire. The performance metric of interest in this case
is customer lateness defined by the difference between departure
time and deadline. The authors characterize policies that minimize
customer lateness. Similar results for networks where customers are
lost upon deadline expiration do not seem to be available in the
literature.

In this work, we consider the problem of optimal scheduling of
time-critical messages in a tree communication network. Messages
are not transmitted further when their deadlines expire. Tree topolo-
gies arise often in subnetworks which are used for exchange of
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control and topology information among the nodes as well as for
the concentration of this information to a central controller node.
An important special case of such a network is of course a tandem
connection. From the point of view of queueing theory. networks with
tree topology are a first step toward an effort to generalize results
for single queues. In Section II, the model of the tree network is
described and the problem of optimal scheduling formulated. The
optimality result is given in Section lIL

[I. TRANSMISSION SCHEDULING IN A TREE NETWORK

Consider a tree network with root node D, with L links between
each pair of directly connected nodes. Messages arrive at any of
the nodes and are destined for node D. There is a deadline and
an extinction time (arrival time + deadline) associated with each
message. and a message has to reach the destination before its
extinction time expires. The deadline of the message becomes known
upon arrival and can be used for scheduling its transmission. If the
extinction time of a message expires while it is waiting or is being
transmitted at an intermediate node, then the message is considered
lost and need not be transmitted by the downstream nodes.

The system is assumed to be slotted. A message arriving during
a slot is available for transmission only at the beginning of the next
slot. The transmission time of a message is assumed to be one slot.
The message arrival patterns and the deadlines are arbitrary.

We wish to determine a policy for scheduling the transmission
of messages that minimizes the total number of lost messages. We
assume that a node knows its distance (in number of hops) from
the root node. It is evident that at slot ¢ the optimal policy would
never transmit a message with extinction time strictly less than
t + L at a node that is k hops away from D, as this message
would be lost in any case. We say that a message at a node k
which hops away from D is eligible for transmission at time ¢ if
its extinction time is at least ¢t + k. Our result is that the policy which
transmits the eligible messages with the shortest extinction time at
every node minimizes the number of lost messages over any time
interval. Following earlier work [5], [7], we will refer to this policy
as the Shortest Time to Extinction (STE) policy. The policy can be
trivially implemented in a distributed manner once a node knows its
distance from the root node D. The optimality is proven in the next
section.

[I. OPTIMALITY RESULT

Let L™(t) denote the number of messages lost by time ¢ when a
message transmission scheduling policy = is applied. Fix arbitrary
message arrival and deadline patterns.

Theorem 1: For every scheduling policy 7

(t) < L™(t) VYt20.

The two assumptions made in the paper, namely the uniformity of
the number of links across the network and identical destination D for
every message, may appear too strict and it is natural to ask whether
these assumptions can be relaxed. Before proceeding to the proof of
the theorem, we present two examples that show the necessity of
these assumptions for the theorem to hold.

Example 1: This example shows the necessity of the requirement
that the number of links between any two (directly connected) nodes
of the network be identical. Consider the tandem network of Fig. 1.
Initially, there are two messages with extinction times two and three
units at node A. Messages arrive to the system only in slot (0, 1);
one to node A with extinction time three units and two to node
B. each with extinction time two units. Let 7 be the policy which
transmits the message with extinction time three units at node A at

Fig. I. A simple tandem network.

time zero and schedules according to the STE policy at all other
times. It is easy to check that 7 loses one fewer message than
STE.

Example 2: Suppose messages can have arbitrary destinations and
the distance of the destination is known at every node and can be used
for scheduling purposes. For a message with extinction time where e
waiting at a node k hops away from its destination, define its residual
time by e — k. A natural generalization of STE policy is then simply
the policy that transmits messages with the smallest residual time
(among the ones with nonnegative values) at every node. Denote this
policy also by STE. The following example shows that STE need
not be optimal. Consider again the tandem network of Fig. 1, but
now there is one link between both A, B and B, D. Initially there
are two messages at A, both destined for D with extinction times
two and three. There are two arrivals in slot [0, 1): one to A with
destination B and extinction time two and one to B with destination
D and extinction time two. Let m denote the policy that transmits
the message with extinction time three at node A at time zero and
follows STE at all other times. It is easy to check that T loses one
fewer message than STE.

Proof of the Theorem: The proof is based on an induction on
the height of the tree and the idea of a dominating system. Denote
the given tree by T. We say that a node of T is at level k if itis k
hops away from the destination D. Let T} denote the tree of height k
obtained from T by deleting all the nodes at levels strictly larger than
k. We will show by an induction on & that STE is optimal for every
node in Ti. For the basis step, k = 1, observe that T} is nothing
but a collection of independent links and therefore a collection of
independent discrete-time multiserver queues with deterministic and
identical service times but arbitrary arrivals and deadlines. Arguments
identical to those in [3] and [5] can be given to show that STE is
optimal for T;.

For the induction step, suppose that STE is optimal for Ti. We
show that STE is optimal for Ti4:. It follows from the induction
hypothesis that STE is optimal at every node at level 1. 2. ---, k of
Te4+:1 since the hypothesis holds for arbitrary arrivals and deadlines.
It remains to show that STE is optimal at every node at level ¥ + 1
in Ti4+, when messages are being scheduled according to the STE

rule at every node at level 1, 2. - -, k. Further, it suffices to show
this at any one node (say j) at level k + 1. Let i be the parent of
node j.

Let A, denote the number of arrivals to node j during slot {t. t+1).
Construct another tree Tx4, that is identical to T+, except that in
Tis1 node j is deleted and node ¢ has an additional arrival process
{B¢, t > 0} where Bo =0, By = A¢e—1, t 2 1 (see Fig. 2). This
simply means that arrivals to node j in T4 during slot [t. t + 1)
arrive directly to node i in Ti+1 during the next slot. In other words,
Tk+1 is simply Tx+1 with infinite links between nodes { and j.
The scheduling policy at a node in Tesr is identical to that at the
corresponding node in T+ . It is evident that Ti+1 dominates Ti4y
in the sense that for any scheduling policy at node j in Ti41, fewer
messages are lost, over any time interval, in Ti+1 than in Tigr.
Therefore, the proof will be complete once we show that the number
of lost messages in Tk+1 equals that in Tx+1 when the STE policy
is followed at node j in Ti41.

Let S (respectively, S¢) denote the set of messages from node j
(respectively, the arrival stream {B:}) selected for transmission at
time ¢ at node i in T+ (respectively, Tiq1). We claim that St =S¢
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Fig. 2. Hlustration of the proof.

for every ¢t > 0 when STE is followed at node j in Tiy,. If the
claim holds then the behavior of Ti4; and Tk.,.l is identical and the
theorem follows.

The proof of the claim is by contradiction. Let T be the first time
at which these two sets S, and S, differ. Observe that the set of
messages from {B.} available for transmission at node i in Tx4; is
a superset, at all times, of those from node j available at node ¢ in
Ti+1. Therefore, the only way that Sr and S- could differ is that
there exists a message belonging to S, \ S, that resides in node Jin
Ti+1 at time 7. Let us denote this message by its extinction time e”.
Let t* denote the arrival time of e* in Tx41. Since STE is followed at
node 7, for every ¢, t* < ¢t < 7 — 1, the messages transmitted at node
J in Tyt have extinction times e which satisfy e — ¢ > k + 1 and
e < e*. Specifically, at time  — 1, L messages were transmitted, the
extinction times, e, of which satisfy e—7 > k and e < e*. However,
all these messages must be waiting for transmission at time 7 in Ty,
since the sets S; and S, agree up to time T — 1. Since messages are
scheduled according to the STE rule at node i in Tk+1, e” cannot be
chosen for service at time T in Tk+1. a contradiction. o
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On Deadlock-Free Modular Supervisory
Control of Discrete-Event Systems

Yonghua Li

Abstract—In this paper the problem of synthesizing deadlock-free
modular supervisors for discrete-event systems is discussed. By introduc-
ing the d-invariant relation between a pair of supervisors, it is shown
that when the control objective is described in terms of intersection
of two languages, a necessary and sufficient condition for the modular
supervisor to be deadlock-free is that this pair of subsupervisors satisfies
a d-invariant relation. A procedure for synthesizing the deadlock-free
modular supervisor is presented. Some issues concerning deadlock-free
modular supervisory control are also discussed.

Index Terms— Automata, deadlock, discrete-event systems, language,
modular supervisory control.

I. INTRODUCTION

A. The Problem

Modular supervisory control of discrete-event systems (DES’s) has
been studied by Ramadge and Wonham [8], [11]. It is an effective
way to overcome computational complexity in control of DES’s. By
“modularity” we mean that the desired system behavior, i.e., the
specification, is given in terms of a set of independent subspecifica-
tions. If one synthesizes the component subsupervisors independently
and then merges them in the form of supervisor conjunction or
disjunction, one gets the so-called modular supervisor. This kind of
synthesis offers us the merits of lower computational and hardware
requirements and the convenience of supervisor maintenance and
redesign [11].

The main problem related to modular supervisory control is when
the component subsupervisors have some desired properties, how to
guarantee that the modular supervisor behaves in the same way. To
illustrate this, let us take L = L;NL; to be the control task. A natural
question is that if one computes L' and L] (i = 1, 2) (the supremal
closed controilable sublanguage of L and L;(i = 1, 2), respectively),
is it true that LT = LT N LI'7 This problem, together with the
problem of nonblocking modular supervision, has been discussed
in [11] by defining a concept called nonconflicting language pairs.
There are several other related results. In [6] sufficient conditions for
checking blockings in decentralized supervisory control have been
given. In [1] the computational problems that arise in nonblocking
modular supervisory control and the supervisory control problem with
blocking (SCPB) have been discussed.

Another problem related to modular synthesis is deadlock. This is
the situation when the supervised system cannot evolve further (see
next section for the definitions of deadlock-free languages and super-
visors). Deadlock may occur when the modular supervisor is formed
by supervisor conjunction, and even the component subsupervisors
are all deadlock-free, as illustrated by the following example.
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