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Abstract

A queueing network with arbitrary topology, state dependent routing and flow
control is considered. Customers may enter the network at any queue and they are
routed through it until they reach certain queues from which they may leave the
system. The routing is based on local state information. The service rate of a server is
controlied based on local state information as well. A distributed policy for routing
and service rate control is identified that achieves maximum throughput. The policy
can be implemented without knowledge of the arrival and service rates. The
importance of flow control is demonstrated by showing that, in certain networks, if
the servers cannot be forced to idle, then no maximum throughput policy exists when
the arrival rates are not known. Also a model for exchange of state information
among neighboring nodes is presented and the network is studied when the routing is
based on delayed state information. A distributed policy is shown to achieve
maximum throughput in the case of delayed state information. Finally, some
implications for deterministic flow networks are discussed.
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1. Introduction

Consider a queueing network with a certain number of queues and classes of
customers. Each customer of class / may enter the network at any queue of a subset
of queues designated to receive exogenous arrivals of class . Upon terminination of
service at queue i a customer may join any queue of a set of queues designated to
receive customers from queue i From certain queues a customer may leave the
system after service. There is a single server at each queue. That server either
provides service with some constant rate or it idles. Customers enter the network
and they are routed through it until they reach a queue from which they may leave
the system. The control decisions regarding the routing of the customers and the
service rate of the servers are taken according to some policy. Queueing systems
such as the one mentioned above arise naturally in many applications, including
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packet switched communication networks and manufacturing systems. In com-
munication networks the customers correspond to messages, the processing to
transmission, the routing to selection of the many alternative routes available to a
message to reach its destination and the idling of the server to flow control. In
manufacturing systems the customers correspond to parts, the service to processing
in a machine and the routing to the several different processing options available for
the parts in flexible manufacturing systems. Most of the previous work on queueing
networks with arbitrary topology has been focused on systems with state indepen-
dent routing. Dynamic control policies have been considered mostly in systems with
very simple topologies. In this paper we consider dynamic control policies in
networks with arbitrary topology and we characterize them in terms of the
throughput that they achieve.

In queueing networks with state independent routing, or Markov routing as it is
also called [15], a customer completing service at queue i is routed to a queue j with
probability 7, and out of the system with probability 7, independently of the system
state and the previous routing decisions. The Jacksonian network was among the
first networks with Markov routing to be studied. Many important properties, in
addition to possessing a product form stationary probability distribution, have been
obtained for this network [3], [5], [9], [10]. Several of these results have been
generalized to the wider class of networks of quasireversible queues with Markov
routing [6], [7], [14]. The above references are just a sample of the vast literature on
the subject. An extensive account of previous work exists in ch. 3 of [15]. If the
control decisions can rely on the state of the network the analysis of the queueing
system becomes considerably more complicated. Most of the previous work on
dynamically controlled queueing networks has been focused on systems with very
simple topologies [2], [4], [8]. An extensive review of the previous work exists in ch.
8 of [15].

In this work we study networks of queues with arbitrary topology under state
dependent control policies. We focus on the throughput properties of such policies.
The objective is to obtain policies that stabilize the network for a wide range of
arrival and service rates; i.e. their throughput, defined as the collection of arrival and
service rates for which the system is stable under the policy, is large. Our main
result, contained in Section 3, is a policy that stabilizes the system for all arrival and
service rates for which the system is stabilizable, therefore it has maximum
throughput region. Furthermore, it does not need knowledge of the arrival and
service rates. The policy is distributed since the routing of the customers out of each
queue and the control of the service rate of each server is based on local state
information; nevertheless its throughput region coincides with the system through-
put region and therefore dominates the throughput region of every other policy,
even centralized ones. An important observation, demonstrated in Section 3.2, is
that there are networks where, if the servers are not allowed to idle, there is no
maximum throughput distributed routing policy that does not rely on knowledge of
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the arrival and service rates. In Section 4 the system is studied under the assumption
that the state information is not readily available for decision making. A model is
considered for exchange of information between neighboring nodes and it is
assumed that the control can be based on the most recent update of that
information which does not necessarily coincide with the system state at that time. It
is shown that, as long as state information is exchanged regularly, the stability
properties of the policy are not affected, irrespective of how sparsely in time the
information is exchanged. The stability results that we obtain have also an important
implication for deterministic flow networks, which is discussed in Section 5. The
necessary and sufficient stability condition for the queueing network under
consideration allows us to give, as a fortuitous ‘fallout’, an independent proof of the
maxflow—mincut theorem in deterministic flow networks in a simple and straightfor-
ward manner without the need for any duality arguments.

2. The queueing network

The queueing network we consider consists of M queues; there are L classes of
arriving customers. Each customer of class / may enter the network at a queue that
belongs to a set of queues S§. A customer of any class, upon termination of service
at queue i, may join any of the queues of a set S, We assume an infinite storage
capacity in each queue. From certain queues a customer may leave the system after
service. There is a single server at each queue i That server either provides service
with a constant rate m; or is idle. When the server is active, service is provided in
FIFO order. The relationship of each queue i (or arrival class /) with the queues of
the set S; (or Sf) is represented by the connectivity graph G (Figure 1). This is a
directed graph which contains one node (black) for each class of arriving customers,
one node (white) for each queue and one destination node (D). The links of G are
as follows. For each queue i € S§, which an arriving customer of class / may join
upon arrival, there is a link originating from the node that corresponds to class / and
terminating at the node that corresponds to queue i. For each queue j € S, which a
served customer from queue i may join, there is a link originating from the node that
corresponds to queue i and terminating at the node that corresponds to queue j.

Figure 1. The connectivity graph of a queueing network
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Finally, if the served customers of queue i may be routed out of the system, there is
a link directed from the node that corresponds to queue i to node D. For notational
purposes, we let the set S; contain node D if queue i may route customers out of the
system. The distance between two nodes of the graph is defined as the number of
links in the shortest (directed) path that connects them. To avoid unnecessary
complications we assume that from any queue there is a directed path to node D in
the connectivity graph, i.e. every queue may route customers out of the network.
The customers of class ! arrive according to a Poisson process with rate a,. The
server of queue i provides exponential service with rate m;. As we mentioned in the
introduction, each server may switch from idle to active state and vice versa
depending on the system state. We denote by X;(t) the number of customers in
queue i at time ¢ (which includes the customer in service). The vector of the queue
lengths of all queues of the system at time ¢ is X(t) = (Xi(¢):i=1,--+, M) and it
takes values in the state space £ = Z%. As a convention the queue length Xp(¢) of
the destination node is constantly equal to zero, Xp(¢) =0.

The routing and the service rates are controlled based on the lengths of the
network queues. We consider stationary control policies. The routing of the arriving
customers of class / is specified by a function Rf: & — Sj in the sense that an arriving
customer of class [ at time ¢ joins the queue R{(X(t—)) where X(s—) is the vector of
queue lengths just before the time instant z. The function Rj is called the routing
rule of class [ in the following. A served customer of queue i is routed to one of the
queues of the set S; (or out of the system if D e §;) according to a function
R,:¥— S, in the sense that the customer of queue i completing service at time ¢ joins
queue R,(X(t—)). The function R, is the routing rule of queue i. Finally, the service
rate of the server of queue i is controlled according to a function E:Z— {0, m;}; the
rate of server i at time ¢ is F;(X(¢)). The function F; is called the flow control rule of
queue i. An admissible control policy for the network consists of a collection of
routing rules, one for each customer class and for each queue, and flow control
rules, one for each queue of the system. We denote by H the class of admissible
control policies. When the network is operated by an admissible centrol policy and
since the arrivals are Poisson and the service times exponentially distributed, the
queue length process X is a Markov chain. The rate g, of a transition from a state x
to a state x’ is as follows:

m;, if F(x)=m,;, x; =x;— 1, Xpxy = Xr T 1 When Ri(x) # D,
Qe = and x; = x; for j # i, R,(x);
a, if X gy = Xroey + 1, and x/ = x; for j # Ri(x).

We define the system to be stable if the queue length process reaches a steady
state and does not increase without bound. More specifically we define stability as
follows.

Definition 2.1. The queueing network is stable if the queue length process X is
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ergodic. Recall that an ergodic Markov chain has a unique stationary distribution
and the ensemble averages of a function defined on its state space should be equal
to the expected value of the function, evaluated for the stationary distribution.
Some further structural properties of an ergodic Markov chain that will be used in
our analysis are stated at the end of the section. We would like the system to be
stable for a wide range of arrival and service rates. Let the arrival and service rate
vectors be denoted by a=(a:l=1,---,L) and m=(m;:i=1,--, M)
respectively.

Definition 2.2. The throughput region C, of policy 7 is the collection of all pairs
of vectors (a, m) for which the system is stable under policy 7.

The set of pairs of arrival and service rate vectors for which there exists a policy that
stabilizes the network completely characterizes the stability properties of the system.

Definition 2.3. The system throughput region is

C=U C.

neH
If a pair (a, m) belongs to C then it is called stabilizable.
Definition 2.4. A policy m; dominates a policy 7, if
Cr,2Ch,.

Definition 2.5. A policy = has maximum throughput if it dominates every other
policy in H and has throughput region equal to the system throughput region.

In this paper we consider primarily non-parametric policies where the decisions do
not rely on arrival and service rate information. Note that every two policies are not
necessarily comparable through the ‘domination’ relationship since in certain cases
neither C,, 2 C,, nor C,,2C, may hold. Hence a maximum throughput policy
does not necessarily exist. One of our main results is that we identify a maximum
throughput policy. :

The stability of the continuous time Markov chain X is equivalent to the stability
of the imbedded discrete time Markov chain [1]. The imbedded chain will be
denoted by the same symbol as the continuous time chain in the rest of the paper; it
has the same state space as the continuous time chain and transition probabilities

sy

xx

P(X()=y | X(@t-1)=x)=—

where g, is the rate of transition from state x to state y of the continuous time chain
and G, = — 2, c #y-x Gry- In the rest of the paper we denote —g,. by g,. In the study
of the stability we will consider only the imbedded Markov chain.

The characterization of the structural properties of the queue length process is
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necessary in order to study its stability. In the rest of the section we briefly state
some basic notions regarding the classification of the states of a Markov chain for
the sake of completeness. A state x, is reachable from a state X if there is a
sequence of states x;, i=0,--,k such that g,,, >0 for i=1,---, k—1. Two
states communicate if each one is reachable from the other. The relationship
‘communicate’ is an equivalence relationship. A set of states R is closed if
P(X(t+1)=x|X(t)=y)=0 for all y € R, x ¢ R. The state space of the chain is
partitioned in the sets T, Ry, Ry, - -~ where R;, j=1,2,--- are closed sets of
communicating states and T contains all states which do not belong to any closed set
of communicating states and therefore are transient. Note that if the network is
stable, then the ergodicity of the queue length process implies that it has a unique
closed set of communicating states which are all positive recurrent and possibly a
non-empty set of transient states. Furthermore, starting from any transient state the
class of recurrent states is hit with probability one.

3. Distributed routing and flow control for maximum throughput

In this section the maximum throughput distributed policy is presented and the
system throughput region C is characterized.

Policy my. Each queue i=1, -+, M routes the served customers according to the
rule
D, ifDed,
R,.(x)={ _ <
arg min; . s, (x;), otherwise

and ties are broken by selecting the queue closer to the destination (ties in the
second case are broken arbitrarily).

The incoming customers of class [=1,---, L are routed according to the rule
R§(x) = arg min;.s: (x;), and ties are broken by selecting the queue closer to the
destination (ties in the second case are broken arbitrarily).

Server i =1, - - -, M controls its service rate according to the rule
0, ifx,=min,_s{x;;and D ¢ §;, orx;=0
E‘(x):{ i : 7 S,{J} i
m;, otherwise.

It is assumed that xp = 0, whenever it arises.

According to policy 7, a served customer of queue i is routed out of the system, if
D € S, or to the queue of S; with smallest length, otherwise. The server of queue i
“idles if D ¢ S, and the lengths of all queues in §; are larger than or equal to the
length of queue i An arriving customer of class [ joins the shortest queue of Sj.
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Figure 2. A set of queues S with the corresponding sets of arrival streams and queues that lead customers
out of §

Note that the routing and the flow control rules for queue i use for decision making
the queue length information from the queues of the set §; only. The queues of the
set S, usually correspond to neighboring nodes of the node that corresponds to
queue i in the physical system that is modeled by the queueing network. Hence, a
distributed implementation of the policy is readily available. In applications, the
existence of such distributed implementations is of considerable importance.

Policy m, has maximum throughput region and the characterization of C,,
provides a characterization of the system throughput region. We need to define
some sets of queues in order to give the necessary and sufficient conditions for
stability. Given a set of queues S the set Cs is defined to contain every customer
class I the customers of which cannot be routed outside of §; i.e., S < § for every
| € Cs. The set Qs is defined to contain every queue i € S, the served customers of
which may be routed outside of S; i.e. S; & S for every i € Q5. In Figure 2 the sets Cs
and Qs of customer classes and queues, respectively, are illustrated for a specific set
of queues S. The following condition is necessary and sufficient for stabilizability:

(3.1) Sa< > m, V¥Sc{l---, M}
leCs ieQs

Note that, because of the assumption that from every queue there is a path to the
destination node, the right-hand side of (3.1) is positive for any set § of queues that
does not contain node D. The necessity is intuitive if we observe that the aggregate
rate of arrivals to the queues of § is always greater than or equal to the left-hand
side of (3.1), while the aggregate rate of departure from the set of queues S is always
less than or equal to the right-hand side of (3.1). The strict inequality is necessary to
avoid symmetric random-walk-type situations (e.g. a queue with equal arrival and
service rates). The necessity is shown in the following.

Theorem 3.1. If the network is stable then Condition 3.1 holds.

Proof. The queue length process has a unique stationary distribution since it is
ergodic. Assume that it starts with this distribution. Consider a set of queues S. Let
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D(1) be the number of departures from a queue in § to a queue out of S (or out of
the system) and A(t) be the number of arrivals to a queue in S, either from a queue
out of S, or exogenous arrivals.

The processes A(¢) and D(t) are Poisson, modulated by the system state, and they
have instantaneous rates r,(t) and r,(t) and average rates r, and r, respectively. We
can easily see that with probability one

(3.2) > a=r,()

[ECS
since the queues of set S will be receiving at least the arrivals from the streams
| € Cs, that cannot be routed to any queue out of S. Also with probability one

(3.3) )= 2 m

ieQs
i.e. the departure rate cannot exceed the aggregate rate of all queues that can direct
traffic out of S. Stability clearly implies

(3.4) To =Ty

and from (3.2)—-(3.4) we get 2joc, @) =1, =13 = 2. o, my. To conclude the proof it is
enough to show the strict inequality

(3.5) < > m
ieQs

Since the queue length process is ergodic, it has a unique closed class of recurrent
states and all states of this class have positive probability under the stationary
distribution. Hence, in order to show (3.5), it is enough to show that there is a
recurrent state x, such that r (¢) <=, .o, m; if X(t) = x,. The latter fact can be easily
shown with contradiction. Assume that the departure rate r,(f) is equal to the
right-hand side of Equation (3.5), for all recurrent states. If ry(r) =2,co,m; for
some state x;, then there is a service completion and a routing decision that will
lead a customer from a queue in S to a queue out of § and the system to a new state
x,. In state x,, the number of customers in set S will be reduced by one compared to
that in state x,. Furthermore, since x, is reachable by xy, it is recurrent as well. By
repeating with state x, the argument we did for x;, we will end up with a recurrent
state x5 in which the number of customers in the queues of § is reduced by one,
compared to that number in state x,. By repetitively applying the same argument we
will reach eventually a state with zero customers in the queues of the set § and
departure rate from the set § equal to 2. o, M- This is a contradiction.

The sufficiency of (3.1) for stabilizability together with the fact that 7, has
maximum throughput is shown next.

Theorem 3.2. Under policy 7, the network is stable when Condition (3.1) holds.
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-

Figure 3. A tandem network

The proof of the theorem will be given after a lemma that characterizes the
structure of the state space of the queue length process under m,. As we mentioned
in Section 2, the queue length process X is not necessarily irreducible, i.e. the state
space & does not constitute a single equivalence class. Consider for example the
simple network in Figure 3. If the initial state x; is such that x%=x9 and m, controls
the system, then none of the states x such that x; > x, is reachable. The following
lemma provides a classification of the states of the process X. State 0 corresponds to
the empty network.

Lemma 3.1. If m, acts on the queueing system and (3.1) holds, then the subset of
the state space = {x:x e X and x can be reached from state 0} is the unqiue closed
class of equivalence states of the Markov chain; furthermore any state of the set
Z — R is transient.

Proof. We show first that the state 0 can be reached from any other state x € Z
For each queue i, let w; be the number of hops (links) of the minimum hop path
from the node of queue i to node D in the topology graph of the network. Clearly
O<w,<wx, i=1,---,M, since the destination node can be reached by every other
network node. Consider the linear function W(x) =3¥; wx; on Z. We claim that if
for some state x € ¥ we have W(x) >0, then there exists a transition with positive
rate from ¥ to some state x’ so that W(x)— W(x')=1. Consider the queue
d = arg min., >q {w;} which is well defined since W(x)>0. Ties in argmin are
broken arbitrarily. Queue d is one of the non-empty queues closest to the
destination. We claim that a service completion at queue d will lead the system in
the state x' with the above property. We distinguish the following cases.

Case 1. w,=1. Since w, = 1, the queue d may direct customers out of the system;
according to policy m, all served customers of queue i will be directed out of the
system. Hence a service completion at queue d will lead the system in a state x’
such that x; =x, — 1 and x/ =x; for i #d. Clearly W(x') = W(x) - 1.

Case 2. wy>1. By the definition of w; we have w,=1 + min; g, {w;}, where by
convention it is assumed wp = 0.

From the definition of queue d, there exists a queue /in Sy such that x;, =0 and
w,=wy— 1. A served customer of queue d will join either queue / or one with the
same properties. Clearly the new state x’ will be so that Wkx')=W(x)-1

We can easily see now that from state x after W(x) appropriately selected
transitions, we can eventually reach state x’ such that W(x’) = 0. Clearly x' = 0 since
for any other state the function W is strictly positive.

By definition of the set %, and from the above result, all of its states
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communicate with zero; hence any two states of the set communicate as well.
Clearly the set R is closed since if a state x can be reached by some state in R it can
be reached by 0 as well, therefore x belongs to R. Hence the set % is a closed
equivalence class of states. No state outside of # can belong to a closed class of
states since any state can reach the state 0 ¢ R Hence any state x € (¥ — R) is
transient.

Proof of Theorem 3.2. We show that the closed class of communicating states is
positive recurrent and that class is hit starting from any transient state, in an almost
surely finite random time; this clearly implies stability. Consider the function V
defined on the state space & of the chain by V(x) =3, (x;)% If q,, is positive, then
the system moves from state x to state y either because of an arrival or because of a
service completion. In both cases the vectors x and y may differ either at one or at
two coordinates at most, and we can easily check that V(y) =3V (x) + M. Hence we
get

(3.6) > E12V(y)§3V(x)+M<c°, xe

ye& qx
Clearly the set V, defined by V, = {x:x e &, V(x) = b} has finite cardinality for all b.
In the following we will show that for some fixed € >0 there exists some b, which
may be a function of the arrival and service rates, such that

(3.7) ez S Iy -vE), xeV
ye&’ x
From (3.6), (3.7) and Foster’s criterion [1] we can conclude that every state in % is
positive recurrent. From (3.7) we can easily conclude that the finite set V, will be hit
infinitely often almost surely; therefore V, contains a state from % which will be
visited.
By simple calculations we get

S 2y (yy - vix)

yeZ g
— 9y % _ Y
(3.8) _ygf s (21 }’z 2 :> yggg s (g [2x;(y; —x:) + (yi—x:) ])
= 2%‘;”2 26,y — %) + 22"”2 = %)

When gq,, differs from 0, the transition from x to y corresponds either to an arrival or
to a service completion; hence the states x and y differ in at most two elements and
each difference is at most one. Hence we have M, (x; — y:)* =2, if g5, >0, and for
the second term on the right-hand side of (3.8) we get

(3.9) S 32y (- yrs2

yeZ qy i=1
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Now we will bound the first term of the sum in the right-hand side of (3.8). Let a;(x)
be the sum of the arrival rates over all customer classes which route the customers
upon arrival to queue / when the system is in state x. Define m,(x) by

{ F(x), ifR(x)=]j
otherwise.

lj(x)

)

By grouping together the terms that correspond to the same queue in the first part
of (3.8), and since g,, >0 only when the transition from x to y corresponds to an
arrival or service completion, we have

M

s q"sz(y, x,>——§: > Guti(yi— x)

yeZ qx i= dxi=1ye®
M
=23 (a0 - B + X myo))
gxi=1 j=1

When we are in state x, consider a permutation iy, i, - - -, i Of the queues such
thatx, =x,,m=2,---,Mandifx, _ =x;, then i, <i,. Clearly the permuta-
tion is a function of the state. Note that if queue i, routes the several customers to
queue i, then no queue i, for k <m belongs to §;. In view of this observation the
right-hand part of (3.10) can be written as

> xa6) ~ Ex) + f ) = 3 a0~ )+ 3 o)

(3.10)

i=1 =1
(3.11) "
=S nfaw-Fm+ S my)
j=1 [=j+1
Forj=1,---,M—1 we write
a®) = F) + > myx)
I=j+1

M M M M
(3.11a) =>ax- > ax-2F®+ X F®

m=j m=j+1 m=j m=j+1

M

+ Z 2 ml[lm(x) - 2 2 mi,, (x)
m=jl=m+1 m=j+11l=m+1

By substituting (3.11a) in (3.11) for j=1, -+, M — 1 and after some calculations we
get

3 (a0 - i+ S my)

I=j+1

6.12) S wn(Saw-SA0+ Y 5 ma)

m=jl=m+1

+x; (2 a;,— E F(x) + 2 E m, (x)>

m=ll=m+1
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Consider the sets of queues T,={i:MZkzj}, j=1,---,M. If an incoming
customer of class / is routed to some queue of 7, it follows that S7< T, since
otherwise the incoming customer would have been routed out of 7;; hence / € Cy.
On the other hand, if / € Cy, the clearly an incoming customer of class [ will be
routed to some queue in 7. Hence

M
(3.13) > ax)=2 a
k=j leCr/
For any iy, i, € T, we have m,, (x)>0 only if i, # Qr; thus we get
(3.14) > Y - 2 F(x)= ZQ F(x)
m=jl=m+]1 le y
Relations (3.10)-(3.14) imply that
q M
2 = Z 2x,(yi — x:)

ye& dx i=1

=i§:2(x,}—x,}_1 <2 a - 2 F(x)> 0. (2 a - Z F,(x)).

IECT/ IEQT leCr, leQr,

(3.15)

Whenever x; > x;_, the servers in any queue in Q7 are active since they can route
their customers to some queue out of 7, which has smaller length than they have.
Hence we have

(3.15a) > Ex)y= 2 m  ifx;>x .

IEQT/ IEQTI
From (3.15a), relation (3.15) can be written as

E Loy 2 2x,(yi — x:)

yeZ dx i=1

2w (S e 3 m)

x} 2 leCr] IEQT, x

(3.16)
+——x,~1< z a, — 2 m1>.
IECTI IEQT1
Consider the number ¢ defined by
(3.17) c= max {2 a,— m,-}.
Se{l,- M} LeeCy ieQs
From (3.16) and (3.17) we get
(3.18) S 25 oy -x)s >

ye&"qxt 1
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We can easily see that the relation V(x)Zb implies that

b
3.19 ==
( ) le M
From (3.18) and (3.19) we get
Gy < 2 b
3.20 - ZX, i_x,‘ é“C -
(29 2, g 2=y
where d is defined as d = inf, . g, >0.
Equations (3.8), (3.9) and (3.20) give
v 2 b
3.21) S ‘lf-—V(y)—V(x)§2+—c\/:.
ye& 4x d M

If Condition (3.1) holds, then ¢ will be negative. If in (3.21) we replace b by
M[(d/2c)(2 + €)]? then we get the desired relationship (3.7).

3.1. Stabilization of a Jacksonian network. In the network considered above,
assume that a server never idles if its queue is not empty. For each queue i consider
the splitting probabilities py;, j € S;such that 0=p; =1, Diespyi=1. At each service
completion instant at queue i the served customer is routed within S; according to
these splitting probabilities and independently of everything else in the system.
Similarly, each arriving customer of class [ is routed within S§ according to the
splitting probabilities pj, j € Si. The above routing policy is called random splitting
policy in the following. Under any random splitting policy, the queueing network is
Jacksonain [S]. In this section we consider the problem of stabilizing the network
with a random splitting policy. We show that condition (3.1) is sufficient for the
existence of a random splitting policy that stabilizes the system.

The stability condition for a Jacksonian network is that the system of equations

(3.22) =yt 2 T Djis 1=i=sM
jies;
has a solution (r, - -, 7y) such that r,<m,;, i=1,---, M [15], where p;; are as

defined above and v, is the total arrival rate at queue | from the outside, that is in
our case v; = EmesfPual-

Consider now the network operated under 7. Under (3.1) the network is stable
when 7, acts on it. Consider it in stationary operation and let r, be the departure rate
from queue i. Let, furthermore, gj; be the rate of exogenous arrivals of class [ which
are routed to queue j and gj; the rate of the served customers of queue i which are
routed to queue j. Since the network is stable, at each queue i we have
n=2ies g5+ Zjies, Qi therefore

(3.23) h= S Ly Ay,

LieS jies T
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Consider the random splitting policy with splitting probabilities for queue j, p; =
q;i/r;, i €S; and for class I, pj;=qj/n. (Clearly the conditions for being splitting
probabilities are satisfied.) Under this random splitting policy, the departure rates of
each queue is a solution of the system of equations (3.22) as indicated from (3.23)
and the network is stable.

3.2. The importance of flow control. In this section we demonstrate by a coun-
terexample the importance of flow control in the stabilization of the system. It is
shown that if flow control is not available, that is the server cannot idle, and the
arrival rates are not known, then for some networks there is no distributed routing
policy with maximum throughput region. Note that if the arrival rates are known,
then the randomized policies of the previous section can always stabilize the
network with appropriate selection of the splitting probabilities, when Condition
(3.1) holds.

Consider the class of non-parametric policies where idling is not allowed. The
routing decisions at queue i (arrival stream /) are functions of the lengths of the
queues in S;(S;). The policy is specified by the functions rij:Z':f"‘—>[0, 1], i=
1,, M jeS, (n:Z¥%—[0,1),1=1,---, L,j e S,). The probability that a custo-
mer of queue i that completes service at time ¢ will join queue j, is ri((X,(t—):m € S))).
Similarly for the probability r; of a class i customer to join queue j. There are
networks where for every policy 7 of the above type, with routing probability
functions independent of the arrival and service rates, there are arrival rates in the
throughput region of the system, for which the network is unstable under 7.

Consider the queueing system in Figure 4. There is a single class of arriving
customers; an arriving customer joins either queue 1 or queue 2 after arrival. The

arrival rate is a and the service rate of queue i is m;, i =1, - -+, 4. Assume that
(3.14a) m=m,=m?>a
(3.14b) ms+ my>a.

It is easy to see that Conditions (3.24a,b) on the arrival and service rates imply the
necessary and sufficient stabilizability Conditions (3.1) therefore the system is stable

under 7.
An arbitrary routing policy (with no idling) in the network in Figure 4 is specified

I Ol O
I Ondill Ony

Figure 4. For the above network, when flow control is not available, there is no. optfmal routing policy
that bases its decisions on the lengths of the queues 1 and 2 only
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by the function r;(X,(t=), X,(t—)), i.e. the probability an arriving customer at time ¢
joins queue 1 when the state of the first two queues is X,(1—), X »(t=). Under any
such policy the process (X;(t), X»(t)) is a Markov chain as long as (3.24a) holds.
Note that if the policy, the arrival rate a and the service rates m,, m; are fixed, then
the process (X,(f), X,(t)) as well as the departure rates d; from queue 1to3 and d,
from queue 2 to 4 are fixed and independent of the service rates ms and my. If
d,, d,>0 clearly we can select ms, m, that satisfy (3.24b) and such that m;<d,.
Queue 3 would be unstable in this case while Condition (3.1) holds.

4. Routing with delayed information

Up to now we have assumed that at each decision time instant ¢ at queue i (or at
the entry point of class /), the lengths of the queues in §; at time ¢ are available to
queue i. There are several practical systems that are modeled by the above queueing
network and in which this assumption does not apply. In such systems the queues of
the queueing network correspond to physically different nodes (locations). The
lengths of the queues in §; are communicated to queue i at certain time instants. The
decision at time ¢ is taken according to the lengths of the queues in §; which have
been communicated to queue i most recently and not of the actual lengths at time ¢.
Hence in several cases the decisions are taken based on outdated information about
the system state. In this section we study the effect of the outdated information on
the system stability. We consider a model for information exchange for which we
obtain stability results in the rest of the section.

Assume that the length of queue j e S; is communicated to queue i at random time
instants that constitute a Poisson process with rate r;. Let X;(f) be the most
recently communicated value of the length of queue j to queue i Similarly the
length of queue j e S§ is communicated to the entry point of class ! where the
routing decisions are taken, at random time instants that constitute a Poisson
process with rate rj. The variable X{(¢) has a similar interpretation to that of X;(¢).
In the rest of this section let X(t) = (X;(¢):i=1, -+, M; X;(t):i=1,---, M, je§;

():l=1,-+-,L,je Si) and let Z be the space where this vector lies. The vector
of the queue lengths at time ¢ will be denoted by X(¢). The same controls are
available to the queues of the network as in the initial model in which there was no
delayed information; we will refer to that case as the updated information system
from now on. A control policy is specified by the routing rules R, R}, i=1,--+-, M,
[=1,---, L for each queue and class of arriving customers respectively, and the
flow control rules F, i =1, -- -, M. The interpretation of the control rules is as in
Section 2. The control actions are taken now based on the most recently
communicated queue lengths and not on the actual ones. Consider the following
control policy 7, where the decision at each queue i, at each decision time ¢, depend
on the available information at that queue, that is the values of the variables
X(t), X;;(t),j € S;; similarly for the routing decisions of the arrivals.
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Policy m,. Each queue i=1, -+, M routes the served customers according to the
rule
R,(x) = { ifDes;
arg min; ¢ s, ) otherwise

and ties are broken by selecting the queue closer to the destination (ties in the
second case are broken arbitrarily).

The incoming customers of class /=1,---, L are routed according to the rule
R§(x) = arg min; g (x};), and ties are broken by selecting the queue closer to the
destination (ties in the second case are broken arbitrarily).

Server i =1, - - -, M controls its service rate according to the rule
F(x) = {O, if x; = r.mnjeslm} and D ¢ S, orx; =0
m;, otherwise.
It is assumed that x;p =0,i=1, -+, M.

Under 7; we can easily check that the queue length process X is not a Markov
chain. The process X, though, is, since in addition to Poisson arrivals and
exponential service times, the times of message exchanges form a Poisson process
for each pair of neighboring queues. The stability of the system is identified with the
ergodicity of X.-The following theorem characterizes the stability properties of the
system.

Theorem 4.1. If the message exchange rates ry, i=1,--+, M, j € §, are positive,
then the system is stable under 7, if and only if (3.1) holds for the arrival and service
rates.

The proof of the theorem follows after a lemma. In the following we denote the
empty state of the systems with updated and delayed information by 0 and 0
respectively. In the latter case all the control information variables are equal to 0.

Lemma 4.1. When all the message exchange rates are positive, Condition (3.1)
holds, and policy m; acts on the system, the subset of the state space R =
{x:x e £ and x can be reached from state 0} is the unique closed class of equivalent
states of the Markov chain; any state in the set Z — AR is transient.

Proof. We show first that state 0 is reachable by any other state x € . Consider
an arbitrary state x. After a sequence of message transmissions, and without any
arrival or service completion, a state £ may be reached which is such that £; =%,
i=1,---,M, jeS, £5=%, I=1,--+,L, je Si. In the model without delayed
information, for any state y, we have from Lemma 3.1 that there is a sequence of
transitions that leads the system from y to 0. Consider now a sequence of transitions
from state x € Z as follows. First message exchanges occur such that all control
information is updated to the actual queue lengths. Then the first transition of that
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sequence of transitions that lead the updated information system to state 0 (Lemma
3.1) is taken. Then the control information is updated again and the second
transition of those that lead the updated information system to state 0 occurs. It is
clear that by continuing in the same manner state 0 is reached. The proof of the
lemma is completed using the same arguments as in the proof of Lemma 3.1.

The pfoof of Theorem 4.1 follows.

Proof of Theorem 4.1. We will show that X is stable. On the state space &
consider the functions

Vi) = Sk =23 )y 2 Zy (x; -

i=1jeS,
V(x) = Vi(x) + Va(x).

The function V will play the role of a Lyapunov function. If the system moves from
state x to y because of a message transmission, then clearly

(4.1) Vip) =Vix),  Va(y) =Valw).

If the system moves from x to y because of an arrival or a service completion, then
the queue lengths in state y will differ from those in state x at most by one, while
the control information variables will be the same in the two states, and it can be
easily checked that

4.2) Vi(y)=3Vi(y) + M, Va(y)=3Va(y) + M.

From (4.1) and (4.2) it can be easily verified, as in (3.6), that

(4.3) S Iy (yy v+ M<x

ye& dx

Consider the set V, = {x:x e &, V(x) < b} that clearly has finite cardinality for each
b. We show in the following that for a fixed e there exists some b, which may be a
function of the arrival, service and message exchange rates so that

(4.4) ez S Ty -ve),  ifreVs

yed

From (4.3) and (4.4) we can conclude, using Foster’s criterion, that every state in
@ is positive recurrent. From (4.4) we can easily conclude that the finite set V,, will
be hit from every initial state in finite time almost surely; therefore V, contains a
state from 2 which will be visited.
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Consider the sets A(x) = {y:an arrival or service completion transfers x to y} and
B(x) = {y:a message transmission transfers x to y}. The term gq,, is strictly greater
than O only if y € A(x) or y € B(x). Hence the term in the right-hand side of (4.4)
can be written as

Sy -ve= S Zye)-ne+ X = 2 [V2(y) = Va(o)

ye¥ (4x yeA(x) 9x yeA(x)

(4.5)
+ S 2yo)-vie+ 3 q—"[vz(y)-w(x)].

yeB(x) qx yeB(x)

For all y € B(x) we have Vi(y) = Vi(x); hence

q
(46) S ) - i) =0
yeB(x) Yx
By the definition of B(x), for all y in it there exist some queues i, j (or a customer
class [ and a queue j) such that the transition from x to y has rate r; (or rj) and
Va(y) — Va(x) = —(x; — x;)* or —(x;; — x;). Hence we have

6n S Ly -vieish(- 3 S 60 -3 3 (- 5))

yeB(x) i=ljeS; = lje,

where
min {min/7; " {r;}, min 7" {r,,}}

(48) h= max,. (.}

The condition x ¢ V, in (4.4) implies that Vi(x)=b — V,(x) which from (3.21)
implies that

ey _ .2 b =Vy)”
(4.9) ;() . M) = Vi@]S2+5eq [T

where (a)” is the maximum of a and 0. We upper bound now the second term in the
sum in the right-hand side of (4.5). For y € A(x) we have

Va(y) — Valx) = Z E (x; yj)(zxij —X; =)

i=1jes;

(4.10)
+ 2 2 (x1 y])(le] )

1]&,

Also for y € A(x)
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and
From (4.10)-(4.11b) we get

(412) S 22 vyy) - )] = CVIRE) + G

yeA(x)
where C, and C, are positive constants. From (4.5), (4.6), (4.7), (4.9) and (4.12) we
get

b-V
(4.13) E Gay V( Y- V(x)= —hVa(x)+ C,VVa(x) + Co+2 + dc [___A;_(x)_]__
It is argued that the right-hand side of (4.13) can indeed become less than —e for
some positive € irrespectively of the value of V5(x), if b is sufficiently large. Since c is
negative we have

2 [b-Valx)]”

—th(x)+C1VV2(x)+C2+2+;c Y =-hVy(x) + C,VVi(x)+ C,+2

hence we can select a 8 such that for all b we have

(4.14)  —hVa(x) + CVV(x) + C, +2 +§c Lé_—‘;;ﬂg —e Vi) z e

If VV,(x) = 6 then we have
(4.15)

b_Vﬂ - 2 b_92+

Clearly the right-hand side of (4.15) can become less than —e if b sufficiently large
while the inequality is not affected. This fact, together with (4.13), completes the
proof.

5. An alternative proof of the maxflow-mincut theorem

The maxflow—mincut theorem provides a characterization of the solution of the
maxflow problem in deterministic flow networks [11]. The proof of this theorem [11]
is based on duality theory and algorithmic arguments. In this section we show how
the maxflow-mincut theorem is implied by the stability results we obtained earlier.
For the sake of completeness we briefly state the maxflow problem and the
maxflow—mincut theorem in the following. For more details the reader is referred to
[11].
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Figure 5. A flow network

A flow network consists of a connectivity graph G = (V, E), a capacity assignment
on the links C: E— R™, a prespecified origin node v, and a perspecified destination
node vy (Figure 5). Without loss of generality we assume that there is no edge
terminating at node v, or originating at node v,. Also we assume that from every
node there is a directed path to node vy A feasible flow is a vector f = (f.:e € E)
that satisfies the capacity constraints 0=f =C(e) and the flow conservation
equations

(5:1) S L= 2 f ve(V-ivnuvd)
e originates e terminates
atv atv

Let F be the set of feasible flows. The flow transfer f of a feasible flow f from node v,
to vgq is

f= 2 £

e originates
at vg

The maximum flow problem asks for the maximization of f over the set of feasible
flows, i.e. max,.rf. A flow that achieves the maximum flow transfer is a maxflow.
The basic theorem that characterizes the solution of the maximum flow problem is
the maxflow—mincut theorem. We need the notion of a cut of a flow network in
order to state the theorem. A cut is defined as a partition of the set of nodes V into
two sets W, W', such that the set W contains the node v, and the set W' contains the
node vy (Figure 6). A forward link of the cut is directed from a node of W to a node
of W'. The capacity C(W, W') of the cut equals the sum of the capacities of the
forward links. A mincut is a cut within minimum capacity over all the cuts. The
maxflow—mincut theorem characterizes the solution of the maxflow problem.

Figure 6. A cut with the forward edges in boldface
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Maxflow-mincut theorem. The flow transfer of a maxflow is equal to the capacity"
of a mincut.

We are now ready to show how a proof of this theorem can be based on the
stability properties discussed earlier.

For a given flow network N, we construct a corresponding queueing network Qy
as follows. We consider one queue g, for each link (v, w) of the flow network.
The service rate of queue g, is set equal to the capacity of link (v, w). The served
customers of queue g,., can be routed to any queue that corresponds to links
originating at node w; if w is the destination node vq4 then the served customers of
q(v.w) may leave the system. There is only one class of arriving customers with rate A;
the arriving customers can be routed to any queue g, that corresponds to the
link (v, w) which originates from node v,. In the following we are going to use
interchangeably the links of N and the corresponding queues of Qx.

Lemma 5.1. If the queueing network Qy is stabilizable when the arrival rate is A
then there exists a feasible flow fin the flow network with flow transfer A.

Proof. 1If the queueing network is stabilizable then under 7, the Markov chain
X(t) has a stationary distribution. We start the network with the stationary
distribution. Consider a vector f € R'’¥' such that the element f, that corresponds to
link e equals the rate of the departure process of the queue that corresponds to link
e. We claim that the flow vector f is a feasible flow for the network N with flow
transfer equal to A. The rate of the departure process in queue / is less than or
equal to its service rate m, which by definition equals the capacity of the
corresponding link of N. Hence f satisfies the capacity constraints. Consider all the
queues corresponding to links originating at vo. Any exogenous arrival is routed to
one of these queues. Furthermore, these queues receive only exogenous arrivals.
Hence the sum of the arrival rates for the queues originating at v, is equal to A and
to the sum of the departure rates from these queues. Consider all links originating
from vy. The sum of their flows is equal to the sum of the departure rates of the
corresponding queues, which is equal to the sum of their arrival rates. The latter
sum is equal to the arrival rate A, and the flow transfer of fis indeed equal to A.

It remains to show that fsatisfies the flow conservation equations (5.1). Consider a
node v e (V — {vg, va}). The sum of the flows of the links originating at v is equal to
the sum of the departure rates of the corresponding queues which is equal to the
sum of the arrival rates at the same queues. By construction of Oy, these queues
receive traffic only from those queues that correspond to incoming links at node v.
Hence the flow conservation equations are satisfied.

Lemma 5.2. The queueing network Qy is stabilizable if the arrival rate A is strictly
less than the capacity of a mincut of the flow network N.
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Proof. We will show that if A is strictly less than the capacity of a mincut then for
every set S of queues the Condition (3.1) holds. Then stabilizability follows from
Theorem 3.2. For every set of queues S consider the set Vs of the nodes for which all
the outgoing links correspond to queues that belong to S. If node v, does not belong
to Vi, there exists a link originating at v, such that the corresponding queue does
not belong to S, i.e. the incoming customers may be routed upon arrival out of §.
Hence Cs is empty and Condition (3.1) holds since its right-hand side is strictly
positive for all sets of queues S. If vg belongs to Vs, then 2, ¢, 4, = A. Consider the
cut (Vs, V — V5) and an arbitrary forward link (v, w). The queue that corresponds to
(v, w) belongs to S (otherwise node v would not belong to Vs). From node w there
exists an. outgoing link such that the corresponding queue does not belong to S
(otherwise w would belong to Vs). Hence the queue that corresponds to (v, w) may
route customers out of S and belongs to Qs. Since the queue that corresponds to an
arbitrary link of (Vs, V — V;) belongs to Qs we have that Diecs @ =A<C(Vs, V —
Vi) = 2ico, M

Proof of the maxflow—mincut theorem. It is easy to show that for any flow f and
any cut the total flow is less than or equal to the capacity of the cut, which readily
implies that the solution of the maxfiow problem should be less than or equal to the
capacity of a mincut. By Lemmas 5.1 and 5.2 we have that for any A strictly less than
the capacity of a mincut there exists a feasible flow with flow transfer A. Since the
set of feasible flows is closed, the maximum A is equal to the mincut.

6. Conclusions

A queueing network with routing and flow control at each queue was considered.
A distributed control policy that achieves maximum throughput was obtained.
Necessary and sufficient stabilizability conditions were specified. A maximum
throughput policy for the case where state information is not readily available was
also obtained. Implications of our results for deterministic flow networks were
discussed. There are several problems which are left open for further investigation.
We discuss some of them next.

In Section 3.2 we demonstrated by a counterexample that if flow control is not
available then routing policies with maximum throughput region do not necessarily
exist when the routing at queue i is based on the lengths of its neighbouring queues
only and the arrival and service rates are unknown. Does a routing policy with
maximum throughput region exist if no flow control is allowed but the routing
decisions at each queue are allowed to depend on the lengths of more queues than
just the neighboring ones? If such a policy exists then it is interesting to find the
‘minimal’ control information at each queue i that is necessary for the existence of
an optimal policy (where the ‘minimal’ need to be defined in some appropriate
sense). In the queueing model considered in this paper it is assumed that any
customer may leave the network from any queue that routes customers out of the
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system. Another interesting case to consider is that in which for each customer class
there is a specified set of exit queues and not all such sets are the same. Our
necessary and sufficient stabilizability condition is not easily generalizable in this
case. It is interesting to investigate the stability problem in that case.
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