PR

i 2 A bbbt LRed

ADAPTIVE ROUTING ON THE PLANE
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Demands for service arrive at random times, in random locations, in a region of the plane. The service time of each demand is
random. A server that travels with constant speed moves from demand to demand providing service. The server spends its time
either in providing service or in traveling. The objective is to route the server, based on the location of the current demands on the
plane and the anticipated demand arrivals. such that the time spent in traveling is minimal and the service is provided efficiently. A
routing policy is provided that achieves maximum throughput and is independent of the statistical parameters of the system, under
the assumption that the arrival process is Poisson. For a renewal arrival process. a class of policies is specified that achieve maximum
throughput based on some knowledge of the system parameters. Finally, an adaptive version of the partitioning policies is given,

which makes them independent of the system statistics.

he problem of routing in the Euclidian plane has a long

history. The most heavily studied problem in this context
is the Euclidean Traveling Salesman Problem (ETSP), the
version of the Traveling Salesman Problem where the objec-
tive is to find the route that passes through every point of a
group of points located in the plane, and has minimum
length. Both the great practical importance of the ETSP as
well as its mathematical difficulty justify the vast attention
that it attracted in the past; some of the previous work is
reported in Karp (1977). Different optimization objectives
than the total traveling time have also been considered in
the past. One of them is the average waiting time for each
point, where the waiting time of a point is the elapsed time
from the beginning until the time that the server visits the
point and the average is over all points. The latter objec-
tive is more appropriate in situations where the points
correspond to the sites of service demands which are satis-
fied by a server moving from demand to demand.

The basic characteristics of the above problems are that
they are deterministic and static. The number of points to
be visited as well as their locations are predetermined and
fixed. Also the service times are known. For several prac-
tical problems of this nature the number of points requir-
ing service is not fixed since new demands arrive during
the time that the server is providing service. Furthermore the
locations as well as the service times are not known in
advance and have to be modeled as random quantities.
The nature of these problems can be captured closer by a
dynamic stochastic model. Recently there has been consid-
erable research activity in this direction. Models that cap-
ture the random and dynamic nature of the problem were
considered in Psaraftis (1988), Jaillet (1988), Batta et al.
(1988), Bertsimas and van Ryzin (1991, 1993a, b), Thomp-
son and Psaraftis (1993). Psaraftis considered a model
Where the requests are located at the nodes of a graph and

* the server can move from any node to any other node,

Spending a traveling time depended on the nodes; the

problem of minimizing the average waiting time was ad-
dressed. Batta et al. considered a model where requests for
service arise at the nodes of a graph and they are served by
a server which after serving each request needs to return
to its home position. The problem is then selecting that
home position. Jaillet studied a version of the Traveling
Salesman Problem where a random subset of the nodes
have to visited. More recently, Bertsimas and van Ryzin
(1991) considered a model where the service demands
arise at any point of a bounded convex region of the plane.
The locations of the requests constitute an i.id. process
with uniform distribution on the plane. The server can
move from request to request in a time proportional to the
physical distance of the points. The delay and the through-
put of several routing policies were analyzed. The multive-
hicle case and the case of general arrival and location
processes have also been considered by Bertsimas and van
Ryzin (1993a, b).

In this paper a model similar to the one in Bertsimas
and van Ryzin (1991) is considered. The service requests
may arise at any point in a region of the plane. The distri-
bution of the requests can be arbitrary, and the locations
of different requests can be correlated. The objective is to
obtain routing policies which achieve large throughput. do
not rely on information about the statistics of the system,
and meet the performance objectives for a wide range of
arrivals and service rates.

A routing policy determines the order in which the
server visits the service requests; the routing decisions may
depend on the configuration of the requests on the plane,
possibly in a complicated manner. The routing policies
presented here are based on an algorithm for computing a
route that goes through a number of points on the plane
and keeps the total traveling distance short. The algorithm,
called congestion focusing algorithm (CFA), computes the
route in a recursive manner; in each step the server fo-
cuses in a region of the service area and selects the next
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demand to be served from this region. After the demand is
served the server focuses in the subregion with the highest
concentration of demands and selects the next demand to
be served from there. The demand is selected such that the
server moves toward the area where the concentration of
the service demands is increasing. The policy routes the
server with repetitive application of the CFA algorithm.

If the system is stable, then the throughput is equal to
the arrival rate. The maximum arrival rate for which the
system is stable under a particular policy 7 is equal to
the maximum achievable throughput under , and it will
be referred as the throughput of = in the following. A
necessary stability condition for every policy is that the
arrival rate is strictly smaller than the inverse of the ex-
pected service time. The policy based on CFA has the
property of achieving maximum throughput in the sense
that it stabilizes the system for all arrival rates strictly
smaller than the inverse of the expected service time. In
addition, this policy has two advantages over other maxi-
mum throughput policies that have been proposed previ-
ously: it does not need knowledge of the arrival rates for
its implementation; and it preserves the maximum
throughput properties for all sample paths of demand lo-
cations, that is independently of the distribution and the
dependencies of the locations on the plane. If the arrival
rate and the distribution of the locations is known. then
the comparison of the performance of different routing
policies is on the basis of the expected waiting time they
achieve. If the arrival rate and the distribution of the loca-
tions is not specified, then we cannot always compare two
policies since it is possible that none of them achieves
smaller waiting time than the other. uniformily over all
distributions of locations and arrival rates. Usually in ap-
plications, either the arrival rate or the distribution of the
locations, or both are unknown. In this case a policy that
guarantees the stability, like the one proposed here. is
preferable over policies which are either parametrized by
the arrival rate and/or may be unstable for certain distribu-
tions of locations.

The routing policy based on the CFA algorithm is ana-
lyzed for Poisson arrivals, and the properties mentioned
above are shown. A parametrized class of policies which
stabilize the system for general arrivals is specified next. In
order to stabilize the system the parameter is selected
based on the arrival and service rates. Finally an adaptive
version of the partitioning policies considered by Bertsi-
mas and van Ryzin (1991) is given. The adaptive policy
selects the resolution of the partition adaptively, and hence
it becomes independent of the statistics of the system. Un-
like the previous work on the subject, in our study the
throughput results are obtained for every sample path of
the locations of the arriving demands. Therefore no as-
sumption on the distribution of the demands on the plane
is needed. and the location of different demands can be
arbitrarily dependent.

The rest of the paper is organized as follows. In Section |
the model and the performance objectives are defined and

some notation is introduced. In Section 2 the CFA is given,
In Section 3 the maximum throughput policy is given for
Poisson arrivals. In Section 4 the case of general arrivals s
considered and the class of stabilizing policies is specified.
In Section 5 the adaptive partitioning policies are consid-
ered. Finally, in Section 6 the results are summarized, and
open problems for further research are identified.

1. THE MODEL

We consider a region &, which is a bounded convex subset
of R® and arbitrary otherwise. Demands for service are
generated at random times and in random locations in .
The demands are generated according to an arrival pro-
cess A = {A(t), t = 0} where A(t) is the number of de-
mands that have been generated up to time r. Some of the
results in the paper are obtained under the assumption
that A is Poisson and some others under the more general
assumption that A is a renewal process: the specific statis-
tical assumptions on A are mentioned as needed later.
Under both assumptions we denote by A~ the expected
interarrival time. The service time of a demand is random.
Let S; be the service time of the ith demand. We assume
that S = {S;}=, is an i.i.d. process and denote the ex-
pected service time E[S;] by p™". Let (X, Y;) be the coor-
dinates of the ith demand. We make no assumption
about the statistics of the location process {(X,, Y))}=i;
in fact the resuits we obtain hold for every sample path of
the location process.

The server moves on the plane with unit speed: hence in
the rest of the paper the distance and the traveling time
between two points are used interchangably. We assume
that the server moves from demand to demand in the
straight line segment connecting the locations of the two
demands. Hence the route of the server is a polygonal line
and is specified completely by the sequence of locations
that the server visits. A polygonal line that connects 2
number of points is called tour in the following and is
represented by the sequence of the points in the order that
they appear in the line.

A routing policy is any rule for selecting the order in which
the server will serve the demands. Let Q(r) be the number
of demands on the plane at time ¢ including the demand
under service at that time, if any. The system is stable if

!

lirp__s:up %j EQ(s)ds <=.

i

Clearly if the system is stable according to the above defi-
nition the long run average delay experienced by the de-
mands is finite from Little's law. and the throughput of the
system is equal to the arrival rate. In the rest of the papef
we consider the normalized system throughput thatis p =
Apu. The throughput of a policy is detined as the supre:
mum of p over all the arrival rates for which the system is
stable. Clearly for any p = | the system is unstable. henc®
the throughput of a policy is always less than or equal 10



one. The routing algorithm of the following section is em-
ployed to design policies that indeed achieve throughput 1,
with the understanding that every throughput strictly less
than one is indeed achievable, while for p = 1 the system is
unstable and the throughput p = 1 is not achievable.

2. THE CONGESTION FOCUSING ALGORITHM

The recursive algorithm presented below produces a tour
in the plane that has the following property. For any ar-
rangement of N points on a convex bounded region of the
plane, there is a route that goes through at least logV/2 of
these points and the total traveling distance is bounded
above by a number independent of N (log denotes the
logarithm with base 2 if logV is an odd number, then
logN/2 stands for the largest integer which is smaller than
logN/2). For the description of the algorithm we consider
that region to be enclosed within a square with edge of
length a. This is always possible if we take a to be the maxi-
mum distance between any two points in si. The algorithm
acts as follows. It starts from a point in region si: then it
separates the square that surrounds the region in four
equal squares (Figure 1). and it selects the one with the
largest number of points. It moves to a point in that square
and the same process is repeated: that is the latter
square is divided in four equal squares and the one with
the largest number of points is selected and so on. The
algorithm is specified next.

Congestion Focusing Algorithm

Input. A square A, with edge length a enclosing a convex
region of the Euclidean plane with NV points on it and a
starting point p,.

Output. A polygonal line specified by the sequence of dis-

STEP 0. Set i = 0. exclude point p, from the
configuration.

STEP |. Divide the square A, in four equal squares as
indicated in Figure 1. Let A, be the one of these small
squares with the largest number of points {ties are broken
arbitrarily). :

STEP 2. If A,_, is empty then stop. Otherwise select an
arbitrary point of this square. to be point p,., and exclude
it from the configuration.

STEP 3. Seti =i + 1 and go to step L.

A route selected by the algorithm is drawn in Figure 2

Theorem 1. Consider a configuration of N points located
arbitrarily on a convex bounded region of the plane which is
enclosed in a square with edge length equal to a. The number
K of points visited by CFA upon termination. when we start
from an arbitrary initial point. is greater than or equal (0
logN/2. Furthermore the length of the polvgonal line defined
by these points is less than or equal 10 2N 2a.
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Figure 1. In each iteration of Algorithm Al the sqquare A,
is divided in four pieces as in the above picture.
A point is selected for service in the square with
the maximum number of points. The later
square is divided in four pieces again. and the
process is repeated.

Proof. We show first that if / < Jog/V/2 then the number of
points in the square A, in the ith step of CFA is greater
than or equal to (N — ZiZ) 4ly/4" > 0. We show lhut.by
induction. For i = 0 this is true from the initial condition
of the algorithm. Assume that it is true for some i - 0 and
less than logV/2. We will show that it is true fori + 1@
well. From the induction hypothesis we have that after the
deletion of point p; the number of points in the square A;
is equal to (N = Sizh 494 — 1 = (N = Zi-0 4'y4'. The
square A4;., i$ obtained by dividing A, in four picees and
taking the one with the largest number of points; therefore

]
<
X
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X
> :
/ X
X
X X
Figure 2. The tour computed by Algorithm ~. OT ‘hj
:cpicted.

configuration of points in the picturc e
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it contains at least one-fourth of the points in A4, which is
(N = Zi_, ¥y4*". Hence as long asi < logV. 2 the square
A, is nonempty, the point p; is well defined. and the algo-
rithm proceeds to the next step. Therefore the number of
points selected by the algorithm is greater than or equal to
logV/2 as it is stated in the theorem.

We show now that the length d of the tour connecting
the points p,, ..., px produced by CFA is less than or
equal to 2\/2a. The points p;, p,_, are contained in the ith
square considered by CFA which has edge length equal to
a/4'; therefore the line than connects them will have length
d, , . thatis less than or equal to the length of the diago-
nal of this square, which is V 2a/4’. Therefore the total
length of the tour will be

K K —a i -
d=zdp,p,,.s§: V2 — < > N2
i=0 i=

[}S]
i
19

The intuition behind the algorithm is the following. It is
clear that if the number of points which are uniformly
allocated in a fixed region of the plane increases then,
roughly speaking, the density of points in every location of
the region increases as well, and the distance between
them decreases. If the points are not arranged uniformly
but in an arbitrary manner then still we expect that as the
number of points increases. in certain locations the points
will come closer one to the other. Hence if the server
moves in the areas with high concentration of points the
time wasted in traveling is reduced. The algorithm pre-
sented in this section captures that intuition: the server
continuously approaches the location with the high con-
centration of points in a recursive manner. It does so in-
deed since as we show the number of points visited by the
aigorithm increases as the number of points in ! increases
while the length of the tour remains bounded.

3. THE CONGESTION FOCUSING POLICY

We specify next a routing policy. called congestion focusing
policy (CFP), that is based on CFA. That routing policy
stabilizes the system for all p < 1. Le., it achieves maxi-
mum throughput. It does so under the following statistical
assumption.

S1. The arrival process A is Poisson, the service times are

i.i.d., and they have finite second moments.

The policy CFP acts as follows. At certain time instants
7 i = 1,..., CFP selects a sequence of demands to be
served in the time interval {7, 7;.,) as well as the route
that the server should follow. The demands are among
those which are on the plane at time 7. The decision is
taken based on the configuration of the points in region sl
at that time instant.

Congestion Focusing Policy
Initialize. =, = 0./ = 0.

STEP 1. At time 7; a sequence of demands is determined
by CFA for the configuration of the demands in -1 at that

time. From theorem 3.1 these demands are more than or
equal to logQ(7;)/2. Select for service the first logQ(7,)/2
of these demands.

STEP 2. The demands selected in Step 1 are served ip
the order that they have been selected. If after the end of
service the total time that hgs been spent in traveling
since time T, is less than 2V2a, the server idles for an
amount of time such that the total time spent in idling and
traveling is equal to 2V/2a. The time at which the idling
period ends is the next decision time instant T; .1 at which
the next sequence of points is selected. Set i = i + 1 ang
go to step 1.

Remarks

1. Note that if at the end of an idling period the plane is
empty, then the new cycle will include no service but
only idling of duration 2V2a.

2. The idling in Step 2 of CFP is introduced for technical
reasons only such that the process of the number of de-
mands is a Markov chain. The Markovian property of the
demand process will be essential for showing the stability
of the policy. It seems, though, that the idling has no real
significance for the operation of the policy and can be
omitted in an implementation of the policy.

In the rest of this section we show that CFP achieves
maximum throughput as it is stated in the following
theorem.

Theorem 2. When the system is operated under CFP and the
statistics satisfy assumption S1 then for every p < 1

t
umsup}[ EQ(s) ds < =. (1)
(=% 0
and the system is stable.

In order to prove Theorem 2 we study first the behavior
of the process Q = {Q,};~,, where Q; = Q(r,). In the next
lemma we show a property of the drift of the square of the
process Q that is used in the proof of Theorem 2.

Lemma 1. When the system is operated under CFP, p < 1
and the Sartistics satisfv assumption A1 then there exist B,
€ > 0 such that

EVIQi- ) = V(Q)Q:] < ~eQ;logQ;
where V(Q) = Q>

if 0, >B,(2)

Proof. After some algebra we have
E[(V(Qi-) = V(0)IQ:]

=E[Qi-1 = 07101+ 2Q:E[Q; .1 - 2.1Qi]. (3)
From CFP we have

lOgQi (4)

Q,-| "Q,‘ =‘4(T,-!"'.“(T,)—

i}

from which we get for the first term in the right side of (3)
that



3
F.l

E[(Qi+1 = Q7101 = E[(Al7i-1) = A(7))*Q;]
log*Q;
- 100, E[A (1) — A(r)]Q:] + £

log=Q;
< AE[(7i+0 —1)3Q:1 + og4Q ,

()

since the arrivals are Poisson and A(7,.,) — A(7) is
nonnegative. Notice that 7,,; — 7 is equal to the total
time spent in the service of the logQ,/2 demands plus
the time spent in traveling from demand to demand and
in idling. Since the points are selected using Al and
from Theorem 2 we get that the total time spent in
traveling plus idling is equal to 2V2a. Let S; be the
service time of the jth customer served in the time in-
terval 7,,, — 7. Using the inequality (I, a,)* < N
(X, af) we get

El(7iv = 7)70Q:]
sE[(long,- . 1)(103%3 si+ 8a3)lQ,~]

j=1

logQ; logQ; s -
=( gz +1)( gz E[S,—]+8a-). (6)
Also we have
log0, . =
E[Ti*l—TilQi]=#—]'c%Q—+2\2a. (7)

since in Step 2 of the algorithm we let the server to spent
exactly 2V/2a time in travel plus idling. For the second
term in the right side of (3) we get using (7)

2Q,E[Qi-) — QilQ:i]1=2Q.E[Al(7i. ) — Al7))]

1 .
- 20, %2

=2QAE[7i.) - 7]

- 20, 2 (8)

< (p - 1)QilogQ; + 412aQ, .
By replacing in (3) from (5), (6), and (8) we get

EV(Qi«) = V(QNQi]1<(p— 1)Q;logQ; + ¢, 0,
+ ¢alogQ; + c3log’Q; . (9)

for certain constants ¢, ¢, ¢3. In the right side of (9) the

term Q.logQ; clearly dominates for large Q;; hence it is

clear that for every €, 0 < € < (1 — p) there exists B such
that (2) holds. []

We can ecasily see that the chain Q is irreducible and
aperiodic, therefore using Foster’s criterion, Asmussen
(1987), we get the following.

Corollary 1. The Markov chain Q is positive recurrent.
Consider the times T;, { = 0, 1,.. at which the system
empties for ith time. That is
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T():O.
T,‘=miﬂ{1’j:1'j>T,‘_|,Q}=0}, l=1,

The times T, are well defined for all {’s since from Cor-
ollary 1 the system will empty infinitely often almost
surely. The following lemma is used in the proof of the
theorem.

Lemma 2.

T
EJ Q(s)ds <=
0

Proof. With %, denoting the sigma field generated by (Q,,
k=n)yn=12...,let

v:=infln = 1: Q, = 0},

which is a %4,-stopping time. Observe that we can write

k=0

T v—1
j Qis¥ds < 2 (T vy — T1)
0

Q) + A(7i 4 1) — A(76)]; (10)
so that it suffices to show
-1
E X (.1 — Q1) <=, (11)
k=0
and
v—1
E X (7poy = TiMA(Ti o) — A1) < = (12)

k=0

By using successively the facts that {v = n} € %,_,
the process {Q,};-, is Markov, and relation (7) we get

v=1
E[ PONE I Tk)Qk]

k=0

2 E[E[(ri+ 1 — m)Qul|Ge 11k < v - 1}]

k=0

it

E E[QkE[(7k+l - Tk)lcgk]l{k sy - l}]
k=0

(13)
= 3 El(p"'QulogQs + Qx2V2a) 1k < v - 1}]
k=0
v=1 v=1 —
=E > n7'QulogQs +E T 042\2a.
k=0 k=0
Also by using successively the facts that {v = n} €

§,_, the process {Q,} ., is Markov, and relation (6)
we get
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v—1

E T (1iey — ) A(Tp 1) = A7)
k=0

=2 E[E[(tk+1 — T Ali o) = A1 ))]%, )1
k=0
fk<sv-1}]
= /\E E[E{(tk+1 — ) (AT ) "A(Tk))]IQk]l
=0

fk=sv-1}]

I
D n

ANE[E[(ti4 — )0k 11{k < vF - 1}]

x
I

0

"i‘ (]Ong N 1)(1032Qk

k=0

=

E[S/]+ sal) . (14)

tn

From (13) and (14) it is clear that in order to show (11)
and (12) it is enough to show

v—1

E > p™'QilogQy <=. (135)

k=0

By using successively the facts {v = n} € §,_,, the pro-
cess {Q,}r.o is Markov, Lemma 1 and {v = n} C {v =
n — 1}, we obtain

E(ViQo)1{v=n}] = E[E[VIO )%, - ]11{v = n}]
= E[E[V(Q)|Q (7, - 1)]1{v = n}]
< E[V(Q,-Hv=n}]
- €E[Qn-1logQ, -1 H{v=n}].
Upon iteration. {16) yields
0 =< E[VQ,)1{v=n}]< EV(Q(r))

(16)

n—1
- EE[ > QulogQ 1k < v - 1}] ,
k=1
which implies

E[ E QilogQ Lk < v - 1}] < e 'EV(Q,),
k=1

and (15) follows. [
Now we can proceed to the proof of Theorem 2.

Proof of Theorem 2. We set y(7) := inf{n = . T, > ¢}
and from the fact {y(t) =n + 1} = {T, <1} € G, we
have

i Tan
E J O(s)ds < E J Q(s) ds
( (

) )

% Tiay
=E X j Q(s) ds1{k < yi0) = 1}
k=0 T,

% Tit
> E[EH Qls) ds
T

X =t}

= C(E‘Y”).

1]

%7, ] ik < y(r) - 1}]

&

where

T,
C, :=E[ Qis) ds,
0
is finite because of Lemma 2. To complete the proof, it
suffices to show that for some constant ¢,, Ey(t) < cyt,t =
0. This is clearly true for c; = 2V2a)~". O

From Theorem 2 we conclude that CFP indeed achieves
maximum throughput. Also CFP does not rely on the
knowledge of the arrival and service rates for the selection
of the route but only on the location of the demands on
the plane at the decision time instances. Hence this policy
is robust on variations of the arrival and service rates dur-
ing the operation of the system.

4. GENERAL ARRIVALS

Up to this point we have assumed that the process of
arrivals in the system is Poisson. As a consequence of the
Poisson arrivals, the process of the number of demands in
the system at the decision time instants has the Markov
property, which has played an essential role in obtaining
the stability result in the previous section. In this section
we obtain some stability results for the system when the
arrival process is renewal. We present a family of routing
policies {, , to > 0} with the property that if p < 1 there
exists a policy in the family under which the system is
stable. Notice that the result is weaker than the result in
the previous section where it is shown that for all p <1 the
system is stabilized by CFP. The results in this section are
obtained under the following statistical assumption.

S2. The interarrival and the service times are i.i.d., and
they have all moments.

The above condition is satisfied by most service time dis-
tributions in practice and by all distributions with finite
support. The class of policies {m,, f, > 0} is defined as
follows.

Policy w,
STEP 0. Initialize { = 0.

STEP 1. At time 7, = ity a sequence of demands is
determined by CFA for the configuration of the demands
in & at that time.

STEP 2. The demands are served in the order that they
have been selected in Step 1. If the service of ail those
demands finishes before time 7, then the server serves
the remaining demands in an arbitrary order. At time 71
if the server is busy the served demand is preempted, i1s
increased by 1, and the process is repeated from Step 1.
The following theorem states the stability properties of the
class of policies ,.

Theorem 3. If p < 1 and the assumption S2 holds, ’he_"
there exists t, > 0 such that under policy m, the system s
stable in the sense

sup E[Qn] < =. (17)



Note that the property (17) of the queue length process is
stronger than (1). Therefore it implies stability.

The proof of the theorem will be given later after some

reliminary results. We will analyze first the process Q=
{Q,} where Q, = Q(7,). We need some results on the drift
analyses of random sequences with general statistics ob-
tained by Hajek (1982). They are briefly described in the
following for completeness.

4.1. Background on Drift Analysis of Random
Sequences with General Statistics

Consider the sequence of random variables {Q,}~, on a
probability space (2, ¥, P) which are adapted on an in-
creasing family {%,}5., of subfields of #. The drift of that
sequence is by definition E[Qy., — Qu/%F]. Two condi-
tions on the drift are given next which imply a stability
property of the random sequence.

Cl. For some b and ¢, with —= < b < = and ¢, > 0,
E[Qi+1 — QulQk >b; Fr]l<-¢ fork=0.

The second condition on the drift requires the following
definitions. Let ¢ be a sub-o-field of ¥; then we say that a
random variable Z stochastically dominates a random vari-
able Y given &, written (Y9) < Z, if P(Y > c|%) = P(Z >
¢) for ~x < ¢ <=,

C2. (|0t — QullF) < Zforallk = 0and Ee** =D <
x,

Choose constants n and p such that
€0 -
0<n$x\,n<(—_,p=l—eon+cn',

where
Ee*? - (1 +AEZ)
A? )
The following is shown in Hajek.

Cc =

Theorem 4. When the random sequence {Q;};., satisfies
conditions C, and C, we have

E[e"|F,] < e + De™, (18)

and 0 < p < 1.

4.2. Proof of Theorem 3
Using the results of the previous section we show the
following.

Lemma 3. If p < 1 there exists a t, such that under policy w,
we have

sup E{Qi} < B, (19)
for some B which may depend on p.

Lemma 3 follows easily from Theorem 4 if we verify the
Conditions C1. C2 for the process Q. The next lemma
shows Condition C1.
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Lemma 4. For all scheduling policies m, , t, > 0 there exists
some A > 0 and random variable X such that

(1Qi+1 - Q.4 < X,
EeM =D <=, (20)
where G, denotes the o-field generated from the random

Variables Ql’ veey Qi'

Proof. Let A4, S; be the number of arrivais and departures,
respectively, at the time interval [ity, (i + 1)to). Then we
have

Qiv1—Qi=4;-S5:;

therefore

[Qiv1 —Qil =4, +S: as.,

and

(1Qiv1 — Qill8Y) < 4i + ;. (21)

Let A(r) be a version of the arrival process such that the
first arrival occurs at time ¢ = 0 and S(¢) a renewal process,
independent of A(r), with the time between two consecu-
tive points distributed with the service time distribution.
Clearly we have A; < A(ty), S; < S(to). If we take X =
A(tg) + S(tp) we have

(10:+1 — Q8D < X.

We will show now that Ee*¥ < = for some A > 0. Since
A(ty) and S(z) are independent we have
EeAX:EeM“MEe'\S“"). (22)
In view of (22) in order to show (20) it is enough to show
that for some A’

EeA'A‘In) < %,

Then for some A", Ee*S¢ < x as well, and (20) holds for
A = min{A’, A”}. We have

EeMin) < 3 e P(A(1y) = k]. (23)
k=0

Let N; = min{r: A(2) = j}, F(1) = P[N; < t] = PlA(1) =

k). It is shown in Karlin and Taylor (1975, p. 181-182) that

for any integers m, r, n we have

From®) S[F.(0)]"Fp(t),

From (23) and (24) we have

r=1 z
Ee:\/lltn)s E Fm(to)e/\m E ez\rn[Fr(to)]n,

m=0 n=0

0Osmsr-1. (24)

O0sm=sr-1,

hence it is enough to show

S (eMF (1)) < =, (25)
n=9

Clearly for any nontrivial interarrival distribution, there
exists an ry, such that F, (¢,) < 1. Chose A < — 1/rinF,(ty)-
Then
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e F, (1g) <1,

and (25) follows. []
In the following lemma we verify Condition C2.

Lemma 5. If p < 1 then there exists t,, b, €, > 0 such that
when the system is scheduled under w, we have

E[Qi+1 - QilQ:=b; 9i]< —¢. (26)

Proof. Let A;, S; be the number of arrivals and departures,
respectively, in the time interval {it), (i + 1)15). Then we
have

E[Qiv1 — QilQ: > b; 611 = E[4;]Q; > b; 4!]
- E[S:|Q: > b; 41]. : (27)

Let A(t) be a version of the arrival process. Clearly we
have

E[A4;1Q: > b; 41] < E[A(t0)]. (28)

Let S(t) be a renewal process, independent of A(r), with
the time interval between points j and j + 1 been equal to
the service time of the jth demand served after the time
ite. We can see, after some thought, that the following
holds a.s.

S; = min{3logQ;, S(t — 2:\2a)}.
Therefore,
E[S:|Q: > b; 4]
= E[min{;logQ;, S(t — 2~2a)}|Q; > b; 4{].  (29)

By manipulating the right hand side of (29) we get

E[min{; logQ;, S(t = 2 2a)}|Q; > b; 4i]
= E[S(t - 2~2a)|}10gQ; = S(t — 2V2a); Q; > b; 4i]
- P[3logQ; = S(t = 2v2a)|Q; > b; 4]
+ 1logQ: P[S(t — 2+2a) = ;10gQ;|Q; > b; 41].
' ' (30)

From (29), (30) and using the analysis of E[S(t — 2V2a)]
as a sum of conditional expectations we get

E[S:|Q: > b; 4{] = E[S(t - 2+2a)]
- E[S(t-2 \Ea)I%logQ,- < S(t - 2V2a);
Qi > b; 6i]P
-[$logQ; < S(t = 232a)|Q; > b: Gi]. (31)

By replacing in (27) from (31) we get

E[Q:i+1 — QilQ; > b; $1]
< E[A(t9)] - E[S(t9 — 2720)]
+ E[S(t - 2v2a)|3logQ; < S(1 ~ 2+2a);
Q; > b; %4i]
- P[310gQ; < S(t = 2+2a)|Q; > b; 41]. (32)
From the elementary renewal theorem we have

. EA(ty) — ES(ty — 2 2a)
lim

1{ Raned to

=A-u<0,

therefore there exists some ¢, and € > 0 such that
EA(ty) — ES(tg —2~2a) = —€ < 0. (33)

From (32) and (33) and the fact that the last term of the
sum in (32) converges to 0 as b goes to infinity, we con-
clude that there exists b large enough, 7, and €, > 0 such
that (26) holds. [

From Lemma 5 the theorem follows easily.

Proof of Theorem 3. For an arbitrary time ¢’ let 7;, 7., be
the decision time instants such that , < ¢’ < 7, ;. Using
Lemma 4 we get

E[Q(")] = E[Q()] + E[A(t')] - E[S(+")]
< E[Q(7)] + E[A()] + E[S(+")]
sB‘f‘A(lo)“"S(fo) +2$3°,

where A(r) is a version of the arrival process and S(¢) is a
renewal process, independent of A(t), with the time inter-
val between points j and j + 1 been equal to the service
time of the jth demand served after the time ir,. []

5. ADAPTIVE PARTITIONING POLICIES

A partitioning policy operates as follows. The service re-
gion is divided in /* subregions by a grid of / vertical and /
horizontal parallel equidistant lines (Figure 3) where / is a
parameter of the policy. The server visits the subregions
one after the other in a prespecified manner, as it is de-
picted in Figure 3. The server moves from one subregion
to the next after it serves all the demands in the subregion.
The partitioning policy has been proposed by Bertsimas
and Van Ryzin (1991a); its performance was analyzed, and
it was shown that as long as p < 1 there is a partitioning
policy with a specific parameter / for which the system is
stable; the parameter is determined based on the arrival
and service rates.

In this section we present a class of adaptive partitioning
policies where the grid changes during the operation of the
system. The parameter /, that determines the resolution of
the grid is computed at the times instances at which the
grid changes, based on the number of service demands on
the plane at that time. These policies stabilize the system
for every p < 1 without requiring knowledge of the arrival
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Figure 3. The tour followed by the server during one cycle
of the adaptive partitioning policy, where the
configuration of the demands on the plane at the
beginning of the cycle is as depicted above.

and service rates A and u. The stability result holds under
general location processes and Poisson arrivals.

The adaptive partitioning policies operate in cycles. The
ith cycle lasts from time 7,_; to 7. During each cycle the
policy behaves like a partitioning policy. The grid that de-
termines the subregions for the implementation of the par-
titioning policy changes from cycle to cycle. Let /; be the
parameter of the grid in the ith cycle; also let Q; = Q(7)
and g is a function g: Z© — Z". The policy operates as
follows.

Cycle i.
A grid is considered on the region s with parameter /; =
g(Q,). During the ith cycle the server visits each subregion
determined by the grid once and following the route de-
picted in Figure 3. In each subregion the server servers ail
the demands that were present in the subregion in the
beginning of the ith cycle and not any demand that arrived
after 7,_,. After each subregion has been visited the next
cycle starts.

The function g distinguishes the different adaptive parti-
tioning policies. As long as g satisfies
i 5% = 0. fimg() = =, G4
the system is stable as is stated in the following theorem.
Let 79 denote the adaptive policy that uses function g to
determine the grid density at the beginnings of the cycle.

Theorem 5. When the system is operated under policy m¥,
the function g satisfies Conditions (34) and the statistics
satisfy assumption A1 then for every p <'1
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14
liq)__iup %J EQ(s)ds <=,
0

and the system is stable.

The proof of the Theorem 5 is similar to that of Theo-
rem 2. We just prove here a drift condition on the queue
length which is stated in Lemma 6. The rest of the proof is
omitted.

Lemma 6. When the system is operated under policy m,, the
function g satisfies Condition (34), p < 1 and the statistics
satisfy assumption A1l then there exists B, € > 0 such that

E[Q%, - Q}Qi1< —eQ} ifQ,>B. (35)
Proof. We have

E[Q2,11Q:1 = E[(A(7i+1) — A(7))?Q:]
= XNE[(1i+1 — ™)YQ:]. (36)

Notice that 7,,, — 7; is equal to the total time spent in the
service of the Q; demands plus the time spent in traveling
from demand to demand. The traveling time in a cycle
consists of two parts. The first is the time spent in traveling
from subregion to subregion, and the second is the time
spent traveling from demand to demand within each sub-
region. The first time is less than or equal to 2V2al,. For
the second time note that, irrespective of the configuration
of the points in the region, the time for going from one
point to another in a straight line within a subregion is
bounded by the length of the diagonal of the subregion
which is V/2a/l,. Therefore the total time spent in traveling
within the subregions is bounded above by 0, V2a/l; and
the total traveling time is bounded as

v2a

total traveling time in the i + 1cycle<2 \2al; +Q;

(37)

Let S; be the service time of the jth customer served in the
time interval 1,,, — 7. We have

El(ri+1 = 7)3Q:]

Qi = 5\ 2
SE[(Z S; +2v2al; + Q, ‘lﬁ) ‘Q,}
j=1 i
, 28,5 - 9(Q) \2a )2 ]
Qs 2v2a — il
Q‘E[( 0. "o T o [

(38)
Given that E[Sf] < w, as Q; increases. the term in the
parenthesis in (37) converges to wu~! almost surely from
the law of large numbers and because g( ) satisfies condi-
tions (34). Hence the expectation in (38) converges to T
and clearly there exists py < 1 such that for B large enough
we get

AE[(T, ) - 1)3Q:]1<piQ} ifQ;>B. (39)

From (36) and (39) we conclude that (35) holds for € = Ps
-1. 0
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6. CONCLUSIONS AND FURTHER RESEARCH

In this paper we considered the problem of routing a server
that provides service to demands arising in a region of the
plane. We presented an algorithm, that, given N arbitrarily
located points on the plane, computes a tour that passes
through logV/2 of these points and has total length upper
bounded by a constant. Based on that algorithm we ob-
tained the policy CFP, which stabilizes the system, as long
as p < 1, for any location process. CFP is independent of
the system statistics. Then we studied the system with re-
newal arrival process. We showed the existence of a pa-
rametrized policy which for appropriate choices of the
parameter stabilizes the system as long as p < 1. That
policy, unlike CFP, depends on the system statistics. No
statistical assumptions were made for the locations of the
demands on the plane and the stability resuit holds for
every location pattern of the demands. An adaptive ver-
sion of the partitioning policies was given. The adaptive
policy becomes independent of the statistics of the system
without deterioration of the throughput.

This work leaves several problems open for further in-
vestigation. The analysis of the delay induced by the CFP
is one of them. The property of the CFA algorithm to
route the server to the region of the plane with the higher
concentration of demands has as a result the nice stability
properties of the CFP. Due to the complicated nature of
the policy, though, a delay analysis based on standard
queueing techniques seems to be infeasible, and a different
approach is needed. In addition the delay will depend on
the location distribution and its analysis needs further, ex-
tensive investigation. The study of variations of CFP is an
interesting problem, too. For example, at the end of a
cycle of CFP, instead of reapplying the CFA in the whole
plane, the server may backtrack to the square most re-
cently visited and start serving requests there. A classifica-
tion of these alternatives, with respect to the delay that

they achieve, is of interest. Finally we saw that there is a
large class of adaptive versions of the partitioning policies
that achieve maximum throughput. These policies differ on
the way they adjust the grid that partitions the plane. Some
further investigation, to distinguish adaptive policies with
superior performance as far as the delay is concerned, is in
order.
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