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Abstract

We consider the problem of channel allocation for simple cellular network models with
reuse partitioning. A number of call requests are present at the different zones of each cell
and interference constraints prevent the use of the same channel in certain combination of
zones at different cells. For linear networks, we obtain a channel allocation algorithm that
maximizes system capacity without violating the interference constraints. Unlike the single
reuse factor case, the problem can not be reduced to coloring problem for interval graphs.
For the circular array case, we derive an asymptotically optimal channel allocation scheme;
while for the hexagonal arrays, we derive a bound that improves the adapted bounds from
single reuse factor case.

1 Introduction

Reuse partitioning is a technique for increasing wireless cellular system capacity by using mul-
tiple channel reuse factors in the same cellular system. The available channels are split among
several reuse patterns with different reuse factors. Channels from the group with smallest
reuse factor are assigned to mobile units with the best received signal quality. Typically these
mobiles are close to the base station and can tolerate the increased interference. On the other
hand, channnels with the highest reuse factor are assigned to the mobiles close to the periphery
of the cell, so as to maintain an acceptable signal to interference ratio (SIR). The reuse parti-
tioning technique reduces the SIR for the mobiles which are well above the required threshold,
increasing system capacity at the same time.

The benefits of reuse partitioning has been adequately addressed in the literature. It was
suggested in [6] that by using two reuse factors of Ny = 3 and N, = 9, it is possible to
achieve an increase in channel capacity of about 30 percent over that achieved by a single
reuse factor of N = 7, for a system with objective SIR of 17 db. The idea of reuse partitioning,



combined with a traffic adaptive channel assignment for highway microcellular radio systems
was introduced in [2] and the results indicate the capacity may be doubled compared to that of
fixed channel assignment. In [11] it has been shown that by using more than one reuse patterns
and considering the assignment failure rate as performance measure, it is possible to achieve
significant capacity improvements. Performance bounds for this model were presented in (10].
Finally, in [9], the authors show that for a two-zone cellular system, a substantial increase of
carried traffic can be accomplished by allowing calls to overflow to outer zones, at the expense
of very unbalanced blocking for the traffic of the two zones.

In this paper we attempt to precisely characterize the maximum achievable system capacity
for simple reuse partitioning cellular networks. A number of call requests are present at the
different zones of each cell and interference constraints prevent the use of the same channel in
certain combination of zones at different cells. We wish to determine the minimum number of
channels required to satisfy the call requirements. For linear arrays, we show that unlike the
single reuse factor case, this problem can not be reduced to coloring problem for interval graphs.
The presence of additional interference constraints imposed by reuse partitioning increases the
complexity of the the channel allocation problem. The main result of this paper is an algorithm
that allocates required channels to the calls so that a minimum number of channels is required
and the the complex interference constraints imposed by reuse partitioning are not violated.
A simple formula for the minimum number of required channels is also derived. For more
complex networks, the single reuse factor case is difficult and we expect the reuse partitioning
case to be no easier. For the circular array case, we derive an asymptotically optimal channel
allocation scheme; while for hexagonal arrays, we derive a bound that improves the adapted

bounds from single reuse factor case.

2 Linear array

Consider a linear cellular network with cells that are numbered sequentially from 1 to N. Each
cell is partitioned in K concentric zones as shown in Figure 1; zone K is the outermost zone
while zone 1 the innermost.

Calls in different cells may reuse the same channel subject to constraints on the spatial
proximity of the calls. Let (,k) denote the k** zone of the i** cell. Two calls in zones (i, k)
and (j,1) may use the same channel if and only if |¢ —j| > max{k,1}. This implies for example,
that two calls in innermost zones of any two cells may reuse the same channel; also, two calls
in zone 2 of two cells can reuse the same frequency only if the cells are not adjacent etc. As an
example, Figure 2 shows the collection of zones which cannot use the same channels as those
used in a specific zone.

We consider the following channel allocation problem. A number of call requests C;; are
present at each zone (%,k). Channels have to be assigned to calls so that each call gets one
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Zone K
Zone K-1

Zone 1

Figure 1: A cell with several zones

Selected zone marked
Zones conflicting with the selected cell are marked X

Figure 2: Nllustration of channel reuse: K =3

channel, there are no conflicts and the minimum number of channels is used.

The above problem can be formulated as a node coloring problem for an appropriately
defined interference graph. This graph contains one node for each zome and two nodes in
the graph are adjacent if a channel can not be simultaneously assigned to two calls in the
corresponding zones. With each node in the interference graph associate a weight equal to
the number of call requests in the corresponding zone. Then the above problem is identical
to finding the chromatic number of the weighted interference graph. The relationship between
channel assignment and graph coloring has been recognized early on and there is a lot of
work where static and dynamic channel assignment schemes rely on coloring algorithms of
appropriate interference graphs {3, 5, 8].

Node coloring problems are NP-hard for general graphs but efficient algorithms exist for
some special classes of graphs, e.g. perfect graphs. A graph G = (V,E) is a perfect graph [4]
if its independent set polytope can be completely characterized by the clique constraints. The
independent set polytope of the graph G is the convex hull of vectors of the form 1(5),S CV,



S an independent set; where 1;(S), the i** component of vector 1(5), equals 1 if node < € 5
and 0 otherwise. A simple example of a perfect graph is an interval graph, a graph whose
nodes can be represented by intervals on the real line such that two nodes are adjacent if and
only if the corresponding intervals do not overlap.

If each cell has only two zones, then the associated interference graph is an interval graph
and hence, a perfect graph for which efficient coloring methods exist. To show that the inter-
ference graph is an interval graph, associate interval (2¢,2: 4+ 1) on the real line to node (i,1),
and interval (2(:i — 1) + 3/4,2(:+ 1) + 1/2) to node (3,2),i=0,1,2,---.

Interestingly however, when there are more than 2 zones per cell then the interference graph
may not be an interval graph (see Appendix). In what follows, we show that the interference
graph in the general case is still a perfect graph and hence the number of channels can be
completely described by clique constraints. These constraints can be easily enumerated and
hence the minimum number of channels can be computed as well. Our proof is constructive
and instead of relying on general coloring methods for perfect graphs [4], we develop a simple
coloring/channel allocation scheme for establishing the perfectness of the graph.

We first describe an optimal channel allocation scheme. The channels are allocated to the
cells sequentially starting from cell 1 to cell N. In each cell the channels are allocated to the
zones sequentially as well, starting from the calls in zone K and moving up to the calls in
zone 1. All the calls in a certain zone are allocated before the algorithm moves on with the
allocation of the calls in the next zone.

Assume that channels have been allocated to all calls in cells 1 through 7 — 1 as well as to
all calls in zones K through k — 1 of cell <. The calls in zone (%,k) are then allocated by the
following steps:

1. Consider all the channels that have been used already in one of the cells 1 through <.
Reuse first those channels for the calls in zone (3, k) as follows.

Start from cell 7 — 1 and go up to cell 1 doing the following for each cell j. Consider all
the channels used in zones of cell j which are not conflicting with zone (4, k), if any. From
these channels, identify those that are not already allocated to calls in zone (%,k) and
allocate as many as necessary. The order of selection of zones of cell j is not important.
If there are remaining calls without a channel allocated in zone (3, k) then proceed to cell

j — 1 and do the same.

2. If all the channels that are already used are exhausted and there are calls in zone (3, k)
without an allocated channel, then use new channels arbitrarily.

We claim that the number of channels required by the above algorithm is equal to the size
of the maximum weighted clique of the interference graph. Note that the number of required

channels must be no less than the size of the maximum weighted clique of the interference
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graph. Hence it suffices to show that the algorithm requires a number of channels equal to the
size of some clique in the interference graph. In fact, the following stronger property holds for

every zone (i, k).

P1. For any cell m, m < i, consider all the calls in the cells m through ¢ — 1 as well as
the calls in the zones (4, K') through (%, k). Consider the weighted interference subgraph
that corresponds to just those calls. The total number of distinct channels used for
the allocation of calls in this group of cells is equal to the size of some clique in the

interference subgraph.
Theorem 1. Property P1 holds for any zone (i,k),i=1,---,N, k=1,---, K.

Proof. The proof is by induction. P1 clearly holds for zone (1, K'). We show that it will hold
for zone (4, k) when it holds for zone (¢,k+ 1), k= K —1,---,1; and that it will hold for zone
(3, K) when it holds for zone (z - 1,1).

Let m be an arbitrary cell, m < i. We consider two cases in verifying P1.

Case A: All calls in zone (%, k) are allocated channels that are used already either by calls in
cells m through i — 1 or by calls in zones (i, K) through (i, k + 1).

In this case the total number of distinct channels, say C, used in cells m through 7 — 1
and zones (i, K) through (,k + 1) is equal to the total number of distinct channels used in
cells m through i — 1 and zones (i, K') through (7, k). The induction hypothesis ensures that
there is a clique in the interference graph corresponding to the cells m through < — 1 and zones
(i, K) through (3, k + 1), with size equal to C. That clique is the one for which property P1is
satisfied for zone (i, k) as well.

Case B: The calls in zone (%, k) need additional channels than those used by calls in cells m
through ¢ — 1 and in zones (i, K') through (3, k + 1).

Consider the weighted interference graph corresponding to calls in cells m,---,i — 1 and
zones (4, K), (i, K — 1),--,(%,k). We specify the maximal weighted clique U in this graph.
The set U consists of three types of nodes.

(a) All the nodes corresponding to zones (3, K), (3, K — 1), -, (4, k).

(b) All the nodes corresponding to any zone of cells m,---,i — k that are conflicting with
zone (%, k).

(c) From the induction hypothesis, there exists a clique Q in the weighted interference
subgraph consisting of nodes corresponding to calls in the set of cells i —k +1,---,2—1 and
the size of this clique is equal to the total number of distinct channels needed by the algorithm
to allocate channels to calls to this set of cells. Consider the set of nodes in Q.

We claim first that U is a clique. This follows from the following arguments.



e All the nodes of type (a) are conflicting among themselves; they are also conflicting with
nodes of type (b) by definition and finally they are conflicting with nodes of type (c) since
they are conflicting with any zone in the cells i -k +1,---,2— 1.

e A zone (j,1) of type (b) has the property that i—j < max{k, !}, since it conflicts with zone
(3, k). Furthermore, max{k,l} = I, otherwise i — j < k, a contradiction. Hence a zone
(5,1) of type (b) conflicts with a zone (j’,1’) of type (c) since j'~j < i—j <1 < max{l,!'}.
Furthermore, any two zones of type (b) are conflicting among themselves since they each
conflict with (4, k). This can be seen as follows. Take two nodes (3j,!) and (5’ ,U') of type
(b). Suppose j < j'. Since they both conflict with (4,k) arguing as before, we have
min{l, '} > k. Therefore j' — j < i — j < max{k,{} =l < max{l,!'} which shows that
(7,1) and (§',V') do indeed conflict.

e All nodes of type (c) are conflicting among themselves by definition.

This establishes that U is a clique.

We now show that the size of U equals the total number of distinct channels used by the
algorithm to allocate channels to calls in cells m, - - -,i—1 and zones (3, K), (¢, K —1),---, (3, k).
The channels allocated to calls in zones (i, K), (¢, K — 1), - - -, (%, k) are certainly included in U
by definition. Also, the channels allocated to calls in cells i — k + 1,---,4 — 1 is equal to the
size of Q and Q C U by construction. Finally, consider channels allocated by the algorithm
to cells m,---,% — k. If a zone in this set of cells is conflicting with (i, k) then the channels
allocated to that zone are included in U as well by construction. If on the other hand, a zone
in this set of cells does not conflict with (3,k), then all these channels are allocated by the
algorithm to (4, k), and hence these channels are also included in U. This completes the proof
of the theorem. O

In summary, we have provided an algorithm which provides a conflict free allocation of
channels to calls in a linear array. The number of channels used by this algorithm is equal to
the maximal weighted clique of the associated interference graph and is the minimum possible.
This also establishes the fact that the interference graph is a perfect graph since its chromatic
number is only determined by clique constraints.

One way to determine the miminum number of required channels is of course to run the
algorithm. But it is also of interest to see if there is a way to characterize all the cliques which
would then lead to an expression for the minimum number of required channels. This is done
next.

We first show that there is a smaller set of cliques which determine the minimum number
of channels. Consider cliques U of the following type: for each level k, i < k < K, U contains
k consecutive zones, with the property that the k cells for level k consitute a subset of the
k+1 cells of level k+ 1. As an example, for K = 3, two cliques of the above form are given by



(a) (4,3), (14 1,3), (1+2,3), (5,2), (i + 1,2), (4,1) and (b) (3,3), (5 + 1,3),(1+2,3),(:+1,2),
(i +2,2), (i + 2,1). We claim that all the maximal cliques that need to be considered for
the evaluation of the bound are of this type. Consider an arbitrary clique Q. Let m;, M, be
the minimum and maximum cells respectivelly where a zone of level less than or equal to k
that belongs to Q may arise. Consider the set of zones S that includes for each level £ all the
zones (my, k), (mi + 1,k), .., (Mx, k). It can be easily verified that this set of zones is a clique
and clearly it is a superset of Q. Furthermore it can be easily verified that § is a subset of a
maximal clique of the type specified earlier.

One can derive an recursive expression to determine the number of required channels.
Recall that C;; denotes the number of required channels in zone (%, k). Let {N‘-(k)}ls,-s NASk<K
denote some intermediate quantities that are related by the recursion

itk
N = ch,k+1 + max{Ni(k),Ni(-t)l .

I=i

The initial condition in the recursion is given by
N.'(z) = Cia2+ Ciy1,z + max{Ciy,Cis1,1}

and the total number of required channels is given by

N
0<i<N-k - *

The proof follows from the above discussion on the special class of determining cliques and is

omitted for brevity.

3 Other cellular topologies

3.1 Circular array

Consider N cells are arranged in a circular array, that is, cell N —1 is adjacent to cell 0. Each
cell is partitioned into K concentric zones. Two cells (i, k) and (7,1), ¢ < j can reuse the same
frequency if i + max{k,1} < j holds and either j + max{k,!} < N holds or (j + max{k,})
(mod N) < i holds. Let Cj; denote the number of call requests in zone (i,k). We wish to
determine a channel allocation that assigns one channel to a call without conflicts and uses
the minimum number of channels.

It is well known [1] that the special case of the above problem with 1 zone per cell is a hard
problem because of the presence of holes, antiholes etc. in the associated interference graph.
Therefore, we concentrate on suboptimal allocations.

Consider opening up the circular array after cell N — 1. Then it becomes a linear array
for which we know the number of required channels to meet the call requirements. Let N*

7



denote this quantity. Since a circular array presents more constraints, we know that at least
N* channels would be required in this case as well. We adapt an argument presented in [1]
to construct an algorithm that needs ™% N* channels. This algorithm becomes optimal for
large arrays as N/K — oo.

The algorithm works in N cycles. In cycle n, the set of cells n, (n+1) (mod N), ---
m+ N —-K (mod N) are considered for allocation. The channel requirements in each cycle
are reduced to C;; /(N — K). We make the following observations.

o The cells considered in each cycle form a linear array since the additional constraints from
the endpoints are absent. Hence the algorithm of the previous section can be used to
assign, in each cycle, Ciz /(N — K) frequencies to zone (3, k) using a total of N* /(N — K)

channels.

o Each zone (3, k) is allocated channels in N — K cycles out of the N cycles. Hence after
N cycles, zone (i, k) gets its required Cj; channels.

o After N cycles, a total of X=N* channels are needed

The fractional frequencies can be handled naturally. If zone (%, k) requires z.y frequencies
in a cycle, it is assigned z frequencies in all but the last cycle and z + 1 frequencies in the last

cycle.

3.2 Planar hexagonal array

Consider a hexagonal array with (1,3) cell reuse pattern. Each cell has two zones. A frequency
can be reused in the inner zone of every cell. A frequency can be reused in the outer zones of
two cells if those two cells do not touch each other along any face.

We consider the co-ordinate system shown in Figure 3. Let C2, and C;, denote the channel
requirements in the inner and outer zones of cell (z,y). We want to obtain an upper bound
to the total number of required channels. Many upper bounds are possible and none seem to
dominate others. '

If we do not treat the inner zones in any special manner, then one can think of C?, + C;,
to be the number of required frequencies in cell (z,y). Then following the arguments in [1],
atmost

max max 1.5 Co+Coy + Corigas + C:+i,y+j] (1)

frequencies are needed, where A is the set {(0,1),(1,-1),(-1,0)}. This bound may not be
good when-{C? } are large, since we do not use the fact that frequencies can be reused in
inner zones of every cell.

We now develop another upper bound by providing an channel allocation scheme. First
some notation is needed. Let the outer zones of the cells be colored RED, YELLOW and
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RED B YELLOW GREEN

Figure 3: Coloring and co-ordinate system for hexagonal array with (1,3) spatial reuse pattern

GREEN. Two cells are neighbors if they touch each other along a face. Note that the set of
GREEN (resp. YELLOW,RED) neighbors of a RED (resp. GREEN, YELLOW) cell (z,y) is
given by (z+1,y+7): (3,7) € A, where A = {(0,1),(1,-1),(—1,0)} as defined in the previous
paragraph. The channel allocation scheme follows. Allocate channels to the inner zones of every
cell. Then allocate channels to outer zones in the order RED, YELLOW and GREEN. Repeat
the (RED,YELLOW,GREEN) cycle twice, each time allocating half the required frequencies to
each outer zone. Note that channels can be allocated to a RED colored outer zone only when
all the inner zones in the cells around that zone has been allocated.



We derive a bound on the number of channels used by the above algorithm. Let 4; denote
the set (0,0),(£1,0),(0,%1),(+1, F1). Denote the quantities
. _ 1 1 0 .
N1 - nigx {Czy + (tlg.)a‘ex.A C=+‘.’y+j + (ixl,?;a)‘ExA; Cz+’hy+Jl}
and

N! = max max {C: +C},. }
2 z,y (3,J)€A zy + 2+1,y+7

Theorem 2. The number of channels used by the above channel allocation scheme is less than

or equal to

N: + N;. (2)

As a remark, observe that the bound (2) can be tighter than (1) in some circumstances;
consider for example the case where channel requirements in every zone of every cell is the
same.

Proof. Let T, (k) denote the total number of channels after allocating to cell (z,y) in the
k** cycle; k = 1,2. We now obtain some expressions from the operation of the algorithm. The
policy first allocates channels to the inner zones and then to RED cells; therefore,

T. (1) = (‘_1'%%7}102_,_,‘,”,- + 05Ci,; (z,9): RED. (3)
Observe that the {(z + i,y + 7) : (4,7) € A} represents the 6 cells touching (z,y). Similarly,
in both cycles, a YELLOW (respectively GREEN) colored outer cell is allocated after all the
RED (respectively YELLOW) colored neighboring cells. Hence,

(z,y): YELLOW, GREEN, k=1,2. (4)

z,y!

T.y(k) = (gr;;'gng.w(k) + 05C;,;

Finally, a RED colored outer cell is allocated in the second cycle after allocating to all its
GREEN neighbors; hence,

T.y(2) = (f%?g‘ATz%.yﬂ(l) + 05C;;

z,y!

(z,v): RED. (5)

Since the total number of required channels is simply 7 ,(2) for a GREEN colored zone (z,y),
we are only interested in deriving T, ,(2) for (z,y) : GREEN, in terms of {C.,} using the
above equations (3-5). First use (4) recursively in (4) to yield for (z,y): GREEN:

T”yﬂ(z) = (im".mggﬁsmszT=+ix+i':,y+j1+i:(2) + (‘.f;laféA 0-505+i1,y+j1 + 050:»!/ (6)
This can be done since for (z,y): GREEN, (z + %,y + j) is YELLOW for (i,5) € A. Now
observe that (z + %; + 43,y + j1 + J2) in (6) is RED so that (5) can be used to yield

— 1
T.,(2) = (im,jmg% <m 53Tz+s';+i:+ia.y+j1+ia+j;(1) + (‘.m’jm%ﬁ <m 520'502+i1+52»!/+j1+j:
+ max 0.5C,; .. +0.5C; . (7)

(il:jl)E-A
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Since (z + %, + %2 + 13,y + j1 + j2 + ja) in (7) is GREEN, the process repeats for the first
cycle (k =:1). It is not difficult to derive the final expression for (z,y) : GREEN (an empty
summation: Y ¥ y < z is taken to be 0):

,y(2) (im. Jm)ea-AJsS"‘S5 {0 5 Z +El 1""'”'2 1=17 + C +Zl 1"'y+21—1 } (8)

(te.7e)€EA,

By pairing terms inside {:--} on the right hand side in the above equation, it is easy to see
that T, ,(2) < Ni + Nj. For instance, the sum of the first two terms is less than N;/2 since
the corresponding cells touch each other. Similarly, the sum of the third and fourth terms is
also less than N; /2. Finally, the sum of the three remaining terms is Ny by definition. This
establishes the upper bound (2). o

4 Discussion.

Certain coloring problems in graphs capturing the interference constraints arising in cellular
networks with reuse partitioning were considered in this paper. An optimal algorithm for a
linear network was derived, while suboptimal algorithms and bounds for circular and planar
networks were obtained as well. Optimal and suboptimal packing algorithms as those proposed
here are useful in designing dynamic channel assignment with good performance.

5 Appendix

In this appendix, we show that the interference graph corresponding to the linear array with
3 zones per cell is not an interval graph.

Suppose the interference graph is indeed an interval graph. Therefore, there exists an
interval graph representation. Let I;; denote the interval on the real line associated with the
node of the interference graph corresponding to zone (3, k). Also let L(I;;) (respectively R(Z;;)
) denote the left (respectively right) end-point of the interval I;.

We first consider the case where interval Iy, is on the left of interval I, that is R(I;) <
L(I;;). Since Iy, intersects both Ij; and Ij;, we have L(I;) < R(In) < L(I3;) € R(Iy,)
as shown in Figure 4(a). Since I3; does not intersect any ome of Iy, I3; and Iy, it must
be that interval I, is either on the right or left of I;;, I3; and I3;. In other words, either
L(Is;) > max{R(I,), R(I1s)} as shown in Figure 4(a) or R(Ils;) < min{L(l13), L(I11)} as
shown in Figure 4(b). Accordingly consider the following two subcases.

Case 1: I3 is on the right of Iy;, I;; and I;. We will show that I;; and I3 cannot intersect
which is a.contradiction. Since I3; is on the right of Iy, R(I3;1) < L(Is1). Since I35 and I3
intersect, L(I3;) < R(I13). Also, since I;3 and I,3 do not intersect and I3; and Iy; intersect,
we have R(I 3) < L(I4). Combining the above three inequalities, we derive R(I3;) < L(Is)
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Figure 4: Interference graphs of reuse partitioning networks are not interval graphs: Two cases

which implies that I;; and I3 do not intersect, a contradiction. This case is illustrated in
Figure 4(a).
Case 2: I3, is on the left of I ;, Io; and I3;. Arguments similar to that given in Case 1 can
be given to show that I3; and I4; cannot intersect, a contradiction.

The discussion of the case where interval I3, is on the right of interval Iy, is very similar
and is skipped for brevity.
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