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Abstract

We consider a queueing network that models certain computer and communication
systems with interdependent resources. The resources are modeled by a collection of
servers that cannot be allocated to the queues independently but subject to certain
constraints. The customers have random service times and the service completions of
different customers cannot be synchronized. We obtain necessary and sufficient condi-
tions for the stability, that is, finiteness of long run average delays. We also propose a
non-preemptive server allocation policy that stabilizes the system whenever it is stabiliz-
able and hence attains maximal throughput. The policy does not need the knowledge of
the arrival statistics and has polynomial time complexity for some specific applications.
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1 Introduction

There are several applications of computer and communication networks that involve re-
sources that are interdependent in the sense that the allocation of one resource may affect
that of the other. The resources can only be allocated subject to certain system specified

constraints.

We consider the following queueing network as a general model of such systems. The
network consists of N nodes and K distinct servers. Customers arrive at each one of the N
queues according to some arrival process that is unspecified at this time. There are certain
constraints on how the servers can be allocated to the nodes and these are specified by
a collection U of feasible server activation schedules. A feasible server activation schedule
u € U is an N x K binary matrix and u;, its (4,k)"* element, equals 1 (respectively 0)
if server k can (resp. cannot) be allocated to a customer at node i. We assume that a
customer needs only one server for service from a node. Therefore, if uj, = uj, = 1 for
some schedule u € U, then under this schedule, one customer is served by each of the servers
k1 and kp. Also, a server can serve only one customer at a time; so for every server k, there
is at most one node ¢ such that u;; = 1. After completing service from server k, a customer
at node 7 joins the queue at node j with probability p(i, k, 7); clearly Ef:il p(i,k,j) = 1.
Set p(i,k,1) = 0 for every 1 < N, k < K. This system will be referred to as a Generalized
Constrained Queueing System (GCQS) in this paper.

Consider the following example of a multi-processor computer system processing paral-
lelizable jobs.. Such a job consists of many independent components that can be processed
in parallel. A parallelizable job with 7 independent components needs ¢ servers concurrently
during service; it can begin service only when ¢ servers are available and it keeps these servers
busy for the entire duration of its service. Somewhat more generally, a parallelizable job may
be processed in phases; in each phase, depending on its parallelism profile, there may be a
different number of independent components and hence different number of processors may
be needed concurrently for execution. After completing a phase, a job is either completed
and it leaves the system or enters another phase requiring further processing, according to

a given probability distribution. Suppose the total number of processors is K. Jobs can be



processed in parallel as long as each job has the required number of servers and the total

number of required servers is less than K.

Scheduling the server assignment in the above system amounts to determining how many
jobs from each class will be served at each time period. Jobs may complete service asyn-
chronously, therefore whenever some of the servers become free the scheduler may reassign
servers to jobs. If the number of servers that are free at some time instant is less than
the number of servers required by the jobs waiting for service, then these servers cannot be
allocated and they are forced to idle. For example, when there are only jobs that require

K — 1 servers in the system and K > 3, then 1 of the K servers necessarily idle.

The problem of scheduling to minimize performance measures like makespan or average
delay in a multiserver queueing system is in general a difficult one. For example, the problem
of minimizing makespan or delay for a system with a fixed number of customers initially,
no arrivals and no feedback, 2 servers, 1 class of customers each requiring 1 server is well
known to be NP-complete. The presence of constraints in server allocation only make these
problems harder. Because of the forced idle periods mentioned earlier, a work conserving
policy has no meaning in these systems and the problem of stabilizability, that is, designing
scheduling policies to achieve finite delays, becomes challenging. A good scheduling policy

has to incorporate the constraints in an appropriate manner to deliver finite delays.

In this paper we determine necessary and sufficient conditions for stability of systems
like the one described above and propose a policy that stabilizes the systems whenever the
necessary and sufficient conditions hold. Our setting is in fact considerably more general
than the example described above and allows distinct servers, arbitrary constraints in the
simultaneous service of different customers (not just a constraint on the total number of
servers needed as in the parallel processing application), as well as server dependent routing
of the customers through several nodes before exiting the system. This system was motivated
originally by multihop radio communication networks where the service constraints arise as
interference constraints in the simultaneous transmissions (see Tassiulas et.al. [12]). Then
the similarity with models arising in parallel processing and wireless cellular networks was
noticed and the general model we consider here has within its scope all these practical

systems.



The queueing network studied in this paper consists of N + 1 nodes and K distinct
servers. Customers arrive at each of the nodes 1,---, N for service with N + 1 as their
destination node. There are certain constraints on how the servers can be allocated to the
nodes and we assume that these can be specified by a collection U of all possible feasible
server activation schedules. A feasible server activation schedule u € U is an N x K binary
matrix and wuj, its (4, k)" element, equals 1 (respectively 0) if server k can (resp. cannot)
be allocated to a customer at node i. We assume that a customer needs only one server for
service from a node. Therefore, if u;x, = ujx, = 1 for some schedule u € ¥, then under this
schedule, one customer is served by each of the servers k; and k3. Also, a server can serve
only one customer at a time; so for every server k < K, there is at most one node i < N
such that u;, = 1. After completing service from server k, a customer at node ¢ joins the
queue at node j with probability p(3, k, j); clearly }:;Y:“'il p(i, k,j) = 1. Set p(,k,1) = 0 for
every i < N, k < K. This system will be referred to as a Generalized Constrained Queueing
System (GCQS) in this paper.

It is easy to see how GCQS models the parallel processing application discussed earlier.
Node 7 consists of all jobs that need i servers concurrently at their current phase. Since there
can be at most K nodes, without any loss of generality we can assume N = K by setting
the exogenous arrival rates to zero for all K — N nodes. While the system has K servers,
we need K := (K + | K/2] + | K/3] + --- + 1) servers in the GCQS model to represent the
constraints. GCQS servers 1,:--, K are the servers needed by node 1 jobs and therefore can
be allocated only to node 1. GCQS servers K + 1,---, K + | K/2] represent a combination
of two servers needed by node 2 jobs and can be allocated only to node 2. Similarly GCQS
servers K+ | K/2]+1,---, K+ |K/2| + | K/3| represent a combination of three servers and
can only be allocated to node 3 and so on. A schedule u is a binary K x K matrix and is

feasible, that is, belongs to U if and only if

uy = 0 fork>K+1, (1)
ug = 0 fork< K+ |K/2]+---+|(K/(:—1))] and
for k> K+ |K/2]+---+ |K/i|]+1, i=2,---,K; (2)



and the following holds:
K K
Zi Z Uik S K. (3)
i=1 k=1

The final inequality ensures that at n®most K actual servers are allocated. The routing

probability is independent of the servers.

The distinct identity of the servers and the dependence of the routing probabilities on
the servers in GCQS is essentially needed to be able to model multi-hop communication
networks, where servers associated with node ¢ are the communication links connecting node
i to the other nodes of the network. The links are distinct as they connect node 7 to different
nodes. The routing probabilities in this case depend on the servers as the destination of a
message at the next hop depends on the link that it is being transmitted along from a node.

The applicability of GCQS to this and another practical situation is considered in section 5.

A feasible scheduling policy for GCQS should be such that the allocation of servers to
the queues is always according to some schedule that belongs to the set of feasible schedules
U. For example, a feasible non-preemptive policy may schedule, at its decision times, new
customers for service as long as they are not conflicting with those being served at that
moment and the resulting activation schedule is a feasible one, that is, belongs to U. Let I1
denote the class of all possible feasible server allocation policies. Let QT (t) denote the queue
size at node ¢ at time ¢ under policy 7 € II. We say that GCQS is stable under a policy 7

if the long run average incurred delay under this policy is finite; that is,
1t &
sup - EZQ;’(S) ds < oo. (4)
20 tJo T

We will provide a characterization of the space of arrival rates for which GCQS is stabilizable
(see Theorem 1 in section 2) and identify a specific policy n#* € II that stabilizes the system
whenever it is stabilizable (see Theorem 2 in section 2). Therefore, policy 7* can sustain the

maximal arrival rate, or equivalently, can deliver the maximal throughput.

The stabilizing policy proposed in this paper takes scheduling decisions at certain time
instances, at which the next decision instant and the schedule to be followed until the next
decision instant are determined. In determining the schedules, an optimization problem over

the space of feasible schedules needs to be solved. For the parallel processing application



mentioned above, we show in section 2 that the optimization problem reduces to a special
integer knapsack problem for which an efficient algorithm of time complexity O(K?) (K is
the number of servers) is available. We have therefore obtained a fairly practical stabilizing
policy. There are no known stabilizing policies for this system in the literature that are of
polynomial time complexity. Two other applications involving a multi-hop radio network and
a cellular network are presented in section 5. For the first application, the time complexity of
the stabilizing policy is also polynomial while it is exponential for the latter application. A
practical scheduling policy for these applications has to be of low complexity and has to have a
distributed implementation. For the multi-hop radio network, a distributed implementation
of the policy suggested here may be attempted with a central control station that has the
knowledge of all queue lengths and can coordinate feasible transmissions. For the cellular
network application however, the policy is not directly applicable except in situations where
the size of the problem is small. Nevertheless, the results provided here are of interest since
they provide upper bounds to achievable throughput. In view of the complicated nature
of queueing systems with constraints, it is often difficult to design good scheduling policies
that incorporate the constraints in a meaningful way. The stabilizing policy provided here,
even if not directly implementable, provides insights as to how a good policy might work.
Finally, in order to achieve efficiency in server allocation, the policy proposed here may not
serve customers in the order of their arrivals and therefore is also not directly applicable in

situations where it is essential to maintain FCFS service discipline.

Several models of resource sharing systems with the jobs having conflicting resource
requirements, have appeared in the literature. Mitra et.al. [7],(8] considered models of
locking based concurrency controlled transaction processing systems that are very similar to
the one considered here with the exception that-transactions in his model cannot be queued
and an arriving transaction that finds some the needed items blocked is either discarded or
restarted after a random amount of time. There is no queueing or waiting involved. Several
interesting quantities like the probability of blocking and the mean number of concurrently
active transactions were computed. A similar model was studied by Kelly [5]. Tsitsiklis
et.al. [14] considered a model of a queueing system with infinite servers where an arriving
transaction has to wait, with a certain probability, for a transaction that is being presently

served or queued, to complete. Necessary and sufficient stability conditions were obtained.



The same model under more general statistical and blocking assumptions was considered
by Baccelli and Liu [1]. Courcoubetis et.al. [4] studied a model of K servers operating in
parallel, each with its own queue. Two types of customers arrive in the system: the first
type of customers do not have any resource conflicts while the customers of the second type
have to be processed simultaneously by all K servers. Each server serves its own queue in a
FCFS manner. Necessary and sufficient conditions for stability were derived. Bambos et.al.
[2],(3] studied the stability of a model of parallel processing systems in which an incoming job
has a requirement on the number of servers that it needs concurrently for service. Necessary
and sufficient conditions for stability were obtained and a stabilizing policy was also given.
Besides considering a model with a more general topology, the scheduling policy proposed
in this paper results in a simpler policy of lower complexity when specialized to the models
considered in [2],[3].

Tassiulas and Ephremides {12] studied a model similar to the one considered here, mo-
tivated by radio networks. However, the service times were assumed to be deterministic
and identical and the servers were synchronized to start and complete service at the same
time. These assumptions are typically valid for slotted networks. Because of the synchro-
nization, all the servers are idle at the decision instants and any schedule can be selected
for activation. If the customers have random service times and service is non-preemptive,
which is the case considered here, the service completions cannot be synchronized to occur
at the same time, and a server may need to be activated while other servers are serving
other queues. An inappropriate choice of the server activation schedule may leave some of
the servers underutilized and consequently result in a throughput that is smaller than the

maximum attainable. This issue was not addressed in [12].

The rest of the paper is organized as follows. The necessary and sufficient conditions for
stability (Theorems 1 and 2) and the stabilizing policy for GCQS are presented in section
2. At the end of the section, we show how these results specialize to the parallel processing
application discussed earlier and lead to a scheduling policy of polynomial complexity. Sec-
tions 3 and 4 contain the proofs of Theorems 1 and 2 respectively. In section 5, we briefly
present two other applications that can be modeled by GCQS. Our conclusions and some

directions for future research are outlined in section 6.



2 Main Results

In this section, we will first state the necessary and sufficient conditions for stability of GCQS
and provide a stabilizing policy. Towards the end, we show how these results specialize to

the parallel processing example mentioned in the introduction.

We will need to make the following assumptions.

(A) The collection I of feasible schedules has the following property: if u € i/ and an N x K
matrix @ is such that for every i < N, k < K i is {0,1} valued and 4@;; < ik, then

% € U as well.

(B) For every node i, there is a path to the destination, that is, there is a sequence of
node-server pairs {(ij,k;) -l withi; =4, i, = N+ 1 and n < N + 1 such that

j=1 <
1 - .
721 P35, k5, 4541) > 0.

Assumption (A) states that every schedule obtained by idling some of the servers activated
by a feasible schedule is also feasible. This is quite natural and can be seen to hold in
practice. Assumption (B) states that there is a path of non-zero probability from every
node to the destination node. This is quite natural as well since a node hot satisfying this
property would not be able to sustain any arrival rate at all. We will also assume the arrival

processes and the service requirements are mutually independent.

Our first result concerns a necessary condition of stabilizability. We need some additional
assumptions on the arrivals and the service requirements of customers at the nodes. Let 4;(t)
denote the number of exogenous arrivals to node i by time t. We assume the existence of
an arrival rate, that is, the existence of A; > 0 such that A;(t)/t & A; a.s. ast — co. We
also assume that the service times for every server k at node ¢ are i.i.d with mean f;; this
could be relaxed to a weaker assumption that is similar to the one on arrival processes but

this not done for simplicity. Let RV*Y denote the set of N x N matrices.

For the network, a flow of customers between nodes is denoted as a N x (N + 1) matrix

whose (4, )" component is the flow from node i to node j. A flow ¢ € RN*(N+1) jg feasible



if flows are conserved at every node; denote the set of feasible flows as

N N+1
Fi=Q0¢eRVN 0 +% 65 = > ¢y, i=1,-,N». ()
Jj=1 Jj=t
Let the collection of all possible feasible server activation schedules be U := {ul,---,ut},

where for | < L, u* € RV*K is the It} feasible schedule. For every | < L, let S' denote a

flow that is achieved by employing schedule u':

1& :
S*l.‘l = Ezugkp(zvkaj)v 1'.<_N7 JSN'*‘].

The set of flows achieved by mixing all policies in I{ is therefore
S := convex hull {Sl, e ,SL} . (6)

We now state the necessary condition for a stabilizing policy. From the definitions of F and
S, it is immediate that if GCQS is stabilizable by some policy, then the flows achieved by
the stabilizing policy must belong to both F and S. This is our first result.

Theorem 1 If there exists a stabilizing server allocation policy then F NS is non-empty.

It is plausible that if there is a feasible flow (that is, in F) that belongs to the interior
of S, then there is a policy that stabilizes GCQS. We now present such a policy. The policy
is non-preemptive and determines (possibly) new allocations at certain chosen time instants
T9,T1, .., at which all the servers are idle. The reallocation is done based on the system state
and in some sense, ‘priority’ is given to those nodes that have a large number of customers
waiting for service. In the specification of the policy, we need the function § : U x RN —» R
defined as

N K N
8(u,q) = D) ui [Qi - Zp(i,k,j)qg'ﬁj/ﬂi]- (M
i=1

i=1 k=1
Suppose that the system starts from from an arbitrary initial state at time 70 = 0 at which
all the servers are idle. Let Q(t) := (Q1(t), -, Q@n(t))T denote the vector of queue sizes at

time ¢ under this policy. At time 7,, n > 0, compute

*

u* = a.rgzt?ea.l}c&(u,Q(rn)) (8)
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and follow the server activation schedule u* for a period of time equal to [6(u*, Q(7,))]" for
some r < 1. From this time onwards, servers that become idle are not allocated to the jobs
until time 7,4, at which all the servers become idle. If at least one queue at time 7,4, is
non-empty, then set 7,41 := Tn41; else set 7,11 to be the time of the first arrival after 7,41.
At time 7,4, an appropriate server activation schedule is selected by (8) and the process
continues. Let us denote this policy by *. Note that the policy does not use the information

about the arrival rates at the nodes.

To show that the above policy stabilizes the system, we need more restrictive assumptions
on the statistics of the arrival and service processes. Specifically, we will assume that at node
1 the arrivals occur according to a Poisson stream of rate \; and that the service requirements

have finite third moment. Let S° denote the interior of a set S.
Theorem 2 If F NS? is non-empty then n* stabilizes GCQS.

The proofs of Theorems 1 and 2 are presented in the next two sections. Note that we
have left out the critically balanced case in which F has an intersection with the boundary of
S but not with its interior, that is, FNS° = @ but FNS # 0. In this case, the feasible flows
can be achieved only by a convex combination of the feasible schedules. The system may
be stabilizable in this case and our results do not show whether the policy n* is stabilizes
the system. The analysis of this case requires more assumptions on the arrival and service
distributions as evident from the work of Loynes [6] on single server queues. We conjecture
that with appropriate additional assumptions, GCQS is not stabilizable in this critically
balanced case. If this case does not occur then Theorems 1 and 2 together imply that policy
7* achieves the maximum possible throughput: To see this, let A™ C JRY denote the set
of exogenous arrival rates for which GCQS operating under policy = € II is stable. From

Theorem 1, we have

Ua™ c {xeRY:Fns#0} 9)
nell

while Theorem 2 implies
{AGIRN:.FOS"#(Z)} c A" (10)

10



Combining (9) and (10), we have in this case

AT = | Am
well

We discuss briefly the delay properties of the stabilizing policy #*. In this paper, we
have only shown that the delays are finite. However, the fact that =* stabilizes the system
whenever it is stabilizable (except the critically balanced case described earlier) suggests
that 7* has favorable delay properties as well. A property of 7* worth noting is that it tends
to avoid buildup of large queues by giving preference to nodes wifh “larger” queue sizes:
this is particularly easy to see in models without feedback where (7) reduces to d(u,q) =
SN % (}:,If___l uik). Consequently, a customer at a node will receive service as its queue
builds up. There may be some periods in between decision instants during which some of the
servers idle if the nodes that they were assigned to at the beginning of the decision instant, run
out of customers. Since the schedule is not changed under 7* until the next decision instant,
these servers continue to idle up to that time unless new customers arrive, even if there are
customers waiting for service at other nodes they could have been assigned to. This may
serve as a potential weakness of n*. Towards this end, we make the following observations.
Because of the non-preemptive nature of the system, the services of the customers can not
be synchronized to complete simultaneously; so it is not clear in the ﬁrét“place whether an
assignment of idle servers to nodes with customers in between decision instants of 7* leads to
a more efficient utilization of the resources. More importantly, the duration between decision
instants under 7* can be seen to be of the order of the total number of customers at the
beginning of the decision instant plus a residual service time and the length of this duration
can be controlled by choosing the parameter r in the definition of the policy. Recall that
our policy remains stabilizing as long as 0 < r < 1; so by choosing a small value of r, the
time between decision instants can be reduced if necessary thus lessening the possibility of
the situation described above. Note that there are no known stabilizing policies for GCQS,
let alone policies that minimize the delay. We believe that the stabilizing policy provided

here is a starting point for the discovery of policies with good delay properties.

In the rest of this section, we consider the parallel processing application mentioned

in the introduction and show how the results described in this section translate to this

11



important special case. Recall the GCQS model for this application which is described in
the introduction. Briefly, the GCQS model consists of K +1 nodes and K servers; customers
at node i, i < K, need 7 servers concurrently and after service, is routed to node j with
probability p(,j) (here p(i,i) = 0 for all i). Node K + 1 is the destination node. Recall
also the description of the set U of feasible schedules as given by (1), (2) and (3). For this
example, the situation simplifies if we define the flow through a node (rather than the flow

from one node to another). With P denoting the K x K routing probability matrix with

elements p(i,7) and A := (Ag,--+, A x)T€ IRX denoting the vector of exogenous arrival rates
- ~ ~ \T
to the nodes, define the vector of flows through the nodes: A := ()\1, ceey A K) as a solution
to the equations
N _ N+1
X+ Yo Ap(id) = Y Aip(i,g), i=1,-,N. (11)
ij=1 j=1

< -1
The solution is given by A := (I - PT) ). It is easy to check from the definition of F that
the matrix ¢ € RX*(K+1) with elements dij = Aip(i,7) is the unique member of F. The
set S! of flows achieved by a schedule u! € U is the K x (K + 1) matrix whose elements are

given by
1 K
S = 5,P9) Youh], i<K, j<SK+1. (12)
4 k=1

The set S is the convex hull of the matrices S' as above. It follows that the necessary

stabilizability condition F NS # @ is then equivalent to

3 1 K
A1 7o Lk=1U1k
3 1 K
A2 75 ok=1U2k

€ convex hull vuEU }; (13)

1 K .
Ak B 2k=1UKE

for sufficiency the vector X needs to belong to the interior of the set on right-hand-side
of (13). The condition (13) admits a simple interpretation. Observe that 2,13:1 u;k is the
number of node ¢ customers receiving service under schedule u so that 31;(2,5:1 uix) is the
departure rate from node i under a schedule u. Also ); is the flow of customers through
node i. Therefore (13) simply states that for stability, the vector of flows through the nodes
should belong to the convex hull of the set of departure rates under feasible server activation

schedules.

12



We now turn to the stabilizing policy #*. From (3), it easy to see that in this example
a schedule can be represented more concisely by the vector (n1,ng,-:-,ng) where n; =

YK | ujx is the number of node i customers receiving service. The set of feasible schedules

consists of all schedules (n3,n2,---,ng) that satisfy the constraint
K
Zin,- < K; n; nonnegative integer, 1 =1,---, K. (14)
i=1

Define

K

i=1

During [y, Tn+1), policy 7* uses the schedule (n,,---,ng) that solves

K K
max {Z Qi(mp)n; : Zini < K, n; nonnegative integer V i} , (15)
=1

i=1
which corresponds to solving the optimization problem defined by (8) for this problem. For-
tunately, (15) is a favorable instance of the well-known integer knapsack problem. Although
NP-complete in general, there exists pseudo-polynomial algorithms and for our special case,
in fact an optimal solution can be easily constructed in O(K?) time following problem 2-22
in p.55 of Parker and Rardin [11]. We have therefore obtained a simple implementable sta-
bilizing policy for the general model of a parallel processing computer system. We note that
this is an improvement over policies existing in the literature (see Bambos et al [2],[3]) for

this type of problems.

3 Proof of Theorem 1

We will show that if the system is stabilizable, that is, if there exists a policy m such that
1t X
sup - | B "(8) ds < o 16
up 5 [ > ar (16)

then F NS # 0. The idea is straightforward. Let T};() denote the number of transitions
from node i to node j (that is, the number of departures from node i that joined node j)
by time t. The limit of T7(t)/t is shown to be a flow in S. Via the ‘customer conservation’

equation (see (22) below), we then show that this flow belongs to F as well. The proof

13



provided here is a more direct one than that in [12] where some results of max-flow problem

in combinatorial optimization were used.

We first study the process T7;(t)/t. Some notation is needed. Recall from section 2 that

7 (t) denotes the number of departures from node ¢ via server k by time ¢ under policy
x. Let t4" denote the total amount of time up to ¢ during which 7 followed schedule u'.
Without any loss of generality, we can assume that the times th™ are defined so that all the
activated servers during t»™ (that is, all k such that ul, = 1 for some 1) are serving customers
and never idle. If a server k remains idle, say during the time interval [t,#'] while schedule
u! is followed, then assume that in fact policy u’ is being followed during [t,t'], where ut
is defined as ul, = u,, for m # k and ub, = 0 for all i. That u" is feasible follows from
assumption (A) in the previous section. The advantage of this definition is that from the
assumption on service time distributions in the previous section, we have that for every [, 4,k

such that uﬁk =1:

;DT (t

(ﬂttl—"fr()-) —+1 on {tl’" — oo} . (17)

Finally, define p*(i, k, j) to be the following estimate of the routing probabilities:

1 Df,(t)
P, k,j) = (t) Z l{customer n joined node j after service by server k at node z}
(18)
We can write the total number of transitions from node ¢ to node j as

Z Z ul DR ()" (i, k, 5)- (19)

=1k=1
Dividing through (19) by t, we obtain
L L
th 1 LS. IPIR .
T/ = Y ( 5o, (B2 )) "k, 5)| (20)
=1 ﬂl k=1 t
Observe that 5 (t4"/t) = 1 (note: an idle period corresponds to following a schedule
u' € U such that ul, = 0 for all i,k). Use (17) and the fact that (i, k,j) — p(i,k,j) as
t = oo in (20); a look at the definition of S in (6) then shows that T7}(¢)/¢ becomes close to
a member of S in the following sense: for all € > 0, there exists #®) € S and tg such that for
all 4,7,
TS/t - ¢D| <€, 21, as. (21)

14



We will now show that a specific limit of ¢ can be chosen to belong to F as well.
Equating the customers arriving at and departing from a node, we write

N+1

Qi (t) = QF(0) + Ai(t) - Z 5(8) + Z -, N. (22)

We want to show that N ¢§? -

subtracting QT (t)/t to this quantity and using first (22) and then the triangle inequality, we

have

'\+Z o NZ (®

Jj=1

QI(®)/t+ Qi (0)/t + [\ — Ai(8) /1]

TH()/t - 60| (23)

N
+>|TE@ - ¢
i=1

Let t become large and consider the terms on the right hand side in (23). Condition (16)
implies that the first two terms converge to 0 a.s.. The third term converges a.s. to 0 because
of the assumption on arrival time distributions in the previous section. The final two terms
are small because of (21). Therefore, we have shown that for all € > 0, there exists ¢{) € S
and tg such that for all %:

€, t>to. (24)

N N
Ai + Z¢§"f) - Z ¢(t)
j=1

ij=1

It is now easy to construct ¢ € S that is in F as well. Choosing ¢ = 1/n, construct a
sequence {¢(™} € S such that for all 4:

A"’Z o — Z (n)

<1/n, n=1,2,.-.. (25)
i=1 : )

Since {¢{™} € S is compact, there exists a converging subsequence along which the limit is

say ¢* € §. Taking limit along this subsequence in (25), we obtain that ¢* € F N S.

4 Proof of Theorem 2

In this section, we show that if 7 NS is non-empty, then the policy n* stabilizes the system.
The key is to study the Markov Chain {Q(7,)}3%,. We first establish a strong version of

15



Foster’s criterion (see Lemma 1) which states that for some suitably chosen Lyapunov func-
tion, the drift of the Markov chain {Q(7)}5%, can be made arbitrarily negative uniformly
outside a finite subset of IR™. This enables us to show (see Lemma 4) that the time between
successive visits of the queue size vector to that finite subset and that the total response
times of customers served during this period has finite expectation. This is easily seen to
imply (4). In this section we will make the dependence of the various quantities (e.g. the

queue size vector ) on the policy 7* implicit for notational convenience.

Let B denote a diagonal matrix with elements B;; := §;, 1 = 1,---, N and define

a(q) = [6(u’,q)]" (26)

where u* € RV*K with elements u}, is computed as in (8) with Q(T}) = g. The following
result establishes the version of Foster’s criterion needed for our purposes. Let V : RN —

[0,00) be the Lyapunov function defined by

N
V(g) = ¢'Bg = ) Bid}. (27)

=1

Lemma 1 There ezists € > 0 and C < oo such that for every q satisfying V(q) > C, the
following relations hold for the choices f(q) := o2(q) or o(q) TN, qi:

E [V(Q(n) - V(9) | Qo) =q] < —e f(a). (28)

A look at the statement of Lemma 1 shows that the result holds uniformly for queue lengths
belonging to the set {q: V(q) > C} for large C. Before proceeding to the proof of Lemma
(1), we will state and prove the following preliminary result that relates the growth rates of
o(q), =N, ¢; and (Zﬁ.l q,-)r: on the set {q: V(q) > C} the growth rate of o(q) as C = oo
is uniformly slower than that of Y~ ¢; but faster than that of (Zf‘;l q,-)r (recall r < 1).
The following two statements state this fact precisely.

lim sup ”,\Sq) = 0 (29)
Co®av(g)>C 2i=1 i

1/r
imint gt ZOLT @0
Coo ¢V(g)>C 3 il,Gi
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The proof of (29) is straightforward. Observe from (7), (8) and (26) that o(q) < [K YN &l
since r < 1, (29) follows easily. It is considerably much harder to show (30). It follows from

the result stated below (Lemma 2) and the following easily verified inequality:

N N 2
Vig) 2 (IISI}iSnNﬂi) (ZQ?) > N1 (1151}iSnNﬂi> (i};{qi> .

i=]

Lemma 2 There ezists C sufficiently large such that for every q satisfying V(q) > C,
[o(@)]/™ = 6(u*,q) > C1[V(q)]'/? for some constant C; that is independent of q.

Proof. We first introduce some notation.

N

J‘ik(q) = g - Zp(zvk’])q}lﬁj/ﬁh ZSNy k < K) (31)
j=1

dmax(q) = ma.x{éi (q) :ujx >0 for some ueld, t <N, k< K}. (32)

If i*, k* achieves the maximum in the definition of d;,ax(g), then by choosing u € U such that
ujqpe = 1 and uy = 0 for ¢ # *, k # k* (this is certainly possible because of assumption
(A)), we obtain

N K
6(u*,q) = max > > uikbi(g) > Omax(q), (33)
uelU =1 k=1 .
so that it suffices to show the existence of a constant C so that
‘Sma.x(Q)

in —_—l > (.
aVi>c V(g2

Assume otherwise. Then for every M = 1,2,---, define the sets

GM = {qe RV : [V())? > Ménxla)} # 0.

Note that G O G2 D G3---. In the rest of the proof we will assume that ¢ € G' and
therefore ¢ € GM for all M. Note from the definition of G! that

V@] > 6max(e), g€G (34)

Let 41,49, --,in+1 denote a permutation of {1,2,---, N + 1} so that §;,q;, > Bi,qi, = -+ >
Bin419ins1 = 0. We can assume that node iy4) in the permutation is always the destination
node N + 1.
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Define S(g) C {1,2,---,N + 1} as follows. Let ¢ := (2N)"Y(ZX,1/8;)71/? denote a

specific constant and
i+N=2
j* = min {.7 >1: ,B‘ijQij - :Bij+1Qij+1 > c 5ma.x(‘1) [[V(q)]l/Q/dmax(q)] vy } ° (35)

Define
S(q) = {1]}

Note that 7* depends on g but this dependence is suppressed in the notation. The proof of

the Lemma is by contradiction consists of two steps.

Step 1. We show that for 7* < N or equivalently iy4; € S(q). Indeed, otherwise, from (34)
and -72—(% < 1 for every j < N, we have from (35) that

ﬁ‘ij Qi,- - ﬁij+l qij+1 S c Jmax((I) [[V(Q)]l/2/6maX(q)] ‘hr—l) S C[V(Q)]1/27 J S N;

this yields (using the definition of ¢)

N

. |
Biungi, = 3 (B0 — Biyn@i) < 2710 1/8:) VAV ()] (36)
=1

=1

However, this is a contradiction to the following fact:

N N P
Vig) = Y_Bid? < BAE (D 1/B). (37)
=1 =1

Step 2. The contradiction. From assumption (B), it follows that there is a path starting
from node i;» € S(g) to the destination node iy, & S(q) (by step 1); that is, there is a
sequence of nodes (ij+,"*,%m,%n, -, iN4+1) such that nodes between i;- and i, (including
i; and ip,) in the sequence belong to S(g), node i, € S(q) and p(im, km,in) > 0 for some
server ky,. From the definition of j*, it follows that m < j* < n < N + 1. We obtain two

inequalities needed for the proof. First, note that nodes it € S(q), ¥ < m — 1 and hence

k+N~2
2

Bt ~ Brtinns < Smax(@ [[V@I Smanl@)] T (38)

Using first (38) and then (34), we have the first inequality : for j <m —1,

- m—1
. ,Bij Qij - ﬂ‘imq‘im = z (ﬂik Qi — ﬁ‘ik.H Qi,,.,.l)

k=j
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m-—1 2
)

= Y bl [V@1 2 manla)] D

k= m+N-3
< eNomax(9) [[V(@)]/bmax(a)] ™7 . (39)

Observe that m < j* < j* +1 < n implies that S, in 2 BijeGije = Bijey1ijery 2 BinGin-
Using this fact together with the definition of j* and (34), we obtain our second inequality:

ﬁtmq""‘ - ﬁznqln Z ﬂlJ‘ Q2]- -ﬁ11t+1q1.]-+1
i*+N-2
> Bmax(g) [[V(@)]"/*/bmax()] ™7
N=2

hmas(0) [V (@] e @)] 0 . (40)

v

The definition of 6 nOW yields

N
Omax(@) = Gim — Zp(imakmaj)Qj,Bj/,Bim

=1
]N+1
= (Bin)™" Y Plims kmy35) BinGim — Bisi;)
1=1
> (Bim) ™" [Plim kmy in) (Bi Gim — BinGin)
m-—1 .
= " Plim Kk 55)(Big@i; = Bimim)]» (41)
i=1

where the final inequality follows from the fact that 8;,,¢;,, > 6;;¢;; for j > m. Relation (41)
holds for ¢ € G! and hence for all g € GM, M = 1,2,---. Apply (39) and (40) in (41) and
consider the inequality for ¢ € GM, M large. Since GM # § for all M, this is possible. The
term [V (g)]/2/0max(g) = 00 as M — oo and therefore, the term on rhs of (40) dominates
that on rhs of (39). Also, since %NT]% > 1/2 we have shown the following result: a positive
constant C, can be chosen independently of ¢ such that for M sufficiently large and for every
g € GM:

bmax(@) 2 Cobma(@) (V@2 /5max()) (42)

or equivalently,
V@I < (1/C2)* maxla); (43)
this is clearly a contradiction in view of the definition of GM. O
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Before proceeding to the proof of Lemma 1, we note a fact from renewal theory. Consider
a renewal process with inter-renewal r.v. X and let R(t) be the remaining life (also known

as excess) at time ¢.
Lemma 3 For k > 1, if EX**! < o, then Sup;>q ERk(t) < oo.

Proof. From the renewal equation describing ERF(t) (see Ross [10]), it is easy to see that
ERk(t) < [1+ M(t)]EX* where M(t) is the expected number of renewals by time ¢. Also,
ERK(t) » EX*1/EX as t — co. The claim follows. ]

We will use Lemma 3 to claim that the residual service times have finite second moment

(recall that it is assumed in this section that the service times have finite third moments).

Proof of Lemma 1. First note that because of (29), it suffices to prove (28) for f(q) =
o(q) N, ¢;. Write 7(¢) for 7, and let 7(q) denote the conditional expectation of 7; given

Q(70) = Q(0) = g. Since the matrix B is symmetric, we can write, after some algebra:

E[VQ(r@) - V@IRO) =d] = E[Q((@) -9 B(Q(r(2)~q) | Q) =]
+2E[(Q(r(9) -9)" Bg | Q0) =gq] . (44)

We will bound each of the two terms on the right in (44). Consider the first term. Since
the sum of the number of (exogenous) arrivals to node ¢ and the total number of service
completions at nodes j # ¢ during 7(q) is an upper bound for Q;(7) — ¢;, i < N, it follows
that

E[(@Q(r(@) - 9" BQ(r@) -9 | QO) =] < C; Blr(@) +7(a) +1]

for some positive constant C. The random variable 7(q) equals o(q) plus a residual service
time that has finite second moment because of Lemma 3. Therefore (by choosing a larger

C, if necessary), we have

E[(Qr@)-0"BQr@)~a) QO =d] < G2 [*@+o(@+1.  (45)

We proceed to estimate the second term on the right in (44). This will provide the

negative term that we need to show (28). Let D;x(g,T) denote the number of completions
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by server k at node i during time [0, 7] and let D;x(q, T') denote the expectation. Recall that
the schedule u* is followed by policy n* during [79,71]. Equating the number of arrivals to

and departures from a node and taking expectations, we obtain

K
E Qi) —@) 1QO0)=q] = MN7(g) — ) u}Dir(g,7(q))

k=1

N K
+ 3% 0, ki)l Djk(g, 7(q), i< N. (46)
j=lk=1

Using first (46) and then the notation

din(g,7(q)) = PLx(@7(@)

— , t<N, kLK, 47
#@) )
we obtain after some algebra

Zﬂz‘hE [(Qi(7(9)) — @) | Q(0) =]

N K
) [z Mg - 03 ulaidie(a, 7(9))

E [(Q(r(2)) - 9)" Ba | Q(0) = g

i=1 i=1k=1
N N K

+ Z Z Zp(j’ k’i)u;indjk(q’ T(q)) ] (48)
i=1j=1k=1

We need to represent the arrival rates {A;} in terms of the elements of S. From the definition
of S in section 2, it follows that every ¢ € §° can be written as
dij = flz Eu,kpz k,7) (49)
Bi (o
for some 0 < ¢; < 1 and non-negative {¢;} satisfying Y&, ¢; = 1. Since FN S # @, we have
that \; = Zfl:l dij — Z;-Ll ¢;i for some ¢ € F N S° and using the representation of ¢ as
given by (49) we derive ' .

L K
A = GIZCI[%Zuﬁk Z Z kp_y,kz] 1 < N. (50)
=1 t k=1

Multiplying both sides of (50) by G;g; and summing, it follows from the definition (7) that

N N N K
S XBigi = « Z c Z Z ulps = O3 > p(, k, )uikeiBi/ Bi
i=1 =1 i=1 k=1 i=1j=1k=1
= € Z ad(v,q). (51)
=1
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Using first (51), (31) and then (8) and the fact that Y/ ; ¢; = 1 in the rhs of (48), we obtain

L
E [(Q(r(a) - 9)" Bg| Q) =g = #(g) [elzcza(u‘,q sz,k (¢, 7())uiidin(a )}

- ' i=1k=1 1k 7 6(U*, q) .
(52)
If we could show that there exists a positive constant C3(e;) such that
1k Si
S5 dnlar(@) @ 5 11y (53)

¢ V(Q)>C3(€1) S5 b(ur,q)

then we are done. To see this observe that we can deduce the following claims for ¢ such
that V(q) > C, C sufficiently large. First substituting (53) in (52), noting that 7(q) > o(q)

and using (26), we have

E[(Q(~(a) - 9)" Bg| Q) = q] < -#)s(u*,q)(1—e1)/2 < —[o(@]"*/ (1= e1)/2.

(54)
Now use the estimates (45) and (54) in (44) to obtain
o(q) C
T -V 0) = i
E[V(Q(r(@) - V(@)IQ(0) =4q| < ( q)§q) { PR
% C (1—e [U(Q)]l/r},
teorhe TV

Consider each term inside {---} on the rhs in (55) for ¢ such that V(q) > C, C = o0. The
first term goes to 0 in view of (29). The second and third terms become small trivially.
The third term remains negative uniformly in view of (30). The desired conclusion (28) now

follows.

It remains to show that (53) holds. We first write using (47) that

zkdlk — U(Q) ﬁz 1k(q’T(Q) u;k‘szk(Q)
,z_;kzld'k(q’ o(u*,q)  7(q) ;:; (u*,q) (56)

The idea will be to identify S* C {1,---,N} x {1,---, K} such that (i) ¢; = 00, i € S* at a
rate faster than o(q) and (1) X(; x)es- ujr0ik(q) = d(u*,q), as C = oo for every ¢ such that
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V(g) > C. Since o(q)/7(g) = 1 as C — oo for q satisfying V(q) > C, (53) would follow then

from the (elementary) Renewal Theorem. Towards this end, set e, := (1 — €1)/6 and
st = {(i,k) : uikdin(a) = (1+€)7'5(u*,q), i< N, k< K} #0.

It is immediate from the definition of S* that

2 (i.k)es Wikik(q) 1
: 2 (1+e€) . 57
J(u‘,q) = ( 2) ( )
We now show that there exists C3(e;) such that for every g satisfying V(q) > Cs(e1),
Dix(g,7(9))B; .
ZD DI > 1 —eo, (i k) € S*. 58
LS 2 (k) (58)

Set 6; to be equal to g; if j # ¢ and oo otherwise. Since (here z A y := min(z, y))

Dik(qu(q)) 2 Dik(q’ U(Q)) > E[Dzk(d1’a(Q)) A Qi]’ (Z,k) : u;k >0,

we have, for every 2 < 6 < co:

Dik(q,7(9))5s Dir(d@,0(9)8i . 4B )
o(q) > B @ ol AB], (k) :uf > 0. (59)

Consider each term inside the expectation on the rhs in (59) for ¢ such that V(q) > C, as
C — oo. From (30), we have that o(q) — oo so that from the elementar); renewal theorem
it follows that the first term inside the expectation converges a.s. to 1 as C — oo. For
the second term: use (31) (which implies that §;x(¢) < ¢;), (26) and the definition of S* to
obtain that for (i,k) € S*,

a/0(a) 2 di(@)/o() = uiibu(@)[0(u", Q)] 2 (1+e) " [6(u", )"

and therefore the second term becomes unbounded as C — o0o. Now (58) follows from (59)
by letting C' — oo and using the bounded convergence theorem. Finally, as argued before, by

choosing a larger Cs(e;) if necessary, we can ensure that for every q satisfying V(q) > Cs(¢;),

@/7@)] 2 1 = 12 (60)

Using (57), (58) and (60) in (56) and restricting the sum to S*, (53) follows easily. o
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Lemma 1 has the following implication. With V and C as in Lemma 1, let F denote
the finite set {g € R" : V(¢) < C} and let TL denote the time at which the queue length

process {Q(7,)}3%, enters F for the m** time; formally,
TF = inf{t >TF [ :Qt)eF, te {rn};‘f:o}, m=12--; Tf =1

Let G, denote the sigma field generated by (Q(m), ¥ < n), n = 1,2,---. Let P, denote
the probability measure governing the process {Q(t), t > 0} starting from Q(7y) = q and
E, denote the expectation with respect to this measure. The following result shows that
the total delay of customers between successive visits of the queue length vector Q(t) to the
finite set F* has finite expectation. We will use the notation 1(A) to denote the indicator

function of an event A.
T N

Lemma 4 E; [} 3,2, Qi(s) ds < oo forg € F.
0

Proof. Let
v = inf{n>1:Q(m) € F}

which is a G,-stopping time. Observe that letting A[7y, 7x+1] denote the total number of

arrivals to the system during [7x, Tx+1], we can write

UF—]. .
/ ZQz(s) ds <3 (s =) EQ, )+ Al 7] (61
k=0
so that it suffices to show
F_
E, Z Tk+l—Tk)ZQz %) < 0o, g€ F; (62)
k=0 =1
and
vF—1
E; Y (Tk+1 — Te)A[Tk, Thy1] < 00, g€ F. (63)
k=0

We first show that with f(q) = o%(q) or o(q) TN, ¢i:

E, Ef (16)) < o0, qE€F. (64)
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By using successively the facts that {t¥ > n} € G,_;, the process {Q(7)}3, is Markov,
Lemma 1 (note that on {v¥ > n}, Q(7,-1) € F) and {vF > n} C {vF > n — 1}, we obtain

B, [V(Qra)) 1{" 2 n}]

]
i

E[V(Q(ma)) | Gact] 1{F 2 n}]

EV(Q(ra) | Qra-1)] 1{vF 2 n}]
V(Q(ra-1)1{vF 2 1}

— € By [£(Q(ra-))1{vF 2 n}]
V(Qra-))1{v" > n—1}]

- € B [f(Qurm-0)1{¥" 2n}].  (69)

]
i

IA
i

IA
iy

Upon iteration, (65) yields
n—1
0 < B [VQUm)I{rF 2n}| < EV(Q(n)) - «E, [Z FQreN1{k < vF — 1}}
k=1
and this implies that
> 0]
E, [Z F(Q(m) Uk < vF - 1}] < T'EV(Q(n)) < oo, q€F.
k=1
This proves (64). Observe from Lemma 2 that C can be chosen in Lemma 1 so that o(g) > 1
whenever q & F; therefore (64) yields .

vF-1 N
EpFf < oo and Eg Y S"Qi(rk) < o0, gEF. (66)
k=0 i=1
Let
Sk = Te41 — Tk — 0(Q(7x)) . (67)

denote the maximum of the residual service times at 75 +0(Q(7¢)). From Lemma 3, it follows

that Si has finite conditional second moment given Gi; which coupled with (66) implies that

vF-1 oo

E; Y St = Y EE[SHG) 1{k<vF -1} < 00, qE€F, (68)
k=0 k=0

and

vF—1 N 0o N
By 3 Scd.Qilm) = X EE[SklGk] Y Qi(re) {k <vF -1} < 00, g€F. (69)
k=0 i=1 k=0 i=1
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We are now ready to conclude that (62) and (63) holds. First use (67) to write

-1 F -1 VF 1

Z(Tkﬂ—Tk)ZQz %) = Eq Z Q) ZQz %) + Eq Z SkZQz Tk)-

k=0

The finiteness of the two terms on rhs of (70) follows from (64) with f(q) = o(¢) X, ¢; and
(69) and we have shown (62). To prove (63), we use the measurability of {vF > k+ 1} with
respect to Gi, the Markov property and the memoryless property of arrivals to obtain (for

some positive constant Cy)

3 (er1 = AT Ten)| = Y EoE[(mer1 — ) Alre, Teaa] | Grl 1{k < vF -1}
k=0 k=0
= 3 EE[(th41 — ) A7, Tet1] | Q)] 1{k < vF =1}
= vF-1
< CiE, E [Te+1 —Tk]2-
k=0

It remains to show that E; 2‘,::0"1 [Tk41 — Tk]% < 00. Use (67) and the inequality (a + b)% <
2(a? + b%) to write

vF-1 vF-1
E, Z ["'k+1—‘7'k]2 = E, Z [0(Q(7x)) + Sk]2
k=0
vF -1
< 2E, Z (Q(1x)) + 2E; Y Si. (71)
k=0 k=0

The finiteness of the two terms on the rhs of (71) follows from (64) with f(g) = o?(g) and
(68). o

The proof of Theorem 2 can now be concluded. From Lemma 4 and the finiteness of the

set F', we obtain
TF N

Cs = supkE, TF‘ 3 Qi(s) ds < co. (72)
0 =1

Set y(t) := inf{n > 1: TF > t}. Using first the fact {y(t) > k+1} = {Tf <t} € Grp and
then (72), we have

t N TFt N
Eq/o ;Qi(s) ds < E,,/O ();Qi(s) ds
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o) Tf+1 N
= E, Z /TF ZQ:‘(S) ds 1{k < ~(t) — 1}
k=0""% =1

o0 Tlf+1 N

> EE [/T > Qi(s) ds |Grr| 1k < (1) -1}
k=0 k i=1

< CSEq'Y(t)a

To complete the proof, it suffices to show that for some constant Cg, E4y(t) < Cet, t > 0.
Towards this end, let {S?*}32, denote independent copies of the service times at node i and
S = min;<y ST, n=1,2,---.. Alsolet ¥(¢) :=inf{n > 1: 3%, Sk > t}. Since at least
one service is completed in [T, T.F,,] we have that TF,, - TF > 5", n = 1,2,---, and
therefore v(t) < 4(t), t > 0. But from renewal theory (Prop. 3.2.2 in Ross [10]), we know
that E,7(t) < Cet and the proof is complete.

5 Other Applications

In sections 1 and 2, we have shown in detail how GCQS can be used to model the application
of a multi-processor computer system processing parallelizable jobs. We discuss two more
applications in this section. The first application involving a radio network appeared in
[12] but as mentioned in the introduction, the model considered here is more general since
it allows random service times and asynchronous service completions. This application is
interesting as it involves the combined choice of appropriate scheduling and routing policies

for stabilization.

Consider a radio network that is, a communication network in which nodes communicate
by means of radio. It consisting of N nodes the connectiv{ties of which are specified by
a directed graph G = (V, E) in the following manner. Each node of V corresponds to a
node of the radio network and a directed edge [¢,j] € F denotes that node j is within the
transmission range of node i. We assume here that the nodes use spread spectrum signaling
for transmission and has only one transceiver. Hence two nodes ¢ and j can simultaneously
transmit to nodes k and ! if [i,k],[j,!] € E and these edges do not share a common node;
that is, if the set of simultaneously activated edges is a matching of the graph G (see [9] for
the definition of a matching of a graph). A packet entering the system at node ¢ is destined
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for some node of the network and has to be routed to its destination via appropriately chosen
intermediate nodes; it leaves the system as soon as it reaches its destination. A message with
destination node j is said to belong to class j. A scheduling policy amounts to to choosing
a set of links for transmission corresponding to a matching of graph G and a message class
for transmission along every activated link. How to schedule the messages so as to sustain

the maximum possible arrival rates is the issue here.

The GCQS model of this network consists of NV = V(V —1) nodes, each of which is of the
form (¢,m) corresponding to a message class m, m # i, at radio network node i. The servers
are the links of network, that is, the edges E of graph G and are of the form [¢, 5] fori,5 € V.
The routing probabilities are p((i,m),[7,5'],(j,n)) =1ifi=4¢, 5 =3, m=n,[i,j] € E
and is equal to 0 otherwise. A schedule u has its element u; ) (v ;) = 1 if i’ = 4, link [4, 5] is
activated and a message of class m is forwarded along that link; it is O otherwise. A schedule
u is feasible, that is belongs to u € U if the set of activated links forms a matching of G. In
sections 2 and 3, we have defined flows ¢ from a node to another node; for this example, the
notation simplifies if we define ¢ € RIF! along a link, that is, along edges of E, and scale by

the average service time at the originating node; specifically set

174
$ig) = Bi > bam)im) 7] € E.
m=1

Let A(j m) denote the exogenous arrival rate of class m customers at node . We obtain from
the definition of F that if ¢ € F, then ¢ satisfies the following equations.
M
B Mimt D bua = D gy i=LenV. (73)
m=1 j:(in)EE Ji(¢.4)EE

The stabilizability condition now follows easily. A matching M of the graph G is a subset
of its edges, naturally it can be represented by a binary vector 1p; € IR'E! with elements
1pr(e) = 1 if the edge e belongs to M and 0 otherwise. Let M C IR'E! denote the set of all
matchings. The necessary stabilizability condition F NS # 0 is equivalent to the existence

of a vector ¢ € IRIE! that satisfies the flow conservation equations (73) and belongs to
convex hull {1p: M € M}; (74)

for sufficiency, we need ¢ to belong to the interior of the set defined in (74). The stabilizing

policy ©* works as follows. Let Q(; m)(7n) denote the queue size at node (i,m) at time 7,.
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During [7n, Tn+1], 7* chooses to activate the links corresponding to the matching M* that

L

solves

max | ), max (Q(i,m)(Tn) - Q(j,m)(’fn)ﬂj/ﬂi) (75)

MeM 1<m<V
M |e=liglem 'S

and for every activated link (i, j] of M*, selects the message class m* that solves

max (Q(i,m)(Tn) - Q(j,m)(T")ﬂj/ﬂi)

1<m<V

The optimization problem in (75) is the well known weighted matching problem for which an
O(V*) solution is available (see Papadimitriou [9]). An important issue here is that the true
application demands a distributed scheduling policy since the current queue sizes at a nodes
is not generally available at other nodes. A distributed implementation of the policy =*
could be attempted with the presence of a control station in the network that collects all the
queue size information and coordinates the activation of the links according to matchings.
In situations where a distributed implementation of 7* is not feasible, the stability condition
provides an upper bound to achievable throughput and the policy 7* provides guidelines on
the design of good scheduling policies. A truly distributed stabilizing policy remains an open

problem.

As our final example of GCQS, consider cellular networks that have received consider-
able attention as the prevalent architecture for providing wireless personal communication
services. Consider the following cellular network model. The geographical area served by
the network is divided into N contiguous regions called cells. Each cell is provided with a
base station and the mobile users in a particular cell communicate to the corresponding base
station through a radio channel using a particular frequency. The base stations are wired to
a communication network. A total of K frequeilcy bands are allocated for communication
purposes. At every cell, only one user can communicate using with frequency band & at a
time. In addition, depending on the physical proximity of the cells and the proximity of the
frequency bands in the electromagnetic spectrum, there are additional restrictions on simul-
taneous use of the frequency bands for communication. These restrictions can be expressed
by the interference graph G; = (Vi, Ey) that consists of N * K nodes, one node [1, k] for each
frequency band k in each cell ¢, and an edge connecting node [4, k] to [¢', k'] if the frequency

bands k in cell's and k' in cell i’ can not be used simultaneously. A user located in cell ¢
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located in cell 7 generates messages that it needs to transmit to the base station of cell 7. At
the time of message arrival, a frequency band k can be allocated to a user of cell 7 if there are
no edges between node [¢, k] and any member of V' in G, where V' consists of all the nodes
[¢/,k'] of G| corresponding to a user at cell ¢’ currently transmitting using frequency £'. If
such a frequency is not available, then the message is queued. The above cellular network is
easily seen to fall within the scope of the constrained queueing model. A cell corresponds to
a node of the constrained queueing system and a frequency band corresponds to a server. An
activation schedule represents a conflict free allocation of the frequency bands to the cells;
that is, ujx = uy p» = 1 if and only if the nodes [i, k] and [/, k] in the interference graph
G are not connected by an edge. In other words, using a terminology from graph theory,
a feasible frequency allocation policy corresponds to an independent set (see Papadimitriou
[9]) of the interference graph G;. There is no routing; that is, p(i, k, N +1) = 1 for every ¢, k.
The stabilizability condition is very similar to the one for the parallel processing application
in section 2. Specifically, if A; is the arrival rate at node (cell) ¢, then the necessary condition

for stability is

1 K
A1 7 k=1 U1k

cuel

A LK u
? € convex hull 2 Zk._l %

AN 2= ko1 unk
and for sufficiency, the arrival rate vector needs to belong to the interior of the convex
hull. We now describe the stabilizing policy 7* during (15, Th+1]. Let Qi(7,) denote the
queue size at node (cell) 7 at time 7,. Associate with each node v of the interference graph
Gy a weight w, as follows: w, = Q;(7,) if v = [i,k]. The policy 7* chooses at time 7, the
frequency allocation policy corresponds to the solution of the following weighted independent

set problem:

max { z wy : V C Vi, V independent set of G 1} (76)
veV

Unfortunately, (76) is an strongly NP-complete problem (see Papadimitriou [9]) and can

only be solved in practice by exhaustive search for problems of small size.

For a special case, the situation simplifies. Consider a linear cellular network that can

be used to model the coverage of a highway. The restriction on the use of frequencies is that
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the same frequency cannot be used in adjacent cells. Therefore the set of edges Ej of the
interference graph consists only of edges connecting node [i, k] to node [i + 1,k] for every
i < N—1and k < K. Each frequency can be allocated to all even numbered cells or to all
odd numbered cells. The stabilizing policy at time 7, acts as follows. If 3";< v ; even @i(Ta) >
Yi<N,i odd Qi(7n) then all the frequencies are allocated to even numbered nodes, that is, for
all k, ujx = 1 if and only if ¢ is even; otherwise the frequencies are allocated to odd numbered

nodes.

6 Conclusions

In this paper we considered the problem of scheduling the allocation of resources in a general-
ized constrained queueing network (GCQS). Because of forced idle periods, a work conserving
policy has no meaning in these systems and the problem of stabilizing the system is inter-
esting. A non-preemptive policy is proposed that selects an appropriate server activation
schedule at a decision time instant and keeps this schedule activated for a period of time
depending on the network state at that instant. The policy is shown to stabilize the system
for the largest possible arrival rates and achieve maximum possible throughput. The policy
does not need the knowledge of the arrival rates and in some special cases, the knowledge
of the service rates is also not needed. The necessary and sufficient conditions for stability
are also obtained. Several practical systems that fall within the scope of the GCQS were de-
scribed and the application of our results was discussed. For some special situations arising
in practice, the stabilizing policy is of polynomial complexity and hence implementable with

low overhead.

One drawback of the stabilizing policy proposed here is that it does not preserve the
FCFS order in service. In applications where it is essential to provide service in the order
of job arrivals, the policy is not directly applicable since it does not take into consideration
any precedence constraints among the customers. Also, for some applications like the multi-
hop radio networks and cellular networks, the scheduling policy proposed here may not be
directly applicable if the applications require truly distributed policies. We believe that the

results obtained in this paper are still interesting in these cases since the stability condition
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yields an upperbound for the achievable throughput in the system and the scheduling policy
provides guidelines on a good distributed policy may be designed by incorporating the server
allocations constraints in a meaningful way. Incorporating precedence constraints in the
GCQS and investigating truly distributed scheduling policies are interesting problems to

pursue for future research.

Another topic of interest that has not been addressed here is the behavior of the stabilizing
policy with respect to delay. We have only shown that delays are finite. As argued in
section 2, the policy tries to avoid the build up of large queues and chooses the activation
schedules systematically to reduce the forced idle periods. We believe that its delay properties
are favorable. It would be interesting to consider the implementation of the policy in the
different practical systems to which it applies and to study the delay for different values of
the statistical parameters of the system. Finally the problem of allocating the resources such
that the delay is minimized is left unaddressed. This is much deeper problem and has been
addressed only for a tandem constrained queueing system in Tassiulas et. al. {13]. For more

general topologies, the problem essentially remains open.
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