Joint Broadcast Scheduling and User’s Cache Management
for Efficient Information Delivery

Chi-Jiun Su*
csu@hns.com

Leandros Tassiulas
leandros@isr.umd.edu

Hughes Network Systems Electrical Engineering Department

11717 Exploration Lane
Germantown MD 20876
Tel: (301) 601-7346
FAX: (301) 428-2750

Abstract

In information delivery through broadcasting, a server con-
tinuously pushes information in a broadcast channel and the
users access it by tuning in and waiting until the informa-
tion they are interested in is transmitted. The server follows
a schedule that attempts to match the user access statistics
in order to reduce the access latency. In case of inhomoge-
neous user populations with several different access profiles,
the users have local cache to smooth out the mismatches of
their profile with the broadcast schedule statistics.

In this work we propose a method for joint design of the
server broadcast schedule and the user caching strategy such
that the access delay is minimized. We identify a fluid model
of the joint problem on which the joint optimization is per-
formed and subsequently the dynamic schedule is designed
to match the optimal fluid model parameters. It turns out
that with joint design of the broadcast schedule and the
user cache management policy significant performance im-
provement is achieved, particularly for inhomogeneous user
populations.

1 Introduction

With recent advances in information technology, one-way
push-based broadcast delivery is becoming a method of main
interest for the distribution of information to a large user
population. Applications that employ broadcast delivery
are Boston Community Information System [8], Datacycle
project at Bellcore [7], Hughes’ DirectPC multimedia and
package delivery system [10], PointCast’s webcasting [14],
Marimba’s Castanet [13], AirMedia Live Internet Broadcast
Network [3] and Intel’s intercast [11] among others. Data
to be disseminated in the applications includes news and
weather information, traffic information, schedule informa-
tion in airports and train stations, stock quotes and so on.

Under the broadcasting approach as shown in figure 1,
a server continuously and repeatedly broadcasts data to a

*The work of C.-J. Su was performed when the author was with
University of Maryland, College Park.

University of Maryland
College Park MD 20742
Tel: (301) 405-6620
FAX: (301) 314-9920

user community without any feedback about the user’s needs
due to the limited uplink communication capability from
the user to the server. Data broadcast by the server are
organized into units called information items. When a user
needs a certain information item, it monitors the broadcast
channel until the desired item is detected and captures it
for use. There is some latency from the time the need of
an information item arises until the time the item is actu-
ally broadcast by the server. This latency depends on the
broadcast schedule of the server, as well as the user access
pattern.

"ltem A" Broadcast Schedule

< A|BIC Tnme\/
S~ oS _ - = e,

B

User Group 1 2 “u.User Group N

Figure 1: A Broadcast Data Delivery System in a Wireless
Communication Environment

There has been a lot of work in the past on the prob-
lem of designing a broadcast schedule such that the aver-
age latency is minimized [5], [6], [18], [1], [9] and [15].
The approach is to determine the broadcast frequency of
each information item in accordance with the user access
frequency of the item and then to distribute the broadcast
slots of each item as uniformly as possible. If there are more
than one class of users with different access distributions of
information ‘items, then it is unavoidable that some classes
will suffer large latency. An approach to reduce the latency
to a desirable level for each user is to make use of local user
storage.

If a user has local storage, it can retrieve information
items from the broadcast and store them in its memory prior
to the items being requested. If the user makes a request for
one of the “prefetched” stored items, the response time for
this request will be instantaneous. By selectively prefetch-
ing information items from the broadcast, the user is able to
effectively minimize the mismatch between its access needs
and server’s broadcast schedule and the average latency of
its information requests is reduced. Therefore, user’s mem-
ory management becomes an important issue to consider in
order to minimize the average response time of user’s re-
quests. As information items pass by in the broadcast, the

user has to decide whether an item will be prefetched and if
it will, which item residing in the memory will be replaced
with the newly prefetched item. The problem of user’s mem-
ory management was considered in [16], [1], [2] and [4].

The following figure 2 shows the functionality of a server’s
broadcast scheduling policy and a user’s cache management
policy. The scheduling policy first transforms the set of
user’s access statistics into one aggregate access statistics
and then employs it for scheduling of items in the broadcast.
Given the access statistics of a user, the cache management
policy decides if an item arriving in the broadcast will be
prefetched. When a user needs an item, it checks if the item
is in the cache. If not, it has to wait until the item appears
in the broadcast.

Access statisticg User i
e

. Broadcast Broadcast Schedule

H Scheduling = C[A]
Access staﬁstici (Policy

User Cache | Access statistics i
nag [——
Policy

[A]B] User i cache

User i Access

Figure 2: The functionality of a broadcast scheduling policy
and a user’s cache management policy

Due to the lack of uplink request channel, the user’s ac-
cess statistics have to be computed according to the user
profiles generated by the users. Accruing profile informa-
tion to estimate the user’s access statistics is an interesting
problem and merits further study and is beyond the scope
of this paper.

The broadcast scheduling problem and the user’s mem-
ory management problem are complementary to each other
and they were addressed separately in literature. Tradi-
tional broadcast scheduling schemes does not take into ac-
count of user’s caching although prefetching the broadcast
items into user’s cache can be effectively employed at the
user’s side in order to further reduce the mean response
time of user’s requests. In this paper, we consider an in-
tegrated approach which produces broadcast schedules and
user’s memory management schemes simultaneously based
on the mix of data access pattern of user’s groups. Un-
der our joint approach, broadcast schedules are designed
such that the schedules are conducive to user’s caching and
the overall mean response time can be considerably reduced
when caching is done at user’s side. A fluid model of the
joint problem is identified on which the joint optimization is
performed and subsequently the schedules are constructed
according to the optimal fluid model parameters. Numerical
results show that our joint approach can reduce the mean

response time of the non-joint scheme up to 40%. We also -

show that the mean response time of user’s requests under
any broadcast scheduling and cache management policy is
lowerbounded by the solution of the optimization problem.
A lowerbound for the performance of any cache management
strategy, when the server’s broadcast schedule is known, is
also provided which can be used as an benchmark to inves-
tigate the performance of a cache management policy. We
present an example that shows that it is also necessary to
take the group identity of an item (which group of users
is interested in the item) into consideration for scheduling
when prefetching is done at user’s side. We also provide a
two-level scheduling policy which is immune to pathological
cases and performs slightly better than one-level scheduling
in general.

The paper is organized as follows. The problem of joint

broadcast scheduling and user’s cache management is con-
sidered in section 2. An approach to jointly schedule broad-
cast and perform user’s cache management is provided in
section 3. Finally, in section 4, we investigate the perfor-
mance of the joint approach by numerical experiments.

2 Joint Broadcast Scheduling and User's Memory Man-
agement

Time is slotted and one slot length is equal to the time
to transmit one information item. Slot n is the interval
[n,n + 1). The sever broadcasts the information items ac-
cording to a schedule {u,}7>, where u, is the information
item broadcast at slot n. Assume that there are M possible
information items. The index of the broadcast data can be
transmitted to the users ahead of the actual broadcast data
either through the same channel in which the data is trans-
mitted or through a different one with lower data transmis-
sion rate. Therefore, in the following, we may assume that
all the users know the whole broadcast schedule a priori.

A user is generating requests for information items ac-
cording to its needs. When a request for some item ¢ is
generated at some time ¢, then it is either satisfied imme-
diately if the item resides in the local cache of the user or
the user has to wait until the next time the item appears
in the broadcast schedule. After the request is satisfied one
way or the other, the user will generate another request for
an information item after some random time. The latency
from the time a request is generated until the item is trans-
mitted by the server is the performance measure of interest
in broadcast data delivery.

Let’s assume that there are G groups of users each of
which is made up of users with an identical request gen-
eration process. If the user population of each group, g,
g = 1,...,G, is large enough, then we may assume that
the request generation process of each group is stationary
with constant rate A? requests per slot. A request from
group g is for item ¢ with probability b7, ¢ = 1, ..., M where
Eﬁl b? = 1. Hence, requests for item ¢ from each group
g are generated according to a stationary process with rate
A = A9,

Assume that the server is transmitting data according to
some arbitrary broadcast schedule. Assume that each user
from group g has a local cache of size Ky and the users
of group g are following an identical cache update strategy
which determines the content of their caches. Let Af(n) be
the total number of item i requests generated by the users
of group g during slot n. Let X](n) be the number of group
g user requests for item ¢ at the beginning of slot n. The
item ¢ request backlog of group g users evolves as follows:

v o if un=1 or i€ Cy(n)
X! (n+1)= { X{(n)+ Al (n) otherwise

where Cy(n) is the set of K, items stored in the cache of
group g users during slot n.

Figure 3 shows the evolution of the expected item ¢ re-
quest backlog of group g users, X7(n), with caching (solid
line) superimposed by the expected request backlog without
caching (dotted line) for a given sequence of item ¢ broad-
casts. The small rectangles above the horizontal time axis
correspond to the slots at which item ¢ is broadcast. At the
end of each item i broadcast, all of the requests are granted.
The slots at which item 7 resides in the cache are repre-
sented by the small dashed rectangles below the time axis.
All of the requests arriving during these slots are granted

immediately. The expected item i request backlog of group
g, X7 (s), starts increasing with rate A? either from the end
of the last item ¢ broadcast before s or from the end of last
item 7 residence in the cache before s, whichever happened
last. The aggregate expected delay of item i requests with
caching (without caching) is equal to the total area under
the solid (dotted) curve. The area between solid and dot-
ted curve represents the reduction in the aggregate expected
delay of item ¢ requests due to caching.

Xis)

ii 4 ath ranamission .

I

1 [N
Ll llo'.l at whlcr' NS $
item i is cached h(n)

{n+1)th ransmission
of item i

a(n)
T

Figure 3: Expected item i request backlog of group g users
with caching (solid line) and without caching (dotted line)
as a function of time.

The first step for joint design of the server broadcast
schedule and the user caching strategy is to lower-bound
the average delay of item 7 requests under a certain broad-
cast scheduling policy and under a certain cache manage-
ment policy by the expression made up of average values
of the component parameters. The minimum of the lower-
bound over all possible values of these average parameters
is a lowerbound of any broadcast scheduling and any cache
management policy.

Consider an interval of duration T as shown in ﬁgure 3.
Let NT be the total number of transmissions of item 4, i =

., M, during the interval T. Denote the inter-appearance
gap between the nth transmission and (n+1)th transmission
of item i during the interval T by ai(n). Assume that a user
from group g keeps item ¢ for hY(n) slots after the end of
the nth transmission where h{(n) = 0,1, ...,a:(n) as shown
in figure 3.

Consider the class of broadcast schedules where the limit
of the average inter-appearance gap of each item i, @;, con-
verges, which is defined as follows:

NT
a; = lim — E ai(n
* T—o00 T z()
: n=1

The fraction of time item i is transmitted (average transmis-

sion frequency) in the schedule, f;, is equal to the inverse of
its average inter-appearance gap and is given as follows:

Also consider the class of cache management policies where
the limit of the average caching time of item ¢ by a user from

group g, h"’ exists, which is defined as follows:

The class of broadcast scheduling and cache management
policies, for which the long-term average of the above pa-
rameters does not exist, is of little practical value and is of
mathematical interest only.

The expected delay of item ¢ requests from group g with
caching between the nth and (n+1)th transmission of item ¢
is equal to the area of the solid line triangle between the nth
and (n+1)th transmission of item ¢ shown in figure 3. Hence,
the long-term average aggregate delay of item ¢ requests
from group g, D{, with caching is given by

D! = hm —Z (a"l(n) hf(n))2

The following lemma gives the lower bound for DY.

Lemma 1 The long-term average aggregate delay of item @

requests from group g, DY, is lowerbounded by

LN (@R
Proof: Let Y = NZ:—IY
N
Y (-7 > o0
=1
N
S v2-2NY’ 4+ NY 2 0

i=1

Therefore,

N
Sovez v
i=1

If we apply it to our problem,

.1 il 9/ 2
lim = (ai(n) = b (n))

T—ro0
n=1
T NF 2
N; 1
> i 2 —_ . _ By
> Jim - 77 Zl(a’(n) B (n)
n=

Since we assume the existence of the limits for the average
parameters, the lemma is proved. <

The lowerbound of the long-term average aggregate delay
of all the requests experienced by a user is given by

5 X2 47 (5-7)

Consider the following optimization problem (OP).

OP: Dg,, = min
f,, : 9 i=1,...,M,g=1,...,G

R I (——h—s) ®

g=1 i=1

M
s.t. Z fi <1 (2)

The first constraint requires that the server cannot transmit
more than one item in each slot and the second constraint
says that we cannot store more items than the cache capacity
of a user.

Theorem 1 The long-term average aggregate delay of all

the requests experienced by a user under any broadcast schedul-

ing and cache management policy is lowerbounded by the so-
lution of the above optimization problem (OP).

Proof: The minimum of the lowerbound over all possible
values of these parameters is a lowerbound of any broadcast
scheduling and any cache management policy. <

Corollary 1 For a given broadcast schedule with known av-
erage transmission frequencies f;’s, the long-term average
aggregate delay of all the requests ezperienced by a user un-
der any cache management strategy is lowerbounded by

(M — Kg)?
WLt r

Proof: When f;’s are known and we make full use of cache
capacity, the optimization problem reduces to

min 2G ZZ NTi (;—h_g>

h?,i:l,..‘,M,g=l,...,G g=1 i=1
M
T h = =
s.t. E fihl = K4y g=1,...,G
=1

By solving the optimization problem, the optimal average
caching times are

R = 1_ /\1_3(1\41;_1{_9) for i=1,.,M,g=1,...G
fi D Sl f;y
and the optimal cost is
(M - K,)*
o7 Z
21 1 Lb
o

The bound derived in corollary 1 can be used as a bench-
mark to investigate of performance of a cache management
policy. In the following, we will provide an approach to
jointly schedule broadcast and do cache management using
the parameters obtained from the above optimization prob-
lem (OP).

3 The Algorithm

One approach for joint broadcast scheduling and cache man-
agement is to construct a broadcast schedule according to
the optimal transmission frequencies obtained from the op-
timization, f‘, i=1,..., M, and to follow an optimal cache
management policy [16] under the above-designed broadcast
schedule.

Since the optimization problem (OP) is not convex, it
is not guaranteed that the global optimal solution can be
obtained. In section 4, numerical experiments are carried
out to investigate the performance gain over separate design
of broadcast schedule and cache management just by using
the local optimal solutions obtained from the (OP).

3.1 Aggregate Access Statistics

Since usually there are more than one group with different
user’s access statistics, the scheduling algorithm transforms
the set of user’s access statistics into one aggregate access
statistics which is used for scheduling as depicted in figure 2.
There are a number of ways the scheduling policy can map
the set of user’s access statistics into one aggregate access
statistics. One simple way is to take the average of all the
access statistics and this is what most of the scheduling al-
gorithms do. That is, the aggregate access probabilities are
computed as follows:

G
1
b = azbf. 4)

Joint broadcast scheduling and user’s cache management
suggests a novel approach for obtaining the aggregate user’s
access statistics. Under the joint approach, the optimal
transmission frequencies fi*’s are first obtained from the
optimization and the aggregate user’s access probabilities
are computed from the f; s as follows [5]:

—2
b= i ®
=14J

The results in section 4 show that we can achieve up to 40%
improvement in mean response time by using joint approach
over the use of the average of user’s access statistics.

3.2 Broadcast Scheduling
3.2.1 One-Level MAD

Among the algorithms proposed in literature to generate

a broadcast schedule with transmission frequencies which

are close to the given ones, the MAD [15] is an on-line low

complexity algorithm which yields the mean response time

of user’s requests very close to the lower bound. Therefore,

we consider the MAD for constructing broadcast schedules.
At each slot n, the MAD broadcast the item

u, =arg max b; wi(n)?
i=1,...,.M
where w;(n) is the elapsed time until the beginning of slot n
since the last transmission of item ¢, as illustrated in figure 4.
Ties can be broken arbitrarily.

w(m) Tin)
linlklllmimljlllil

Figure 4: Illustration of wi(n) and 7/ (n)

To generate broadcast schedules, the MAD algorithm re-
quires user’s access probabilities, b;’s. The b;’s can be ob-
tained either from equation (5) or from equation (4) when
there are more than one group with different access statis-
tics.

Table 1 compares the given average transmission fre-
quencies and those of the broadcast schedule generated by
the MAD for 100 items. The MAD algorithm, indeed, con-
structs a broadcast schedule with average transmission fre-
quencies which are very close to the required ones.

As the following example shows, it is also necessary to
take the group identity of an item (which group of users is

Table 1: Given fi’s vs. fi’s produced by the MAD

Item Given MAD Item Gilen MA
fi fi /i /i
1 0.001996 0.002040 51 0.009896 0.009754
2 0.016707 0.015543 52 0.009823 0.009754
3 0.018721 0.018655 53 0.009767 0.009754
4 0.007432 0.007510 54 0.009688 0.009754
5 0.011231 0.011283 55 0.009616 0.0097564
6 0.013950 0.013832 56 0.009533 0.009736
7 0.016479 0.015324 57 0.009462 0.009736
8 0.011252 0.011283 58 0.009392 0.009736
9 0.008469 0.008424 59 0.009298 0.009461
10 0.005943 0.008008 60 0.009162 0.009201
11 0.016820 0.016731 61 0.008483 0.008424
12 0.013926 0.013832 62 0.009104 0.009200
13 0.012078 0.012023 63 0.009021 0.009091
14 0.011691 0.011547 64 0.008902 0.008924
15 0.013927 0.013832 65 0.008816 0.008828
16 0.012403 0.012352 66 0.008728 0.008724
17 0.013161 0.012977 67 0.008649 0.008633
18 0.014386 0.014333 68 0.008571 0.008536
19 0.014034 0.013832 69 0.008488 0.008424
20 0.013850 0.013832 70 0.008411 0.008424
21 0.013752 0.013832 71 0.008336 0.008290
22 0.013412 0.013261 72 0.008266 0.008186
23 0.013345 0.013261 73 0.008204 0.008136
24 0.013073 0.012977 74 0.008141 0.008062
25 0.012933 0.012976 75 0.008081 0.008011
26 0.012733 0.012685 76 0.008016 0.007860
27 0.012531 0.012352 77 0.007960 0.007850
28 0.012366 0.012352 78 0.007908 0.007850
29 0.012179 0.012023 79 0.007847 0.007708
30 0.012053 0.012023 80 0.007790 0.007614
31 0.011890 0.011785 81 0.007738 0.007613
32 0.011748 0.011548 82 0.007683 0.007511
33 0.011637 0.011547 83 0.007635 0.007511
34 0.011513 0.011296 84 0.007588 0.007511
35 0.011399 0.011284 85 0.007539 0.007510
36 0.011291 0.011283 86 0.007492 0.007510
37 0.011185 0.011283 87 0.007445 0.007510
38 0.011069 0.011134 88 0.007400 0.007510
39 0.010937 0.010931 89 0.007353 0.007510
40 0.010799 0.010749 90 0.007305 0.007510
41 0.010683 0.0106825 91 0.007264 0.007510
42 0.010571 0.010507 92 0.007215 0.007470
43 0.010448 0.010341 93 0.007174 0.007469
44 0.010341 0.010185 94 0.007132 0.007469
45 0.010263 0.010185 95 0.007093 0.007469
46 0.010153 0.010008 | 96 0.007051 0.007469
47 0.010044 0.009755 97 0.007013 0.007469 |
48 0.009990 0.009755 98 0.006971 0.007469
49 0.010015 0.009755 99 0.006933 0.007469
50 0.009920 0.009755 100 0.006896 0.007469

interested in the item) into consideration when user’s cache
management is considered together with broadcast schedul-
ing.

3.2.2 Two-Level MAD

Consider a case with 20 items and 10 groups. Each group
has cache of size one and group 7 is assumed to be interested
only in two items, item 2¢ — 1 and 27 where ¢ = 1,...,10
with equal probabilities. Since the average aggregate access
probabilities are uniform, the optimal schedule is cyclic with
each item broadcast once. Moreover, one-step look-ahead
(OSLA) cache management policy is optimal as user’s access
probabilities of each group is uniform among the items of
interest (Proof is similar to that of theorem 1 in {16}).

| 1 [2 |3 |4 | 5 |6 |1 | 8| 9|10|11|12|13|14|15|16|17|1812]29]
Schedule (a)

|1 |3 |5l7|9|11 13|15|17|19|2]4|6 [8 10|12|14|l6|18[2_0|
Schedule (b)

Figure 5: A pathological example to one-level scheduling

Consider two cyclic schedules as depicted in figure 5.
Without caching, the mean response time experienced by
each group will be the same under the two schedules. How-
ever, with the use of cache of size one and the optimal cache

management policy, the mean response time experienced by
each group under the schedule (a) and schedule (b) in fig-
ure 5 are 90.50 and 50.00 slots respectively. It shows that the
items should be uniformly spaced according to group basis
in addition to the uniform spacing among the items. Hence,
group-level scheduling is also required to ensure the lower
mean response time when caching is performed on user’s
side.

The MAD algorithm can be easily extended for group-
level consideration. Let’s call it “two-level MAD”. The two-
level MAD first selects the user group to which the item to
broadcast belongs and then selects the item among those
the selected group of users is interested in.

(1) gn = argmaxy=,...¢ E,A; bf’w,‘(n)2

(2) un =argmaxi=i,..m bI" w;(n)®
Ties can be broken in an arbitrary manner.

It is obvious that the two-level MAD generates the “good”’
schedule for the pathological example to the one-level MAD.
In section 4, we will compare the performance of the two-
level MAD to that of the one-level MAD for a few examples.

3.3 Cache Management

Due to high implementation complexity, the optimal cache
management provided in [16] is not practical. As the nu-
merical examples in [16] showed that the low-complexity
One-Step Look-Ahead (OSLA) strategy yields performance
comparable to that of the optimal policy in many cases, we
will apply the OSLA scheme for cache management in our
numerical experiments in section 4. The OSLA policy com-
putes the reward of caching for the items already stored in
the cache and for the arriving item on the broadcast and
discards the one with the smallest reward. The reward of
caching item ¢ at slot n is equal to the reduction in the ex-
pected delay of item ¢ requests due to the caching of item ¢
at slot n and is given by

A (m) + 5 (®)

where 7/ (n) is the number of slots from the beginning of slot
n until the beginning of the first slot after n at which item
i is transmitted as illustrated in figure 4. In the following,
we will give an informal proof for (6) (For details, interested
readers are referred to [16]).

Figure 6: The reward of caching item 7 at slot n

Assume that item ¢ is stored in the cache at slot n and
is discarded from the cache at the end of slot n as shown
in figure 6. Also assume that item ¢ is transmitted by the
server at slot n+7if (n) the first time after n. The aggregate
expected delay with caching (without caching) from slot n
to slot n + T,f (n) + 1 is equal to the area of the solid (dot-
ted) triangle. The shaded area between the dotted and solid

curve is equal to the reduction in the expected delay of item
i requests due to the caching of item ¢ during slot n. There-
fore, if we subtract the area of the solid triangle from that
of the dotted triangle, we obtain the reward of caching item
i at slot n which turns out to be equal to (6).

4 Performance of the Joint Approach

In this section, the performance of our Joint Scheduling and
Cache Management (JSCM) approach is compared to that
of the Non-Joint Scheduling and Cache Management (Non-
JSCM) scheme. The only difference between JSCM and
Non-JSCM is user’s access probabilities, b;’'s. In JSCM,
bi’s are computed from the average transmission frequen-
cies, fi’s, by using equation (5), which are obtained from
the optimization problem (OP). The optimization problem
(OP) is solved by using the Feasible Sequential Quadratic
Programming (FSQP) software [17]. In Non-JSCM, b;’s are
obtained by taking the average of the given access proba-
bilities over different groups as in equation (4). The b;’s
are used as an input to the one-level and two-level MAD
algorithms. Then, we employ the OSLA as our cache man-
agement strategy under the schedules generated by JSCM
and Non-JSCM and compare the mean response time of two
approaches.

Numerical experiments are performed for 100 items. Items
are numbered from 1 to 100 and users from each group g are
assumed to be interested only in M, consecutive items start-
ing from Start Itemg up to (Start Itemg+ My —1) mod (M +
1) + 1. For these M, items, user’s access probabilities are

assumed to follow zipf distribution [12] where b; = %Q—l)i
where j = 1,..., My. As § decreases, the access pattern be-
comes increasingly skewed. For 8 = 1, zipf distribution re-
duces to uniform distribution.

User’s access probabilities of each group are either in
ascending order or in descending order from item Start Itemg
to (Start Itemg + Mg —1) mod (M +1) + 1.

For the case with descending order,
if (Start Itemg + Mg - 1) S M, b = bi—StaT‘t Item,+1'
Otherwise,

bi =b,_Start Item,+1
t = Start Itemq,....M

bi = b, p_Start Itemgy+1
i=1,..., (Start Itemyg + Mg —1) mod (M +1) + 1
For the case with ascending order,
if (Start Itemg + Mg —1) < M, bi=b
Otherwise,

bi = ng—i+Start Item,
¢ = Start Itemsg, ..., M

bi = ng—z M4 Start Item,
t=1,..., (Start Itemy + Mg — 1) mod (M +1) + 1

The examples are provided at the end of the paper. The
numerical results in examples I to VIII compare the mean re-
sponse time (MRT) of JSCM and Non-JSCM and the MRT
of one-level and two-level MAD. The first and second big col-
umn shows the mean response time without user’s caching
and the mean response time reduced by caching with the
OSLA strategy respectively. The reduction in the mean re-
sponse time due to caching under any cache management
strategy is equal to the aggregate sum of the reward of
caching for the items stored in the cache at each slot over
the one period of the broadcast schedule [16] and is given

Mg—i+Start Item,

by

ETJ: Z Ai (T{(n)+%)

n=1i€C(n)

where T, is the one period of the broadcast schedule and
C(n) is the set of items stored in the cache at slot n as
defined before.

The third column shows the actual mean response time
experienced by a user with caching using the OSLA policy.
This value is equal to the difference between MRT without
caching (first column) and MRT reduced by caching (second
column). The “Optimized” subcolumn gives the results un-
der JSCM while the “Average” subcolumn shows the results
for Non-JSCM. The last column shows the % improvement
in the mean response time over Non-JSCM by the use of
JSCM.

The number of groups considered in the experiment ranges
from 1 to 5. Example I corresponds to the case with one
group, examples II, IIT and IV to the case with two groups
and examples V, VI, VII and VIII to the case with five
groups. For multi-group cases, access patterns are consid-
ered for the following three cases: non-overlapping (differ-
ent groups of users are interested in different sets of items
with no common items of interest), partial overlapping (with
some common items of interest to different groups) and com-
plete overlapping (all the groups considered are interested in
all the items with non-zero access probabilities). Example
II and V are for complete overlapping case, III and VIII for
non-overlapping case and IV, VI and VII for partial over-
lapping case. Different groups have access probabilities with
different skewedness (different values of).

With JSCM, MRT without caching is quite large but a
large portion of MRT is later reduced by caching. Although
MRT without caching for Non-JSCM is smaller than that for
JSCM in all cases, caching reduces only a smaller portion of
MRT for Non-JSCM than JSCM. Therefore, the improve-
ment in the actual MRT experienced by a user with caching
over Non-JSCM by JSCM ranges from 10% up to 40%. It
shows that considerably better performance can be achieved
if we design broadcast schedules which are more amenable
to user’s caching.

First let’s look at the case with one-level MAD first.
Even for the single-group case (example I) with cache size
10, 100 items and 8 = log(0.8)/ log(0.2), we can gain 18.10%
improvement with JSCM. In the case with 5 groups (exam-
ple VIII), the gain over Non-JSCM by JSCM is as high as
40.78%. One important observation is that we can reduce
MRT more by employing JSCM when access probabilities of
different groups are non-overlapping for both 2-group and 5-
group cases (see examples III and VIII). For the case with
5 groups, the gain over Non-JSCM is smallest when all the
groups are interested in all the items (complete overlapping).
When we decrease the cache size (compare examples VI and
VII), the improvement over Non-JSCM also decreases a lit-
tle.

For JSCM, two-level MAD yields almost the same MRT
as one-level MAD for all the cases. It shows that one-level
scheduling performs well in most cases (except a few patho-
logical cases). However, for Non-JSCM, the improvement in
MRT over one-level by two-level MAD is larger. Therefore,
one-level MAD is good enough to be a candidate for the low
complexity implementation of JSCM.

5 Concluding Remarks

We consider the problem of joint broadcast scheduling and
user’s cache management such that the mean response time
experienced by the users is minimized. Under our joint
approach, broadcast schedules are designed such that the
schedules are conducive to user’s caching and the overall
mean response time experienced by the users can be consid-
erably reduced when caching is performed at user’s side. We
do gain improvement up to 40% over the traditional broad-
cast scheduling approach which does not take into account
of user’s caching. Although the computational complexity of
solving the optimization problem is not trivial, our approach
is amenable to implementation since the computation can
be performed off-line. We also show an example that shows
that it is also necessary to take the group identity of an item
(which group of users is interested in the item) into consider-
ation for scheduling when prefetching is done at user’s side.
We provide a two-level scheduling policy which is immune
to pathological cases and performs slightly better than one-
level scheduling in general. A valuable byproduct of our
approach is a lowerbound for the performance of any cache
management strategy when the server’s broadcast schedule
is known. It can be used as an benchmark to investigate the
performance of a cache management policy.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.
“Broadcast Disks: Data Management for Asymmetric
Communication Environments”. Technical Report CS-
94-43, Dept. of Comp. Science, Brown University, Oc-
tober 1994.

[2] S. Acharya, M. Franklin, and S. Zdonik. “Prefetching
from a Broadcast Disk”. In Proc. 12th Int’l. Conf. Data
Eng., New Orleans, LA, February 1996.

(3] AirtMedia Inc. ~ WWW. URL,
http://www.airmedia.com/. 1997.

[4] M. H. Ammar. “Response Time in a Teletext System:
an Individual User’s Perspective”. IEEE Transaction
on Communication, COM-35(11):1159-1170, Novem-
ber 1987.

[5] M. H. Ammar and J. W. Wong. “The Design of Teletext
Broadcast Cycles”. Performance Evaluation, 5(4):235—
242, December 1985.

[6] M. H. Ammar and J. W. Wong. “On the Optimality of
Cyclic Transmission in Teletext Systems”. IEEE Trans-
action on Communication, COM-35(1):68-73, January
1987.

[7] T. Bowen, G. Gopal, G. Herman, T. Hickey, K. Lee,
W. Mansfield, J. Raitz, and A. Weinrib. “The Dat-
acycle Architecture”. Communications of the ACM,
35(12):71-81, December 1992.

[8] D. K. Gifford. “Polychannel Systems for Mass Dig-
ital Communication”. Communications of the ACM,
33(2):141-151, February 1990.

[9] S. Hameed and N. H. Vaidya. Log-time Algorithms for
Scheduling Single and Multiple Channel Data Broad-
cast. In Proc. of MOBICOM’97, Budapest, Hungary,
September 1997.

{10] DirecPC. WWW Hughes Network Systems. URL,
http://www.direcpc.com/. 1996.

[11] Intel Intercast Technology.
http://www.intercast.com/. 1997.

[12] Donald E. Knuth. The Art of Computer Programming,
volume 3. Addison-Wesley, Reading, Massachusetts,
second edition, 1981.

WWW. URL,

[13] Inc. WWWwW Marimba. URL,
http://www.marimba.com/. 1997.
[14] Pointcast Inc. WWW. URL,

http://www.pointcast.com/. 1997.

{15] C.J. Su and L. Tassiulas. “Broadcast Scheduling for In-
formation Distribution”. In Proc. IEEE INFOCOM’97,
volume I, pages 109-117, Kobe, Japan, 1997.

[16] L. Tassiulas and C. J. Su. “Optimal Memory Man-
agement Strategies for a Mobile User in a Broadcast
Data Delivery System”. IEEE JSAC Special Issue on
Networking and Performance Issues of Personal Mobile
Communications, 15(7):1226-1238, September 1997.

[17] Andri Tits. “FSQP”. In URL,
http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html.

[18] J. W. Wong. “Broadcast Delivery”. Proceedings of the
IEEE, 76(12):1566-1577, December 1988.

Example I

No. Of Groups =1,
K, =10, M, = 100, Start Item; = 1 and 0 = log(0.8)/10g(0.2) in decreasing order.
MRT MRT MRT % Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized | Average | Optimized | Average | Average Parameters
[Group 1 15121 | 23.14 138.86__| 8.06 12.35 | 15.08 18.10 %
Example 11
No. Of Groups = 2,

K, =10, My, = 100 Start Item; =1 and 8 =
K, =10, M2 = 100, Start Items =1 and § =

log(0.8)/1og(0.2) in decreasing order.
log(0.8)/log(0.2) in increasing order.

MRT MRT MRT % Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized | Average | Optimized | Average | Average Parameters
Group 1 38.35 27.69 25.22 11.88 13.13 15.81 16.95 %
Group 2 126.93 27.69 114.13 11.88 12.80 15.81 19.04 %
Average 82.64 27.69 69.68 11.88 12.96 15.81 18.03 %
Example III
No. OP Groups = 2,

K, =10, M, =50, Start Itemy =1 and § =
K; =10, M, = 50, Start Itemz = 51 and 6§ =

log(0.8)/10g(0.2) in decreasing order.

log(0.8)/log(0.2) in decreasing order.

MRT MRT MRT 7% Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized | Average | Optimized | Average | Average Parameters
Group 1 81.53 23.93 72.54 12.07 8.99 11.86 2420 %
Group 2 80.14 23.93 71.22 12.07 8.92 11.86 24.79 %
Average 80.84 23.93 71.88 12.07 8.96 11.86 24.45 %
Example IV
No. OF Groups = 2,

K, =10, M, = 80, Start Itemy =1 and 8 =
K; = 10, M, = 80, Start Itemz; = 21 and 6 =

log(0.8)/10g(0.2) in éincreasing order.

log(0.8)/log(0.2) in decreasing order.

MRT MRT MRT % Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized | Average | Optimized | Average | Average Parameters
Group 1 102.67 24.44 91.76 11.10 10.91 13.34 18.22 %
Group 2 30.93 24.44 19.75 11.10 11.18 13.34 16.19 %
Average 66.80 24.44 55.76 11.10 11.05 13.34 17.17 %
Example V
No. OF Groups = 5,
K, =5, My = 100, Start Item; =1, 0 =
K, = 10 M, = 100 Start Itemg =1, 0 = 0 5 and in decreasmg order.
K3 =15 M; = 100 Start Items = 1, § = 0.1386 and in increasing order.
=20, M = 100, Start Items = 1, § = 0.025 and in decreasing order.
K5 = 25 M2 = 100 Start Items = 1, § = 0.005 and in increasing order.
MRT MRT MRT % Improvement over
‘Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized | Average | Optimized | Average | Average Parameters
Group 1 51.23 55.87 6.01 5.78 45.22 50.10 9.74%
Group 2 53.91 49.71 21.79 13.40 32.12 36.31 11.54%
Group 3 61.64 28.41 50.95 16.32 10.69 12.09 11.58%
Group 4 56.76 13.43 54.99 11.39 1.77 2.04 13.24%
Group 5 70.26 8.34 69.95 7.80 0.31 0.34 8.82%
Average 58.76 31.15 40.74 10.94 18.02 20.18 10.70%

Example VI
No. Of Groups = 5,

K, =5, My = 40, Start Item; = 1, § = 0.025 and in decreasing order.

K> =10, M, = 40, Start Iteme = 21, 6 = 0.025 and in decreasing order.
K3 =15, My = 40, Start Itemz = 41, 8 = 0.025 and in decreasing order.
K4 =20, M, = 40, Start Items = 61, 8 = 0.025 and in decreasing order.
K5 = 25, My = 40, Start Items = 81, 8 = 0.025 and in decreasing order.

One-level MAD

MRT MRT MRT % Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized | Average | Optimized | Average | Average Parameters
"Group 1 35.22 11.78 32.72 7.62 2.50 4.16 39.90%
Group 2 54.58 11.78 52.95 9.13 1.63 2.65 38.49%
Group 3 58.57 11.78 57.50 10.08 1.07 1.70 37.05%
Group 4 74.81 11.78 74.12 10.71 0.69 1.07 35.51%
Group 5 76.09 11.78 75.72 11.18 0.38 0.60 36.67%
Average 59.85 11.78 58.60 9.74 1.25 2.04 38.73%
Two-level MAD
MRT MRT MRT 7 Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
ptimized | Average | Optimized | Average | Optimized | Average | Average Parameters
Group 1 35.47 11.89 32.99 7.88 2.49 4.02 38.06%
Group 2 54.84 11.89 53.23 9.35 1.61 2.54 36.61%
Group 3 57.91 11.89 56.84 10.26 1.07 1.63 34.36%
Group 4 74.14 11.89 73.45 10.87 0.69 1.02 32.35%
roup 5 75.81 11.89 75.44 11.33 0.37 0.56 33.93%
Average 59.63 11.89 58.39 9.94 1.25 1.96 36.22%
Example VII
No. Of Groups = 5,
K; =2, My = 40, Start Item; = 1, 6 = 0.025 and in decreasing order.
Ky, = 4, My = 40, Start Item; = 21, 8 = 0.025 and in decreasing order.
K3 =6, My = 40, Start Items = 41, 6§ = 0.025 and in decreasing order.
K4 =8, My = 40, Start Items = 61, § = 0.025 and in decreasing order.
K5 =10, M> = 40, Start Items = 81, § = 0.025 and in decreasing order.
One-level MAD
MRT MRT MRT 7 Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized | Average | Optimized | Average | Average Parameters
Group 1 30.73 11.78 27.17 6.14 3.57 5.64 36.70%
Group 2 31.65 11.78 28.82 7.21 2.83 4.57 38.07%
Group 3 33.23 11.78 30.90 7.98 2.33 3.80 38.68%
Group 4 32.56 11.78 30.60 8.61 1.96 3.17 38.17%
Group 5 37.31 11.78 35.66 9.13 1.65 2.65 37.74%
Average 33.10 11.78 30.63 7.81 2.47 3.97 37.78%
Two-level MAD
MRT MRT MRT 7 Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized | Average | Optimized | Average | Average Parameters
Group 1 31.05 11.89 27.50 6.42 3.56 5.47 34.92%
Group 2 31.90 11.89 29.07 7.47 2.83 4.42 35.97%
Group 3 33.56 11.89 31.24 8.23 2.32 3.66 36.61%
Group 4 32.84 11.89 30.90 8.84 1.95 3.05 36.07%
Group 5 37.48 11.89 35.85 9.35 1.63 2.54 35.83%
Average 33.37 11.89 30.91 8.06 2.46 3.83 35.77%

Example VIII
No. Of Groups = 5,

Ky =2, M, = 20, Start Item; = 1, 6§ = 0.025 and in decreasing order.
Ky =4, My =20, Start Itemo = 21, § = 0.025 and in decreasing order.
K3 =6, My = 20, Start Items = 41, § = 0.025 and in decreasing order.
K4 =8, My = 20, Start Items = 61, § = 0.025 and in decreasing order.
K5 =10, M2 = 20, Start Items = 81, § = 0.025 and in decreasing order.

One-level MAD

MRT MRT MRT % Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized T Average | Optimized | Average | Average Parameters
Group 1 25.21 10.49 22.47 5.90 2.74 4.59 40.31%
Group 2 28.49 10.49 26.40 6.70 2.08 3.49 40.40%
Group 3 31.47 10.49 29.91 7.83 1.56 2.66 41.35%
Group 4 29.76 10.49 28.61 8.51 1.16 1.97 41.12%
Group 5 28.46 10.49 27.64 9.09 0.82 1.40 41.43%
Average 28.68 10.49 27.01 7.61 1.67 2.82 40.78%
Two-level MAD
MRT MRT MRT % Improvement over
Without Caching Reduced by Caching | Actually Experienced the use of
Optimized | Average | Optimized | Average | Optimized | Average | Average Parameters
Group 1 25.69 10.73 22.95 6.38 2.73 4.35 37.24%
Group 2 29.13 10.73 27.07 7.47 2.07 3.27 36.70%
Group 3 31.59 10.73 30.06 8.27 1.563 2.46 37.80%
Group 4 30.66 10.73 29.54 8.92 1.12 1.81 38.12%
Group 5 28.71 10.73 27.93 9.47 0.79 1.26 37.30%
Average 29.16 10.73 27.51 8.10 1.65 2.63 37.26%

