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Cut-Through Switching, Pipelining, and
Scheduling for Network Evacuation

Leandros Tassiulas

Abstract— A general model of a virtual circuit network con-
sisting of a number of servers and a number of traffic classes is
considered. A traffic class is identified by the sequence of servers
that should be visited and the corresponding service rates before a
message (customer) of the class leaves the network. The following
cases are distinguished: 1) the messages need nonpreemptive
service; 2) the service of a message can be preempted at any
time; 3) pipelining of the service in a sequence of servers is
allowed; and 4) pipelining is not allowed. All of these cases arise
in different transmission switching techniques and scheduling
schemes. A fluid model that emerges when both preemption and
pipelining are allowed is considered. Scheduling schemes in the
fluid model are compared with corresponding ones in the network
with nonpreemptive service and no pipelining. The problem of
evacuating the network from an initial backlog without further
arrival is identified in the fluid model. Based on that, a policy
with nearly optimal evacuation time is identified for the store-
and-forward case. Finally, scheduling with deadlines is considered
and it is shown that in the fluid model, the evacuation problem
is equivalent to a linear programming problem. The evacuation
times under different work-conserving policies are considered in
specific examples.

1. INTRODUCTION

NE of the goals of this work is to distinguish and

classify the different transmission techniques in com-
munication networks and to identify models that capture the
specific characteristics of each technique. Store-and-forward
(SF) service is typical in a classical packet-switched network.
Nonpreemptive service is provided to the messages since only
one message at a time can be transmitted through a link and the
transmission cannot be interrupted after it starts. Furthermore,
the transmission of a message through a link cannot start until
the whole message is residing at the origin node of the link.
That is, the message cannot undergo transmission through
more than one link at a time.

This is not the case if cut-through switching is employed
[8]. In such architecture, a message may start its transmission
through a link as soon as the beginning of the message
arrives at the origin node of the link and while the rest
of the message is under transmission through the upstream
link. That is, pipelining of the transmissions is possible.
The worm-hole routing technique [2], considered for the
interconnection networks in parallel computer architectures,
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is based on this principle. Another issue is whether a message
transmission should proceed uninterrupted, or if the message
consists of smaller units, the transmission of which can be
interleaved with other messages. In the former case, nonpre-
emptive service is required, while the latter is the case of
preemptive service. In the limit, where infinitesimal portions
of the messages can be interleaved, the system can be viewed
as if different messages are served simultaneously by the
server using fractions of its service capacity. The assumption
of divisible messages becomes more plausible in networks
with small packet sizes (i.e., asynchronous transfer mode
(ATM) networks). The consideration of preemptive scheduling
is useful sometimes, even when preemptive scheduling is not
allowed, since it may enhance the understanding of the opera-
tion of the system and facilitate the design of efficient schemes
that can be translated then to nonpreemptive analogs. This is
the case of fair queueing [1] and the generalized processor
sharing schemes [9], [10], considered for network congestion
control. If both cut-through switching and preemptive service
are employed, then a fluid model of the network naturally
emerges. In this paper, such a fluid model is defined and a
comparison is done between scheduling in the fluid model
and scheduling when neither preemption nor pipelining is
allowed. The evacuation problem is studied then under the
different assumptions of preemptive or nonpreemptive service
and pipelining or SF service. In the evacuation problem, there
are a number of messages originally stored in the network,
no exogenous arrivals exist, and the objective is to complete
the service of the messages. This problem arises naturally
in applications like file transfers and batch processing. In
addition, it is an important step toward the study of the
system in continual operation with exogenous arrivals. The
minimum evacuation time problem is considered first on the
fluid model and the optimal policy is specified. Based on that, a
policy for the SF case with asymptotically optimal evacuation
time is obtained. The evacuation time of the SF policy may
exceed the optimal by at most a constant, independent of the
evacuation time. The evacuation is studied next for the case
where different parts of the traffic have different target times to
complete their service. In the fluid model, it is shown that this
problem can be formulated as a linear programming problem.
Special topologies are considered where the problem has a
more direct solution.

II. THE NETWORK MODEL

A network of the following type is considered. There are M
servers {1.2,---, M}. A customer 7 needs to receive service
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Fig. 2. The fluid model of the network of Fig. 1 is depicted.

by the servers in a certain sequence. The service sequence and
the service time may change from customer to customer.

L traffic classes are distinguished. All customers of class
I are visiting the servers in the sequence s}, s}, -, s},
where M, is the number of service stages for class {. Among
customers of the same class, the service discipline is first-
come-first-serve. An example of the network is depicted in
Fig. 1. The service times are determined as follows. Each
customer j is associated with a certain workload w;. A service
rate /i, in units of work per time unit, is associated with the
mith service provided to a class / customer. The service time of
the jth customer of class [ in stage m is equal to w; (pm) ™"
Hence the class of the customer and its workload specify the
service stages it has to go through and the service time at each
stage, an arbitrary number of times in any arbitrary sequence.
Also, it is possible that the same customer has different service
times at different visits to the same server, since different
service rates may be associated with each visit.

Another way to view the distinction of different customer
classes is to consider that a class ! consists of all customers
that follow the same service sequence, and the service times
04y 0%, 03,03 of any two customers i and j of class [ in
Stages mn and n are such that o7, /0%, = 07, /0. This assump-

tion is natural in communication networks where the customers
are messages, the workload is the amount of information, and
the service times are the transmission times. In this case, the
ratio of the transmission times of message in two links is equal
to the ratio of the capacities of the links, and independent of the
information length of the message. A communication network
model where traffic streams undergo several multiplexing
stages as they are routed through the network is included in the
formulation above. The service stages correspond to different
multiplexing stages and the servers to transmission links. In
this case, a customer will be served once at most by a server,
and each server is associated with a specific service stage.
Furthermore, the service rate is associated with the server and
is the same for all classes served by the server. Hence, a class
in this case is associated only with the route of the customer,
while in the general case we may have classes, the customers
of which follow the same route, and differ only in the service
rates at the different stages. Several different assumptions can
be made about the type of service. This is referred as the
SF service. Either assumption can be relaxed in certain cases.
If both assumptions are relaxed, that is pipelining is allowed
as well as preemption, we end up with a fluid model of the
network, to be specified in detail next.

HOI. THE FLUID MODEL

Some notation is introduced, to be used in the description
of the fluid model. Let a!,, ws,,n = 1,2,--- be the arrival
times and workload lengths, respectively, of the nth customer
of class I. Note that a!, is the time that the customer has
completely arrived to the system. The system starts at time
zero and a!, > 0. If there are customers in the system at time
t = 0, they are incorporated in the arrival sequence with arrival
times equal to zero. It is assumed that there are no customers
initially in the system at intermediate service stages. This is
without loss of generality, since if in actuality there are such
customers, it can be assumed that they are of a different class
that starts service at that stage. Also, it is natural to assume
that the message lengths cannot be arbitrarily small but they
are lower bounded by a positive number. Let 4;(t) be the
total workload of stream ! that arrived in the system by time

t. Hence at time al,

n

A[(ail) = Z wyj.

i=1

The customers may arrive in the system either instantaneously,
in which case A;(¢t) will have jumps at the arrival times,
or continuously, in which case A;(t) is considered to be
differentiable during the arrival period of a customer, with
derivative equal to the instantaneous arrival rate. Let Dy, (t)
be the total class [ workload that has gone through the mth
stage of service by time ¢. This includes the served part of
the customer who is under service at stage m at time ¢. Let
wim(t) be the total workload of class ! customers who are
in the system, but have not gone through service at stage m
at time ¢. It includes the remaining workload of the customer
receiving service at stage m at time ¢. The workload of class [
that has gone through stage m — 1 but not through stage m by



90

time ¢ is denoted by T, (t) and will be called the backlog of
class [ at stage . Note that both the workload and the backlog
of a class are defined in terms of the remaining service time
(normalized by the corresponding service rate of the server)
and not in terms of the remaining number of customers. Clearly
it holds

Tim(t) = Wim(t) = Wigm-1)(t) (1)
and
Dlm(t) = Az(t) — wlm(t).

The study of some scheduling problems is facilitated by
the consideration of the following fluid model. A server 1
can allocate portions of its capacity to different customers
simultaneously, and in general can allocate some fraction of
its capacity to the mth stage of class ! customers if s!, = 1.
At time instant ¢ this fraction is denoted by fim(t). It holds

S fm) <1 @)

I,m: st =1

The inequality in (2) is strict whenever some portion of the
server capacity is not used, something that corresponds to
partial idling. The service rate at time ¢ for class [ at stage
m is equal to fm fim(t). If the backlog x1m(t) is greater than
zero, then the departure rate Dim (t) = dDin(t)/dt is equal to
fhim fim (t). Otherwise it may be less. An open-loop schedule
{{fim(t),t >0}, 1=1,---,L,m = 1,---, M;} specifies the
service fractions at each stage at all times. The workload under
some schedule evolves according to the following equation:

Al(t) - flm(t),u'lmv
] if xlm(t) >0 .
Ay(t) = min { frm (t) ppm, Ai(t) — Wim-1)(t)}
. if rpn(t) =0,m>1
Al(t) — min {flm(t):u'lm’ Al(t)}v
if Zim (t) = 0,m = 1.

’Lf}[m(t) =

3
At the arrival time t of an instantaneously arriving customer,
Ay(t) is a delta function with mass equal to the workload
of the arriving customer. Equation (3) implies that given an
open-loop schedule, the evolution of the workload wim(t) of
stream [ in stage  is independent of the other arrival streams
sharing server s.,. In open-loop schedules, the sample paths
of service fractions

{{fim(t),t20},1=1,---,Lym = 1,---, M}

are prespecified and remain the same for all arrival processes.
In closed-loop schedules, the service fractions are determined
based on the state of the network. Therefore, a closed-loop
schedule can be viewed as a mapping which maps an open-
loop schedule to each arrival sample path. Given an arrival
sample path and an open-loop schedule, (3) determines the
evolution of the network. Clearly, the fluid model provides
higher flexibility in scheduling than the SF one, since any
SF schedule is a fluid schedule as well, while the opposite is
not true. In fact, the SF schedules can be defined formally as
those where fin(t) € {0,1} and the allocation of a specific
server may only change at the service completion times. In the
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Sections IV and V it is shown that for every fluid schedule,
there is a schedule in the SF system that follows it closely. The
results hold for every arrival and service fraction sample paths.
For the validity of these results, it does not matter whether
the service schedule is open-loop and remains fixed for every
arrival process or not. Note that the construction of the store
and forward schedule from the fluid one is nonanticipative in
the sense that the allocation at ¢ depends only on the evolution
of the system up to time t. Hence the construction can go
through both for open- and closed-loop schedules.

IV. SF SCHEDULES FROM FLUID SCHEDULES:
THE SINGLE SERVER CASE

Consider a single server with L arrival streams. After
service the work leaves the system. We keep the notation
introduced earlier for the network, without the indices that
correspond to the stages though, since there is only one service
stage. Recall that in SF service, pipelining is not allowed, that
is a packet may be selected for service only if it has completely
arrived. Let S = {{fi(t),t > 0},l =1,---, L} be an arbitrary
fluid schedule. Consider the SF schedule S that is derived
from S as follows. The server is tracking the fluid model, the
departure processes Di(t),l = 1,---, L of which evolve as
follows:

m@:{mm& if Dy(t) < Ai(t)

i Dit) = A(t). @

min{pfi(t), Ai(8)},
At a service completion instant p of the nonpreemptive
discipline, the next customer to be served is determined as
follows. Let D;(t) be the departure process of class [ under the
SF server. It includes the workload of the stream [ customers
that completed service, and if a stream [ customer is receiving
service at time £, the portion of the workload of that customer
that has already being served. The classes [ for which the
fluid server is running ahead of the SF server, that is the class
[ such that '

Di(p) - Di(p) > 0 ®)

are identified. If there is no such class, then the SF server may
serve arbitrarily. Otherwise, for every class [ that (5) holds,
consider all the messages that have not been served by the SF
server yet have been served or have started service in the fluid
server at p. Let p; be the service initiation time of the first
class | message that started service before p under the fluid
model. Then the SF server selects for service the class for
which p; is smallest. Note that in the case of a single server, it
is superfluous to consider different service rates for each class
since these can be incorporated in appropriate normalization of
the service times. In the multiserver case though, if the service
rate for a class changes from server-to-server, it is necessary
to consider explicitly the service rates. Since the result for the
single server needs to be applied in the network case, it is
stated with the consideration of the service rates.

Let W, be the maximum message size of class [. Let i, t!
be the departure times of the ith message of the Ith class under
schedules S and S, respectively. The SF schedule S tracks the
fluid schedule S in the sense stated in the following theorem.
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Theorem 1: Let S and S be a fluid schedule and the
corresponding SF schedule. For the departure processes D(t)
and D,(t) of the fluid and SF schedules, respectively, it holds

L
Wj} -1
—= 0 =2 a4

t>0,0=1,---,L. (6)

Di(t) - Di(t)

> —jy max
j=1,,

Furthermore, the departure times satisfy

W, L
{u—?}m >t Won + 7' W,
7

m=1
I=1,---.L (1)

fﬁ - tf < max

j=1,7L

Proof: Let {t,,u,),n = 1,2, be the collection of all

intervals such that
min {D;(t) -
Jnin {D(t)

Di(t) + Wi} >0, t € [Un,tnt1] (8)

and

m@gL{D,(t)—Dl(t)+W,}<o, tE (tn,un). (9)

=1
If there is a time 7 such that the left part of (8) and (9) is
either negative for all ¢ > 7 or positive for all ¢ > 7, then the
number of intervals (¢,,u,) is finite. Note that between times
tn and un41, at least one message is served completely, for
instance a message of a class lo such that Dy, (t) — Dy, (t) < 0
for some ¢ € (t,,u,). Therefore t, 1 — ¢, is lower bounded
by a positive number, since the length of the message is lower
bounded. Hence, the sequence of #,s has no accumulation
points. It is clear that (6) holds for ¢ € [un,t,+1]. Therefore
it is enough to prove it for t € (¢,,un).

Note that by the way $ is defined, after a service completion
at some time t € (¢, u,,) the server is allocated to a message
of a class [ such that D;(t) — D;(t) < 0. A consequence of
this fact is that

Di(t)=Di(t)y < Wi,  leC(t)

where C(t) is the collection of classes ! such that Dy(r) —
Dy(r) is negative for some 7 in the time interval (t,,t).
In other words, if the SF service of a class ! is running
behind the fluid service at any time ¢t € (¢,, u,), then it will
never run ahead of the fluid service by more than W; at any
time instance during the interval (¢, u,,) because the server is
always allocated to classes for which D;(t) — D;(t) < 0 for
t € (tn,un).

Let Tj(t) be the time spent serving class ! in the SF system
during the time interval (t,,t). Let t0 be the time of the
first server reallocation after ¢,. Assume first that t0 < t¢.
During the period (9, ), only classes [ € C(t) were served.
Furthermore, there was always a customer to serve and no
idling was required because of (9). Therefore, it follows

> Tt) =

LEC(t)

(10)

(t—t0) > t—tn— an

Where 7 is the maximum possible value of t — t,,, that is, the
maximum possible service time over all classes

= W, .
T l:r{lfl-}-(,L{ 1/ 1}

If t2 > ¢, then the same packet was served by the SF server
in the interval (t,,t), therefore, # — ¢, < 7 and (11) follows
easily. Also it clearly holds

/ filr)ydr <t —t,. (12)
lEC(t)
Note that for any ¢ € (¢,,u,) we have
t
Dt < Dilta) + [ ufilr) dr (13)
tn
Di(t) = Di(tn) + uTi(t). (14)
lirom (13), (14) and using the fact that at ¢, we have

Dl(tn) - Dl(tn) > — Wy, it follows
> wMD-Die) 2 Y T~ Y / filr) dr
leC(t) leC(t) leC(t)
- > utWi (15)
1eC(t)

Replacing from (11) and (12)—(15), we get

Yoo D) -Di(t) = - = > wtWi (16)
leC(t) leC(t)
Let CA'(t)Abe the set of classes [ such that D;(t) — D;(t) < 0.
Clearly C(t) € C(t). From (16)
> Dit) = D) 2 ~m = Y W
leC(t) leC(t)
- D w D) =Dir)) am
le(C(t)-C(t))
and from (10)
> uN(Du(t) - Dy(t) > —7 -2 Z prtWL (18)

leC(t)

Note that since all the terms in the summation in the left side
of (18) are negative, from (18) it follows that

L
Di(t) —r =2 Y u W, le C(t)

=1

— D[(t) >

and therefore (6) is proved for [ € C(t). For any I that does

not belong to C‘( t), (6) clearly holds.

Let {t!}52, be the times at which the ith customer of class !
completes service at the fluid server. Let {#£}52, be the times
at which the ith customer of class I completes service in the
SF server. Let ¢! be the time at which message ¢ will initiate
service in the SF server. If £ < ¢! then clearly (7) holds. If
£ > t! then Dy(t) < Dy(t) for t € (¢}, In the worst case
message 7 will start service after all classes m € C(t}) serve at
most (Do, (t1) = Dy, (1)) + W,,, amount of work. That implies

B—ti< Y (7 (Dm(t) = Dn(t)) + i Win)
mEC’(tf)

which together with (18) and the fact that £ — & < ;7 'W,
imply (7). o
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Since the arrival processes are identical in the fluid and the
SF systems, relation (6) provides the following bound on the
difference of the backlogs X;(¢) and X;(t), respectively, in
the two systems

L
Xi(t) = Xu(t). < jJoax, {ZV—]J} + 24 ]Zl w5 Wi
The bound is independent of the arrival processes. Related
work has been done by Georgiades et al. in [4]. In that work
they obtained nonpreemptive analogs and corresponding lower
bounds for fluid service schedules. Note that the fluid server
in [4] was SF while in our study pipelining is allowed.

V. SF SCHEDULES FROM FLUID SCHEDULES:
THE NETWORK CASE

Following a similar approach as for the single server, given
a fluid schedule S we can get a SF schedule § which is
tracking S and is such that the evolution of the system under
S is close to that under S. Three systems operating under
different schedules will be distinguished in the description of
the construction of the SF schedule from the fluid schedule.

The first one is the fluid system, which evolves according
to (3) given the schedule S. The corresponding departure
processes are denoted by Dy, (¢). The second one is the system
under the SF schedule S, which is to be constructed. The
corresponding departure processes are denoted by Dj,(t).
Finally, there are M emulated fluid servers, one for each
network server, which are used to facilitate the construction
of schedule 5. The emulated fluid server 7 is receiving work
from all the different streams ﬁl(m_l)(t) such that s/, =
[by convention Djo(t) = A;(t)]. It provides service to those
streams following schedule S and lets D;,,, (t) be the departure
processes that correspond to the emulated fluid server.

Following the construction of Section IV, we obtain the SF
schedule S for server i from the emulated fluid server 7. The
latter is the one with input and output streams Dl(m—l) (t) and
Di (t), respectively, where I, m are such that sl =i. Since
the SF schedule is defined in terms of the departure processes
Dlm(t), which in turn are defined in terms of the departure
processes Dip (t) of the SF system, it is important to specify
explicitly how this is done without deadlock. Note that the
construction in the following is inductive.

Let 7o = 0 be the time at which the system starts and
Tn, n = 1,2,--. the sequence of times at which the server
allocation at any server may change in the SF system. The
service allocation may change either because of a service
completion or because of a new arrival in an idle server. Given
the service allocation at r,,, the departure processes ﬁlm(t)
and Dy, (t) are well defined for r,, <t < r,41. We specify
in the following how the service allocation is determined at
the times r,. At time 7o = 0 we have f)lm(O) = ﬁlm(())
and every nonempty server may select a message for service
arbitrarily. The next event that may trigger a change of the
setver allocation in the SF system is either an exogenous
arrival(s) in an idle server(s) or a service completion in some
of the busy servers. Until the time r; that either of these
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events will happen, the processes f)lm(t), Dlm(t), 0<t<n
are well defined. At time 7q, any server ¢ that is not in
the middle of service and for which there are messages
waiting will be allocated based on the construction of schedule
S for the emulated fluid server i. This is possible since
f)lm(t), Dlm(t), 0 < t < ry are well defined. The operation of

* the system is well specified until time 5, where the allocation

is determined in the same manner as at r1. In this way, the
SF schedule is determined inductively. Note that the schedule
applied to the third system of emulated servers is open loop,
irrespective of whether the fluid policy in the first system is
open or closed loop.

Theorem 2: Let Dlm(t),f)lm(t),l = 1,---,Lm =
1,---,M; be the departure processes under the fluid and
SF schedules.

It holds that for { = 1,---,Lom =1,.---, M,

R m W m
Dlm(t)_Dlm(t) > _Z Hin ) max {_]}_2 Z Hin

7k 5] =st Hik

n=1 %k
S uEp w19

ke g =gl
Jik: s =8t

n=1

The proof of the above theorem is based on the proof of
Theorem 1 as well as the following result.

Consider a fluid server with a single arrival stream and
service rate {u(t),t > 0} bounded by micrometers. The
evolution of the workload, which is identical with the backlog
in this case, is specified by (3), appropriately simplified.
Consider two versions of the server with (cumulative) arrival
processes A;(t), Ay(t), respectively, and let D1 (t), Da(t) be
the corresponding (cumulative) departure processes.

Lemma 1: If for the cumulative arrival processes
Aq(t), Aa(t) it holds

Ay(t) > As(t) — L (20)

then for the corresponding cumulative departure processes
D1 (t), D2(t) it holds

Di(t) > D) - L. @D

Proof: Let Q;(t),1 = 1,2 be the queue backlogs. Using
a reflection mapping representation (7), they can be written
as follows:

Qi(t) = As(t) — B(t) — int {Ai(s) = B(s)} A O

0<s<t (22)

where B(t) is the cumulative service process

t
B0 = [ us)ds
; 0
and a A b stands for min{a, b}. From (20), it follows that
olnf, {A1(s) = B(s)} 2 inf {As(s) - B(s)} - L.
(23)

From (23), the fact that D;(¢) = A;(¢) — Qi(¢), and after
some calculations we get

Dy (t) — Do(t) > oinfq {As(s) = B(s)} = L)AO
— inf {As(s) — B(s)} AO.

0<s<t (24)
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By considering separately the cases of the infimum being
negative or nonnegative in (24), (21) follows. 3

Proof of Theorem 2: The processes f)lm(t), f)lm(t) are
well defined from the description of the SF schedule.
For stream [ we will show that (19) holds at all stages
m = 1,---, M, by induction. For m = 1, server st is receiving
the same arrival process A;(¢) both in the SF system and the
fluid system. Since f;1(¢) is the same in the fluid network
and the emulated fluid server, the departure processes D1 (1)
and Dj;(t) are identical. Note that this is true despite the
fact that the other traffic streams besides [, which are seen by
server st, might be different in the fluid and the SF system,
since (3) implies that the service received by a certain stream
is not affected by the traffic of the other streams served by
the server. Since Dy1(t) is the departure process under the
SF schedule derived from the emulated fluid server s}, from
Theorem 1 it follows that

| . W
Dy (t) = Diu(t) > —pin max {—]}
Ik: si:sll Hik

2

1k si:s

1o Wi (25)

l
1

—2un

Inequality (25), together with the fact that Dy (t) and Dy (2)
are identical, implies (19) for m = 1

) m W,
Dlm(t) —Dlm(t) 2 '—z Hin — max X {—}

Hik
>

ik sd =gl
3,k sy, =s,

pp Wi, (26)

The arrival process seen by the server at the m + 1 stage of
the Ith stream is f)lm(t). Stream [ in stage m + 1 is served
by a fluid server with rate fi(m1)(t)tim. Note that by the
definition of the fluid model in (3), the rate of the service
received by stream [ in stage m is independent of the other
streams sharing the server. Let ﬁl(m+1)(t) be the departure
process of that server when its arrival stream is ﬁlm(t). From
the assumption that (19) holds for m and Lemma 1 it follows

N i WY
Dl(rn-}-l)(t) - Dl(m—l—l) (t) > - E Hin max { 1 }
Jik: sy =s!, Hik ) .

2

ik o) =gl
gkt sy, =sl,

W;
max —
Jik: sy =s!, Hik

n=1

m
-2 Z Hin
n=1

B Wi @7

From Theorem 1 we get

Dims1)(t) = Digma1y(t) > —piuima1)

_2Hl(m—|~1) Z N]‘kle
1,k: si:szm+l)
which together with (27) complete the induction step. o

Bounds on the difference of the departure times under
the fair queueing and processor sharing were obtained by
Greenberg and Madras [6].

VI. OPTIMAL AND SUBOPTIMAL EVACUATION

Assume that a number of customers are present in the
network at time ¢ = O and there are no further arrivals.
The problem of scheduling until they complete their service
requirements at all stages -is considered. One quantity of
interest in this problem is the time by which the service of all
customers at all stages will be completed, called the evacuation
time. We are interested in the minimum achievable evacuation
time and for schedules that achieve it. A schedule that achieves
minimum evacuation time and the corresponding evacuation
time are obtained in the following for the fluid model. Clearly
in the fluid case, the minimum evacuation time is no greater
than in the SF case. Finding a SF schedule with minimum
evacuation time is a formidable task in general. Based on the
fluid schedule and using the technique of the previous section
to derive SF schedules, nearly optimal evacuation schedules
are derived for the SF case.

Let w = {wy,: | = 1,---,L,m = 1,---, M} be the
workload vector at time ¢ = 0. Note that w is determined
uniquely by the customers in the system at ¢ = 0 and their
service times. The opposite is not true since there are several
different combinations of customers and service times with the
same workload vector. The minimum evacuation time in the
fluid model depends on the initial condition only through the
workload vector and will be denoted as E(w). The workload
vector w(t) will be referred also as state of the network at
time t. ‘

Note that there is an one-to-one correspondence between a
backlog vector x and the corresponding workload vector w,
as it is implied by relation (1). Let A be the matrix such that
z = Aw. A nonnegative vector w is a workload vector if and
only if Aw > 0. Let us denote by W the space of all workload
vectors. The following theorem characterizes the feasibility of
the transition from one workload vector to another and it is
crucial in the characterization of the minimum evacuation time.

Theorem 3: When there are no arrivals, the transition of the
network from state w! at time ¢; to w? at t1 + 7, w', w? € W
is possible if and only if w! > w? and

1 2
Z Wim — Wim

_max <. (28)
=1 M I,m: st =1 Him -
The constant policy
wl — w?
flm(t) = flm = Im
: Him T
l=1,---,Lim=1,---,M; (29)

achieves the transition.

Proof: The necessity of (28) is obvious so we focus on
the sufficiency in the following. Note first that because of (28)
and since w! > w?, the policy defined by relation (29) is
indeed feasible since

1 2
fl . _]; Wiy, — Wiy <1
E m = § >4
T ,
I,m: s, =1 I,m: sl =i Him

i=1,--, M.
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Note that the service fractions fin, as they are defined by
(29), guarantee that if they are fully utilized by all streams at
all stages, then the network will be driven to w? within time

. Tt is enough to show that at no stage service capacity will
be underutilized due to nonavailable work. It is shown in the
following that

€(titi+7) (30

wl’"(t) = (u}lzm - wllm)T—17 t

from which the theorem follows. This is shown by induction
on the service stages for each traffic stream [. Let n be the
smallest index for which w?, is nonzero and z},,z7, are the
initial and final backlogs of stream [ in stage n, in which case
w}, =}, and of course wi, = x?, since there are no arrivals.
It can be easily checked that (30) holds for m < n. Assume
now that (30) holds for some arbitrary m > n. We show that
in this case it will hold for m 4+ 1 as well and the induction
step is complete. The followmg cases are distinguished.
Assume first that :zl( wtl) > 0. Note that i, 41(t) =
(Wi r1y = Wim+1))T L if #ym+1y(f) > 0. Note also that
Ty(ma1y () = Wi(m+1)(t) — Wim(t) and since (30) holds, it
can be calculate that @;(m41)(t) = (:xrf(mH) - :ztll(m+1))7’_1 if
Zi(m+1)(t) > 0. Hence if Tlimyry > 0. then @y(n ) (t) will
be positive for all ¢ € (fl t1 +7) and (30) follows for m + 1.
Assume now that v,(mH) = 0. Then

3D

11)l(m+1) = w,m.

If 27,y = 0 then

(32)

2 — a2
Wim+1) = Wi,

therefore fimftm = figm+1)fi(m+1) from (29), and from the
definition of the fluid model

Ti}l(m+1)(t) = U'J[m(t). (33)

From (31) to (33) and the 1nduct10n hypothesm 30) form+1
follows. If Jl(m+l) > 0, then wl( 1) > w?, and from (29)
and (31) it follows that

flmll‘lm > fl(m+1).ul(m+1)' (34)

From (34), the definition of the fluid model, and the induction
hypothesis, it follows that

Wigm+1)(t) = figm+1)Bi(m+1)- (35)

By replacing fi(m+1) in (35) from (29), (30) follows. o
Corollary 1: The minimum evacuation time of the fluid
model from some initial state w is equal to

Wim
E(w)= m:
(w) = max l Z:_ o (36)
and the policy
Wim

flm(t) = flm = Whn (37)

Him Z D

Hin

k=gl
k,n: st =s!,

achieves the evacuation in minimum time.
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Proof: From Theorem 3 with w! = w.w® = 0 it follows
that the constant policy with

Wim

flm, =

Win
max
i=1,--\M

2

ko sk=i

Him
Hkn

is feasible and achieves the evacuation in minimum time. Note
that the policy defined in (37) is feasible as well and satisfies
the following

flmelmv ! '»L;Tn':]-s"':Ml-

It is not hard to show, by arguing on the derivative of the
workload as in the proof of Theorem 3, the following intuitive
fact. If in a constant policy some, or all, of the service fractions
increase without violating the feasibility of the policy, then the
evacuation time can only decrease. For the policy defined by
(37), though, the evacuation time will remain the same, since
it is equal to the minimum for the policy with service fractions
flm- ©

Consider now the case where neither preemption nor
pipelining is allowed and let S be the SF schedule that
corresponds to the fluid schedule in (37). The difference
between the evacuation time £ under S and E(w) is bounded
by a constant independent of E(w), as we will show in the
following. The next theorem generalizes for networks the
property (7) that holds for a single node. While this property
is not generalizable in networks for arbitrary time- -varying
fluid schedules, it can be generalized for fluid schedules with
constant service fractions.

Theorem 4: Let ™ #™ | = 1,--- Lym = 1,---,M; be
the departure timie$ of the ith customer of traffic class [ from
the mth stage under the minimum evacuation time fluid policy
and the corresponding SF one. Then it holds

m W;
sy o ()
+2 Z Yo Wit Y wn Wi
n=1 n=1

ke gl =gl
1kt sy =s,

(3%

The following result is needed in the proof of the theorem.
Consider two streams of identical messages with arrival time
sequences {t!}%2; and {t7}$2,, respectively. The streams are
served by a constant service rate server. Assume that there
is a nondecreasing sequence of nonnegative numbers {b;}721
such that

th—t2<b;, i=12,- (39)

Lemma 2: If the arrival times of streams 1 and 2 satisfy
(39) then for the departure times {#}}22,, {f?}2; it holds
(40)

fh—f<bi, i=1,2,--
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Proof: By induction. For ¢ = 1, (40) clearly holds.
Assume that it holds for ; = m. Message m + 1 of stream 2
will start service at or later than the departure time of message
m of the same stream. Therefore if £2, , ; is the service starting
time of that message, from the induction hypothesis

try = 2,01 < b

m

(4D
Message m + 1 of stream 1 will start service at time
max{ty,, t1}-

From the assumptions (39) and (41) and the nondecreasing
property of the sequence of bs, the lemma follows. o

Proof of Theorem 4: By induction. For m = 1, (38) holds
from Theorem 1. Assume that it holds for m. The arrival
process for class [ seen by the fluid server at the m + 1 stage
is Dy (t). Let Dl(m+1)(t) be the departure process of the fluid
server that sees the arrival process Dj,(t). Since (38) holds
for m, from the Lemma 6 we have

max

{ W; }
n—=1 Jik:s] =s!, Hik

+2 Z Z /l’j—kle + Z ,LLl—nIWI.
n=1

n=1

Ei(m-kl) _ ti(m—{—l) <

(42)
i,k: si =s!

Furthermore from Theorem 1, relation (7) we have

(ma1y UHik

P W + u,“(}n“)w,. (43)

tAi(mH) — fﬁ(mﬂ) < max

Jik: sy =s

>

Jiki sl =

+2
I
S(m+1)

From (42) and (43) the induction step is complete and the
theorem follows. o
Based on Theorem 4, the evacuation time £ is bounded as
it is stated in the following.
Corollary 2: The evacuation times E(w) and E for the
fluid schedule and the corresponding SF schedule, respec-
tively, satisfy the following relationship:

M

— W;
S max {
neq Jok:si=s! Hjk

nin Wi+ MWFIWI}- (44)

E< E(w)+ ma
1=1,"L

An interesting class of scheduling policies are the work-
conserving policies, defined as those where every server works
with its full capacity if there is work at any of the stages served
by the server. An upper bound on the evacuation time from
some initial state w, that holds for every work-conserving
policy is

Wim

Him

(45)

=3 Y

= cgl —g
1=1 Im: st =i

To see this, note that U(w) is the sum over all servers i of
the quantity ¥; ,,,. ot —; Wim/tim, Which is the total time that

Fig. 3. Assume that message / has service time 1 in server / and ¢ in the other
servers. If the messages are served in the order | to I and « is sufficiently
small, then the evacuation time is equal to i + (I — 1)e, while if they are
served in the order I' to 1 itis 1 4+ (A — 1)e, equal to the minimum.

server ¢ needs to spend in serving all the work that has to go
through it, when it serves in full speed (no idling). Consider
a policy in which exactly one server works at full speed at
each time instant while all the others idle. Such a policy
achieves an evacuation time equal to U (w). The fact that U (w)
is an upper bound on the evacuation time under any work
conserving policy follows easily if we observe that as long
as the network is nonempty, there will be at least one server
with nonzero backlog which will be working full speed since
the policy is work-conserving. Note that U(w) is an upper-
bound to the evacuation time for both fluid and SF networks.
There are networks where the evacuation time under certain
work-conserving policies can be arbitrarily close to (45). A
few examples follow.

Consider the tandem network in Fig. 3. There are K servers
and K messages initially at queue 1. Message 4 has service
time equal to 1 in server 7 and equal to ¢ at any other server. If
the messages are served in the order from 1 to K and ¢ is small
enough, then the evacuation time is equal to K + (K —1)e. As
€ goes to 0, the evacuation time approaches the upper bound
for the evacuation time under any work-conserving policy. If
the messages are served in the order from K to 1, then the
network evacuates in time 1 4+ (K — 1)e which is equal to the
minimum. It is not difficult to construct examples with larger
numbers of servers and more complicated topologies in which
the evacuation time is equal to the upper bound as well.

The large evacuation time for the example in Fig. 3 is due to
the fact that the relative service times of two messages change
from server to server. Even if the relative service time of any
two messages is the same for all servers serving both messages,
it is possible to have evacuation times considerably larger than
the minimum under certain work-conserving policies. Consider
the tandem network in Fig. 4 with K + 1 servers and service
rate of server i equal to 27, There are K + 1 types of traffic,
all at server O at time 0. Traffic of type i departs from the
network after server 7. The initial amount of traffic 7 is equal
to 2744 =0,1,---,K — 1, and to 2=5=D) for i = K. If
priority is given to the low index traffic over the high index
traffic, the network will empty at time (K + 2). If priority is
given to the high index traffic over the low index, then the
network will empty at time 2.

If all the servers have the same rate for all traffic types,
then under all work-conserving policies the tandem network
(Fig. 3) will empty at the same time (fluid case). There are
topologies though in which the evacuation time under certain
work-conserving policies can be considerably larger than the
optimal evacuation time, even if the capacities of all servers
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—

Fig. 4. There are ¥ + 1 types of traffic, all at server O at time 0. Traffic of
type i departs from the network after server i. The initial amount of traffic is
equal to 2%,¢ = 0.1,---, K — 1 and to 27K =1 for i = K If priority
is given to the low index traffic over the high index traffic, the network will
empty in (K + 2) time units. If priority is given to the high index traffic over
the low index, then the network will empty in two time units.

(®

Fig. 5. One unit of traffic resides at the origin of each traffic stream in
the networks (a) and (b). The service rate is equal to 1 at all servers for
all traffics. The optimal evacuation time is equal to 2 in both cases. The
work-conserving policy that gives priority at every server to the traffic that
will exit the network in the smallest numbers of hops has evacuation time
equal to 3 and 4, respectively, for the networks in (a) and (b), respectively.

are equal. Consider the network in Fig. 5(a). Traffic types 1
and 4 need service from servers 1 and 2, respectively, and
then they leave the system. Traffic types 2 and 3 are served
by servers 1 and 2, respectively, at the first stage and then
they are both served by server 3 before they leave the system.
If priority is given to traffic 2 and 3 in servers 1 and 2, then
the network will empty in 2 time units, while if priority is
given to traffic 1 and 4, respectively, the network will empty
in 3 time units. Networks with K + 1 service stages can be
constructed where the minimum evacuation time is equal to 2
while there are work-conserving policies that have evacuation
time equal to 2 + K. In Fig. 5(b) it is shown how the three-
stage network can be constructed from two two-stage networks
in parallel with the addition of a server in the third stage. If
at each server priority is given to the traffic that will depart
from the network earlier, then the evacuation time is equal to
4, compared to the minimum, that is equal to 2. A class of
networks with interesting properties regarding the evacuation
time is the class of ring networks, an example of which is
depicted in Fig. 6. If the service rate of all streams is the
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Fig. 6. An unidirectional ring network is depicted. Each server has a unique
upstream and a unique downstream node.

same at each server and all servers have the same service
rate, then in the fluid model every work-conserving policy
evacuates the ring in minimum time [3], [5]. This property
does not hold if the servers have different service rates, as it is
indicated by the example of the tandem in Fig. 4, which is just
a special case of a ring. If the service is nonpreemptive, then
it is no longer true that any work-conserving policy achieves
minimum evacuation time. In [11] it was shown that the policy
that gives priority to the message with the furthest destination
achieves minimum evacuation time in that case. Minimizing
the evacuation time is a reasonable objective if the traffic in the
network is uniform and the performance requirements of the
different traffic types are identical. It is possible, though, that
there are different types of traffic with different requirements
on their service completion time. In this case, the objective
of the scheduling is that each traffic type completes service
within the prespecified time, which is called deadline in the
following.

A. Scheduling Traffic with Multiple Evacuation
Time Deadlines

Assume that different traffic types in the network have
different deadlines and let Dy, -+, Dy be the collection of
distinct deadlines. Without loss of generality we assume that
the deadlines are in increasing order D; < Dji1,7
1,---,J —1 and let Dy = 0. Let w’ be the workload vector
of the traffic with deadline D;. The problem of feasibility
of a certain set of deadlines and the computation of the

‘corresponding schedule is equivalent to a linear programming

problem, as it is stated in the following. )
Theorem 5: The deadlines D;,j = 1,---,.J can be met by
the traffic with workload vectors w?,j = 1,-.-,J, respec-
tively, if and only if there are workload vectors yrkew,j=
1,---,J,k =0,1,---,7 such that the following set of linear
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equalities and inequalities hold:

y]():'lll'], yJ]:()' .]:177']
yj(k:—f-l)gyjk’ k=01,,]_1
and
J J
ik j(k+1
DR T A
=k j=k
Z : = < Dyt = Dy,
Im: st =1 Him
i=1,---.N. (46)

The following piecewise-constant policy achieves the transi-
tion

J J
Zyljk _ Z ylj(kﬂ)
j=k j=k+1
fim(t) = : s (Dl:+1t Dy) Dyy1>t > Dy
k=0,---,J-1; I=--- Lim=1,---,M;. (47)

Interpretation and Proof: Assume that there exist workload
vectors y’* as specified in the above theorem. Then it can be
verified that the piecewise constant policy given in (47) is
well defined and achieves the evacuation within the deadlines.
Furthermore, the workload vector y’* represents the remaining
traffic with deadline D; at time Dy, k = 1,---,.J when the
policy given in (47) is followed. Assume now that there
exists an evacuation policy that achieves the deadlines. The
vectors y'* of remaining traffic of class j at time Dy, satisfy
relationships (46). o

The feasibility of a set of deadlines and a schedule that
achieves them can be obtained by finding workload vectors y7*
such that the set of equalities and inequalities of Theorem 5 are
satisfied. This is a linear programming problem that involves
J(J—1)/2 unknown workload vectors. The policy in (47) that
achieves the deadlines is piecewise constant with a number of
changes equal to the number of distinct deadlines.

It is easy to verify that a necessary condition for achieving
the deadlines is the following: by time D; the network can
be evacuated from all the traffic with deadlines less than or
equal to D;. That is

J
E(Y w*|<D;, j=1,---,J (48)
k=1
that meets the deadlines. As a counterexample consider the
network of Fig. 5(a). Assume that the deadline of traffic types
1 and 4 is equal to one, while the deadlines of traffic types
2 and 3 are equal to two. Then (48) is satisfied since the
evacuation time is equal to one when only traffic types 1 and
4 are present in the network, while the evacuation time is
equal to two when all the traffic are present in the network.
The deadlines, though, are not achievable by all traffic types
under any scheduling policy.

It turns out that for ring networks, (48) is the necessary and
sufficient condition for achieving the deadlines. In fact, any
work-conserving policy that gives priority to the traffic with
the tighter deadline at every node, achieves the set of deadlines
if and only if (48) is satisfied. To see this, note that under any
such policy, for any j, the traffic of types k > j is transparent
to the traffic types / < j. The necessity and sufficiency follows
from the fact that under any work-conserving policy the ring
empties at the same time, equal to the minimum.
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