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Push Forward Link-Level Scheduling
for Network-Wide Performance

Leandros Tassiulas, Member, IEEE

Abstract— A virtual circuit network with arbitrary topology
is considered. The traffic streams follow prespecified routes,
different in general for each stream, to reach their destination.
A fluid traffic model is adopted and a processor sharing service
discipline is considered. A policy is proposed for setting adaptively
the fractions of the transmission capacity, which is allocated to the
different traffic streams in the processor sharing discipline at each
link. The amount of traffic arrived at the originating node of each
link is measured for each stream. The fraction of the link capacity
allocated to each stream is set to be proportional to the measured
traffic. The traffic is measured continuously and the fractions are
updated regularly based on the most recent traffic measurements.
It is shown that eventually, the transmission capacity allocated to
each stream converges to a quantity proportional to the average
rate of the stream. Hence, if the capacity condition is satisfied,
sufficient fractions of the capacity are allocated at each link for
each stream. End-to-end performance guarantees are provided,
if the traffic is regulated. The policy is distributed since each link
adjusts the service fractions based on observations of the traffic
arriving at its originating node only. Furthermore, it is adaptive
since no information on the traffic characteristics is needed for
the application of the policy.

I. INTRODUCTION

N THIS PAPER, we focus on the congestion control

functions of a packet switched network. The model of a
virtual circuit (VC) network is considered. It consists of a set
of switching nodes, a set of links connecting certain pairs of
the switching nodes and a set of information streams (Fig. 1).
An information stream enters the network at its originating
node and after crossing a sequence of links (its path), exits
the network at its destination node. Nonblocking switching is
assumed at each network node. When a packet enters a node,
either from outside or arriving from another network node, it
is queued in front of the output link that it is going to cross
next. If the node is the eventual destination of the packet then
the latter departs from the network. In the originating node
of each link there are packets from the different information
streams that go through the link waiting to be served. The
sharing of the link service capacity among the different traffic
streams and the associated congestion control problem is the
subject of this paper.
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Fig. 1. The queueing model of a virtual circuit network.

A fluid traffic model is considered. The traffic is infinitely
divisible and the server may switch from stream to stream in
infinitesimal time. The link capacity is allocated in a processor
sharing fashion. The congestion control scheme is specified by
the fractions of the capacity allocated to the different traffic
streams. These may vary with time. A policy is proposed,
which adaptively adjusts the capacity fractions, such that
eventually adequate capacity is allocated to each traffic stream
at each link. It is called the push forward (PF) policy and
acts as follows. At the originating node of each link [, the
arriving traffic of each stream j that crosses [ is monitored
and a measurement of the total amount of traffic Qz- (t) that has
arrived until time ¢ is kept. At certain time instants, the update
times, the fractions of the service capacity that correspond to
each stream j through link [ are updated to be proportional
to the most recent measurements of the arriving traffic. The
sequence of update times can be fairly arbitrary. It is shown
that the capacity fractions allocated to the different streams
that cross | converge to values proportional to the rates of
the streams. This holds under the condition that the average
rates exist and the capacity condition is satisfied at each link.
Hence, the existence of the long-run average arrival rate of
each stream guarantees that the output rate will be equal to
the input rate. If the arrivals are regulated and the stronger
condition that the arrival stream j has bounded burstiness
holds, then it is guaranteed that the backlog of the stream j at
every link that the stream goes through, is bounded as well.
These results hold for every arrival sample path that satisfies
certain deterministic conditions.
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The problem of congestion control for providing perfor-
mance guarantees in communication networks has been stud-
jed extensively lately and several new methods of traffic
modeling and analysis have been proposed and investigated
by several authors [1], (3], [6]-[8], [10], [12]. The generalized
processor sharing (GPS) scheme, proposed for congestion
control by Parekh and Gallager [8], guarantees a certain
amount of bandwidth to each traffic stream. The PF policy
provides a method for adjusting the fractions of allocated
bandwidth in a GPS scheme adaptively, without knowledge
of the traffic characteristics. Only the traffic arriving at the
originating node of a link needs to be observed for the
adjustment of the bandwidth allocations of the link. Hence,
the policy can be implemented in a distributed fashion.

The paper is organized as follows. In Section II, the network
model is defined, the traffic assumptions are given, and the
scheduling discipline is discussed. In Section III, the conges-
tion control policy is specified. In Section IV, the network
is analyzed under the assumption that the long-run average
rates exist. In Section V, the network is analyzed under the
additional assumption that the arrival streams have bounded
burstiness. Section VI contains some concluding remarks.

II. THE NETWORK MODEL AND THE TRAFFIC ASSUMPTIONS

The network has L links and a total number of J traffic
streams. The streams may be routed arbitrarily through the
network. The set of links that a particular traffic stream j goes
through is denoted by L(;) and the kth link, in the order that
they are crossed by stream j is denoted by ;(k). The number
of links in L(j) is denoted by K ;. The set of all traffic streams
that gb through link [ is denoted by V (/). Denote by p;([) the
link through which stream j arrives at the originating node of
link {. By convention, if stream j enters the network at the
originating node of link { then p;(!) = 0. Fig. 2 clarifies the
notation defined above.

The traffic of each session j arrives at its entry node of the
network that need not be the same for all sessions. The arrivals
of stream j are specified by the sequence {(7,03)}5%, where
73,0} are the arrival time and the information length of the
nth packet of the stream, respectively. An alternative repre-
sentation of the arrival process is given by the instantaneous
rate a;(t) with which information of stream j is entering the
network at time ¢. We assume a;(t) = 0 for ¢ <0. The amount
of information arrived in the network within the time interval
[t1,t2) is equal to fff a;j(r) dr. Clearly, we have

r n—1 )
/ a;j(r) dr = Zal], Vn > 0.
0 =1
In this paper, we adopt the representation of the traffic by the
instantaneous arrival rate. The following conditions about the
arrival streams are assumed to hold throughout the paper.

C1: The packet length is bounded

ol <¢j=1,---,J, n=12

C2: The long-run average arrival rates exist for all streams
1 t

lim —
t-—00 0

a;(T) dT = aj, j=1--J

el R

S

J I(k-1)=p(l)

Fig. 2. The notation is illustrated in this figure. The Ath link crossed by
stream J is denoted by I, (k). The set of streams crossing link / is denoted
by ¥(I). The link crossed by stream j before this goes through ! is denoted

by p,(1).

C3: For all links we have

2 a; < Cy,

JeV()

l=1,---.L

where C; is the transmission capacity of link .
C4: There are no instantaneous packet arrivals, that is

a;(t) <oc, t>0, j=1,---,J

Note that no specific statistical model is considered for
the traffic. There is just a set of conditions that should hold
for every sample path of the arrival stream. The results
obtained in the rest of this paper hold for every arrival
sample path that satisfies the imposed conditions and not
just for statistical averages. Conditions C1-C4 imply some
weak stability properties of the network under the PF policy.
Stronger stability properties and bounds on the backlog are
obtained in Section V assuming additional constraints on the

burstiness of the arrival streams.

III. CONGESTION CONTROL AND THE PUSH-FORWARD POLICY

The link transmission capacity may be allocated to more
than one stream simultaneously, in a processor sharing fashion.
The transmission of a packet may be initiated only after it has
completely arrived at the originating node of the link. The
traffic of each stream may be transmitted with any rate as
long as the total transmission rate of all the streams through
the link does not exceed the total link transmission capacity
at any time. The instantaneous rate with which information of
stream j is flowing at time ¢ through link [ is denoted by uﬂ(t).
By convention, we have u?-(t) = a;(¢). If the transmission of
the nth packet of stream j through link [ ends at time ¢ and
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of the packet n + 1 at t', then

t/
/ Né‘(‘r) dr = 0741
¢

Clearly, the aggregate transmission rate through link [ should
satisfy the capacity constraint

ST ouy <t 20 o))
JEV(D

Let X j(t) be the amount of information of stream j in the
originating node of link [ at time ¢. It includes the amount
of information in stream j packets waiting for transmission,
the portion of the stream j packet under transmission through
| that has not left the node yet, and the portion of stream j
packet under transmission through link p;({) that has already
arrived in the node. Clearly, we have

xi(e) = X0 = [0 = ()

ty
to >t > 0. 2)

Condition 1 implies that the streams from one node to the
other contain no impulses and together with the condition C4
implies that the backlog of any traffic stream at any node
cannot have jumps as a function of time. The rates ,u,é-(t) are
adjusted by the congestion control scheme. Congestion control
policy is any rule for determining a set of transmission rates
{{Mé(t)vt 2 O}=j € V(l)vl =1,--, L}

One congestion control policy that provides guaranteed
bandwidth to the individual traffic streams is GPS. In that
scheme, “weights” f]’- are specified for each stream j € V/(I)
for every link . They represent the capacity fraction of link
[ allocated to stream j. Then, at every time instant ¢, the
rates ulj(t), pk(t) of any two sessions j, k with nonzero
backlogs, are such that ui(t)/fjl = pk(t)/f}. The scheme
has been studied extensively in both the single node [8]
and the network case [9] and it was shown that it can
provide performance guarantees when the weights are selected
appropriately. In GPS, the weights are preallocated based on
the traffic characteristics of the streams, and remain fixed
thereafter. The preallocation should be done such that fair
portions of the capacity are allocated to the individual streams.

A. The Push-Forward Policy

In this paper, it is assumed that the capacity fractions
allocated to the different streams may change with time. The
problem of adjusting them adaptively based on the observed
traffic characteristics is considered. The PF policy makes the
adaptive allocation such that, eventually, the capacity fractions
converge to values larger than the traffic loads. The service
fractions of each stream for link / may change only at the
update time instants, {t'(n)}o, of link /. That is, the capacity
allocation scheme is piecewise constant. It is denoted as

{{(tl(n)vfrlzj) ?:0?.7. € V(l)}

with the interpretation that

fity =it n+1)>t2 tH(n).
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The update times of each link can be any sequence such
that lim,_.. t'(n) = oc. This assumption implies that the
capacity of a link cannot be reallocated an infinite number
of times during a finite time interval and it is introduced for
technical reasons only. For the results obtained in this paper,
the update sequences for different links do not need to satisfy
jointly any constraint, and can be completely asynchronous.

The fraction f7 of the link [ capacity, allocated to stream
j € V(1) during the period [t(n),¢'(n + 1)) is

Q4(t'(n))
Y Qh(tH(n)

meV(l)

= 3)

where Q;(t) is the total amount of stream j traffic that arrived
at the originating node of link / until time ¢. That is

QL(t) = /0 WO (r) dr + X4(0)

where X ;(0) is the initial backlog of stream j at the originating
node of link /. The transmission rates Mé‘ (t) should be such that

W) > FLEC

if at time ¢ there is a stream j packet in the originating node of
link L. Of course (1) should be satisfied. The capacity fractions
f4 under the PF policy, converge in some sense to those of
the rate proportional processor sharing policy, considered by
Parekh and Gallager in [9].

Note that, strictly speaking, the PF policy as defined above
is a class of policies and not a single policy, since there is
more than one way to select ,ué-(t)’s, such that (4) is satisfied.
The results obtained later hold for any policy of this class. So
they will not be distinguished in the following and they will
be referred to collectively as the PF policy.

jeV),l=1,--,L 4

IV. CONVERGENCE OF THE BANDWIDTH ALLOCATION
AND EXISTENCE OF THE OUTPUT RATES

In this section, it is shown that under the PF policy, the
average output rate from any link [ of each stream j € V({)
is equal to the average rate a; of the stream. Furthermore, the
service fraction f4 converges to the relative load of j, among
the streams in V({). These results are stated in Theorems 1
and 2, respectively, and they follow from the conditions C1-4
on the arrival streams.

Theorem 1: Under the PF policy, if conditions C1-4 hold,
then the average transmission rate of any stream j through
any link [ € L(j) exists and is equal to the arrival rate of
the stream
lim S d - 5
tirgoz Ouj(r) T = a;. 5)

The proof of the theorem will follow after two lemmas. The
following lemma shows that if the average rate with which
streamn j arrives at the originating node of link [ exists and
is equal to the arrival rate of the stream aj, then the service
fraction allocated to stream j at link [ under the PF policy will
eventually be larger than or equal to the average rate a;.
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Lemma 1: If condition C2 holds and at the originating node
of link /, the traffic of stream j satisfies the condition

N p; (1)
tllglo-t-/o ph (1) dr = ay (©)
and also
> a;<C 0
Jev{l)
then
s
lim inf f49> 2L 8
iminf > ) (3
While, if
> a;=0C )
JEV(D)
then

lim inf fL9> 2. (10)

n—oc 1

Proof: Notice that for the stream j in link {, we have

t'(n)
QL(t(n)) = /O WOy dr+ X40) ()

and for any stream k& € V(I), we have

t'(n)
QL(t'(n)) < / ar(T) dr + X1(0). (12)
0
From (11) and (12) we get
s Q)
> QL (n)
keV (1)
L0 !
/ py? () dr + X5(0)
Jo (13)

> T :
S (fy ™ an(r) dr + XL(0))

kev(l)
By taking the limits in (13) and from condition C2, we get

lim inf fL9

n—oo
t'(n)

12O (r) dr + X1(0)

inf

n—oo

> lim

=4 (14)

From (7) and (14), (8) follows while (10) follows from (9)
and (14). o

The following lemma shows that if the long-run average
rate of stream j at the input of link / exists, then the long-run
average rate of the stream j at the output of link [ exists as
well and is equal to that of the input. '

Lemma 2: If conditions C1—4 hold and at the originating
node of link [ the traffic of stream j € V/(I) satisfies the
condition

lim =
t—o00 t

t
,u?j(l)(‘r) dr = a; (15)
0

then the output rate of stream j from link / exists and is

.1ty
tl_lglog ; py (1) dr = aj.

(16)

Proof: For every stream j in every link [ € L(j), we
have "

I 1" L 1
z/0 ub(r) dfg;/o WOy dr+ 2 X50) an

from which we get using (15)

1t 1 [t
lim sup —/ u;(r) dr < lim sup {?/ M;;J(l)(r) dr
0 0

t—o0 t t—oo

+ %X]’-(O)} = a;. (18)

Given (18), in order to prove the lemma, it is enough to show
that

t—oo

1 ft
lim inf Z,/ u;-(T) dr > a;
0
or, equivalently, that

1 /[t '

lim inf —/ pi(r) dr > a; —e, Ve>0. (19
— 00 0

We will show (19) by contradiction. Assume that for some

€g >0, we have

- ¢
lim inf l/ ué-(f) dr <a; — € 0
0

t—oo

which implies that there exists a sequence t,,n = 1,2,
such that

lim t, = o 2n
n—o0
and
1 [
t—-/o ui»(T) dr < a; — €. (22)
From Lemma 1, we have
lim inf fLi> 2 3)
n—oo Cl
which together with (15) implies that there exists ¢* such that
! (aj — €0/2) x
(t) > ——— t>t 24
f]( ) - Cl ) = ( )
and
l t,up’(l)(‘r) dr > _f,c t > t*. (25)
tJo T2 T -
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It is claimed that conditions (20) and (24) imply that the
backlog X ]’ (t) becomes less than the maximum packet length ¢
infinitely often or, in other words, that there exists a sequence
t',n = 1,2,--- such that

lim ¢, = o0 (26)
and
!
Xi(t) <e. 27

This is shown in the following by contradiction. If that was
not true, then there should have been a time ¢ such that

. .
Xityze t2t (28)
Clearly, we would have had
uh(t) > fiC > aj —e0/2,  t2>max{t, i} (29
therefore
I 1t .
-t—/ ,ué-(r) dr > ?/ (a; — €0/2) dT, t>t  (30)
0 t
from which, we get
I v
lim tinf ;/ ,ué-(r) dr > aj — €g/2 31
— 00 0 -

which contradicts (20).

After showing the existence of the sequences ¢, and t we
continue to show that (20) leads to contradiction. Select a t,
larger than ¢* and a t; larger than ¢,,. Let ¢ be defined as

t=sup{t: ¢t < tk,X]l-(t) <c}.

Notice that since t* <t/ < tj, the time f is well defined and
t. < t < tr. We can write

I I 1ot
pi(r) dr = E/() 15(7) dT—{-a/i ps(T) dr.
(32)

te Jo

By the definition of { we have that X Jl(t) > ¢ for t in the
interval (f, ty), therefore, stream j is transmitted with rate
ué-(t) > a; — €o/2 because of (24). For the second term of the
sum in the right-hand side of (32), and since £ > t*, we have

1 b l tk - tA

145 (r)dr > i (33)

% J: (a; = €0/2).

For the first term of the sum in the right-hand side of (32),
we have

i t
/ uh(r) dr +c :/ ubO(7) dr + X1(0)
0 0

which implies

. c
/,u?]()('r) R )
0 i

k|
C\ﬁ
=
[y
—_~
B
g
W
3
\Y
k|
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From the definition of ¢ and (25), (34) gives

1 t
;/0 pi(r) dr >a; — /2=
11t t
— [ w;(r) dr > —(a; — €0/2) (35)
tk Jo ts,
In view of (33) and (35), (32) gives
1t
— H;(T) dr > a; — €/2 (36)
tk 0
which contradicts (22). o

_ We proceed now to the proof of the Theorem 1.
Proof of Theorem 1: For each stream j, we show by induc-
tion that (3) is satisfied for all links [ € L(j).
For the first link /;(1), that stream j traverses when it enters

the network, we have ;/;J(l)(t) = a;(t), therefore, (15) holds
from condition C2 and Lemma 2 implies readily (5).

Assume that (5) holds for [ = {;(k). Notice that relation (5)
for [ = I;(k) is identical to (15) for I = {;(k + 1). Therefore,
Lemma 2 implies (5) for [ = {;(k + 1) as well. The proof is
concluded by induction. o

The following theorem strengthens the convergence results
(8) and (10) showing that the service fractions of each stream
converge under the PF policy. Notice that the results (8) and
(10) on the convergence of the bandwidth fractions helped us
to show the convergence of the average rates for the streams
at every network stage, that is, Theorem 1. The latter is used
to show the convergence of the service fractions.

Theorem 2: Under the PF policy, if conditions C1-4 hold,
then the service fraction allocated to every information stream
at every link j converges to

aj

lim fY = ——2—. (37
n—oo Z a’k
kev(l)
Proof: Notice that
t'(n) -
QL (H(n)) = X1(0) + /0 Oy dr,  jevi).
(38)

The theorem follows readily from (38), the definition of f,’bj
and Theorem 1. o

The fact that the output rate of a stream is equal to the
input rate is a rather weak stability condition since it does
not exclude the possibility of unbounded backlogs inside
the network. Under the conditions C1-4 though, no stronger
stability condition holds. Even in the special case of a single
queue, the condition that the arrival rate is smaller than the
service rate does not guarantee bounded queue lengths without
additional conditions on the arrival streams. In the next section,
we study the backlogs in the network nodes under constraints
on the burstiness of the arrival streams.
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V. BURSTINESS CONTROL

When the arrival streams have bounded burstiness, then it
is expected stronger stability properties are satisfied by the
network than the mere existence of the output rates. If the rate
proportional processor sharing is employed and the burstiness
is bounded, then it is shown by Parekh and Gallager [9]
that the backlogs in the network nodes are bounded. The
rate proportional processor sharing is, in some sense, the
limiting policy of the adaptive PF policy proposed here, so it
is expected that after an initial transient period during which
the backlogs may fluctuate unpredictably, they will eventually
settle down, below certain bounds independent of the initial
conditions. This is shown in the rest of this section.

The burstiness b; of a traffic stream a,(t) with long-run
average a; was defined by Cruz in [2] as

t2
bj = sup {/ a;j(T) dr — (t2 — tl)aj}. (39)
ta >t 20 t

A traffic stream at the output of a traffic regulator (leaky
bucket) and before it enters the network has finite burstiness
of size determined by the parameters of the regulator. In the
analysis of the backlogs during the operation of the congestion
control policy, there is a need to characterize the burstiness
of the traffic streams within the network when the capacity
fractions will converge and after the initial transient period. To
facilitate this task, the notion of eventual burstiness is defined
in the following. The arrival stream j with average rate a; has
eventual burstiness b; ; if

ta
lim sup {/ a; (1) dr — aj{ts — tl)} =b;. (40)
=00 g >t >t LSy

Roughly speaking, eventual burstiness is the maximum bursti-
ness of a traffic stream after a sufficiently large transient
period.

The following theorem characterizes the eventual burstiness
of a traffic stream after it crosses each link as it goes through
the network. The maximum backlog in each node follows
easily from that characterization.

Theorem 3: If conditions C1-2 hold, the arrival stream j
has eventual burstiness Bj and for all links { € L(J) it holds

> a;<C (41)

jev(h)

then the stream {u Lk ) (t),t > 0} has eventual burstiness less

than or equal to b +kefork =1, K.

The proof of Theorem 3 will follow after the following
lemma which characterizes the eventual burstiness of the
output of a stream as it goes through a link, given a constraint
on the eventual burstiness of the input stream.

Lemma 3: If the traffic stream {[L?j(l)(t),t > 0} has

eventual burstiness less than or equal to b;, the conditions

C1-2 hold and
Z a; < Cy
JeV ()

(42)

then the stream {u}(t),t > 0} has eventual burstiness less
than or equal to Bj + c.

Proof: Under the conditions of Lemma 3, we have from
Theorem 2 that

lim fl9 =

n—oo

S (43)
>
kev(l)

From (42) and (43), we understand that there exist a* > a;
and ¢* such that

F(H)C > a”, t >t (44)
At all times ¢ > t*, the following holds. If there is not a
complete packet at the originating node of link /, then the rate
uz-(t) is equal to zero, otherwise it is greater than or equal
to a*.

We argue that there is a time t** > ¢* such that X! () <e.
If that was not true and X! ;(t) > cforall t > t* then we
would have had 4; L(t) > a* for all ¢t > ¢*, since the condition
X Jl(t) >c implies that there is at least one complete packet
at the originating node of link /. The latter implies that the
output rate of stream j from link [ is greater than the arrival
rate a; of the stream, which is a contradiction, therefore, ¢t**
as above exists.

For any ¢; >¢** define

if Xi(t1) <c

¢ (t )_ tla

OV Usup{t: t < b1, Xty = ¢}, if Xi(t1)>

Note that since X} (t**) < c, the time to(¢;) is well defined and
is greater than or equal to ¢**. In the following, it is argued

that for any ¢;, ¢5 such that ¢5 > ¢ > t**

ta ta
[Tumar< [
Jt, Jto(t1)

ij(l)(T) dr + ¢ — a;j(t1 — to(t1)).

(45)
We distinguish the following cases.
A: Assume that X}(t;) < c. Then clearly
to to [
/ ph(r) dr < / WOy dr+c (46)
t, t

and (45) follows since {o(¢1) = ¢5.
B: Assume that X;(tl) > ¢. Clearly, we have

t2
/io(tl)

from which we get

to 12}
/ wi(r) dr < /
Jiy to(t1)

Notice that by the definition of ¢o(¢;), for any ¢ in the time
interval (to(t1),t1], we have X}(t) > ¢, therefore, uf(t) >
a* >a; fort € (to(t1),¢1] and from (48), (45) follows.

t2
ulj(*r) dr < / wy a)(r) dr +¢ 47
(t1)

t)

ufj(l)(r) dr + c—/

,ué—(*r) dr.
ta(ty)

(43)



From (45) and for ¢t > ¢**

t2

sup {/ ué-(r)dr—aj(tg——tl)}
to >t >t ty .

t2

< (]

ta >t >t | Jio(tr)

— a;(t2 —'to(tl))}

tp .
< sup {/ /,Lf’()(r) dr +c
tp >ta> min{t,to(t)} ta

— a;(tp — tA)}

,uf"(l)(rr) dr +c¢

(49)
where the last inequality follows from the fact that if

t, >t >t**, then to(t;) > to(t). By taking limits in (49),
we have

t2
. {/ /_1,3(7’) dT——aj(t2—t1)}
t—=00 ty >t >t Ly

lim  sup
ts
. 10
< p {/ up®
100 4o 5ty > min{tto(t)} LJta

lim su (rydr+c
~ aj(tB —tA)}.

(50)

Note that to(t) is nondecreasing with ¢ by definition. Fur-
thermore, for any 7 in the time interval (to(t),t], we have

Xl(r) > c, therefore, pi(1) > a*>a; for 7 € (to(t), 1]

Because of that, it should hold

lim to(t) = > (5D

t—o00

otherwise, the output rate of stream j at link [ will be larger

than a;.
From the fact that uf i) has eventual burstiness less than
or equal to b; and (50) and (51), the theorem follows. o

Theorems 1 and 3 imply a bound on the backlog of a
traffic stream in the originating node of a link that holds after
the initial transient phenomenon and the convergence of the
capacity fractions. This is stated in the following theorem.

Theorem 4: 1If the conditions C1-2 hold, (41) holds and if
the stream up it )( t) has eventual burstiness less than or equal

to b], then the backlog of stream j traffic in front of link [
satisfies the condition

lim sup X4(t) < b; +c. (52)
t—o0
Proof: By contradiction, assume that
lim sup Xi(t)=b>b; +¢c (53)

t—oo

therefore, for some b* such that 5> b* > b; + c, there exists a

sequence t,,n = 1,--- such that

nan;o tn =00 (54
and

Xi(tn) > 0" (55)
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Arguing similarly as in the proof of Lemma 2, we can show
that the backlog X! ;(t) will be less than c infinitely often, or
in other words, that there exists a sequence t,,,n = 1,2,
such that

lim ¢, = o (56)
and
!
X;i(t,) <e. (57

From Theorem 2, (41), and the fact that the stream y” i)
has eventual burstiness less than or equal to bJ, we understand

that there exist €1, €2 such that ¢; >0 and b* —b; —c>€2>0
and t* such that

£(t) > 5]+el, t>t (58)

and

t2
sup {/ a;(t) dr — a;(t2 — tl)} <bj+e. (59
to >ty >t* ty
Select t/, and tx such that ¢/, >t*,tx > t;, and define

t = sup{t: X;»(t) <e t <t}

Notice that since t* <t/ <tj, the time ¢ is well defined.
Clearly, we have

ts tr
- X4h) = / w7y dr - / ph(r) dr. (60)
t t

Notice that since we assumed the arrival streams cannot
have impulses, the backlogs as a function of time cannot have
jumps and from the definition of t, we should have

"
Xk = 1)

From (61) and the definition of tx, we have
Xite) = X5(E) 20" —c (62)

and
N N
/ W(r) dr > (a5 + G (b — D). 63)
£

Also from the definition of t* and since £ > ¢*, we have

ti
/ ij(l)( )dTSaj(tk_£)+bj+e2' (64)
£

From (60) and (62)-(64), we get
a;(te — D) + b +e2 2 b" — ¢+ (a; + e1C) (8 — 1)
which implies
€ > b — ISj —c.

(65)

Equation (65) contradicts the selection of €y that was done
earlier and the proof is complete. o
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The quantity lim sup,_, ., X;( t) can I;e viewed as the max-
imum backlog after the transient phenomena and in analogy
with the eventual burstiness, it can be called eventual backlog.
Theorem 4 implies that if the arrival process of stream j has
eventual burstiness l;j, then the eventual backlog of the traffic
from stream j at link [;(k) is bounded by b; + kc. Under the
PF policy, the backlogs of stream j are bounded as long as the
arrival stream j has bounded burstiness and the average rates
of the other streams exist. So it is possible that the stream j
has bounded backlogs, while streams with which it shares the
same links may have unbounded backlogs. From Theorem 4,
we can see that there is a bound on X J’(t) that holds for all
t > 0. This bound will depend on the initial backlogs at t = 0,
the initial values of the capacity fractions and the update time
sequences, in addition to the burstiness of stream j. If the rate
proportional processor sharing is employed, then the bound
depends only on the burstiness of the stream and the initial
condition.

VI. DISCUSSION

The bounds on the backlogs of stream j depend only on
the burstiness characteristics of that stream. This is happening
because under the PF policy the service fractions eventually
converge to values larger than the rates of the corresponding
streams, given only the existence of the average rates. After
the convergence, the backlogs of every stream depend on the
traffic characteristics of the stream only.

» Note that at no point in the proof of the results did we
make the assumption that a traffic stream can péss through
each queue at most once. Hence, the results hold for traffic
streams that may be fed back to the same queue several times.
The latter case never arises of course in the context of a
communication network.

There are several issues to be addressed regarding the
applicability of the policies proposed here, for the conges-
tion control of a communication network. How fast do the
capacity fractions of each stream converge and how does the
convergence time compare to the duration of a session? What
is the usefulness of the policy when the rates of the sessions
are known and the fractions of the capacity to be allocated to
the different streams can be set a priori? Finally, how can the
policy be implemented without the infinitesimal packet length
assumption?

The convergence speed of the capacity fractions depends
both on the topology of the network as well as the convergence
speed of the time average arrival rates. This is an issue to be
studied in association with specific network topologies and
applications. If the duration of a session is not long enough
compared to the duration of the transient period of the policy,
then clearly, the capacity fractions should be preset based on
the traffic characteristics of the session.

The PF policy relies on the following principle. Allocate the
service capacity of a link in proportion to the traffic loads of the
sessions as they are viewed from the link perspective. When
the cumulative traffic load from the beginning of the operation
of the system is considered, it is shown that we have eventual
convergence to capacity fractions that guarantees stability. An

alternative is to measure the load within a fixed time window.
This will make the policy more volatile and, depending on
the window length, it may have the effect of a burst level
allocation of the capacity. Instead of allocating the total link
capacity in this manner, another option is to allocate portions
of the capacity equal to the average rates according to a
fixed allocation scheme and the rest of the capacity with the
dynamic scheme suggested above. Those alternatives are worth
investigation regarding their performance.

Finally an important issue is the implementation of the PF
policy under store and forward assumptions on the service
and the constraint that, at most, one packet can be transmit-
ted at a time at each link. This issue was investigated for
processor sharing by Demers et al. in [4] and Parekh and
Gallager in [9]. The fair queueing discipline was proposed,
which is a packetized service discipline and emulates close
processor sharing, as was shown analytically by Greenberg
and Madras [5] and Parekh and Gallager [9]. The fair queue-
ing technique is not directly applicable to the PF policy,
since the capacity fractions vary with time. The problem
of emulating an arbitrary time-varying fluid policy by one
that provides packetized service was considered in [11]. A
scheme similar to fair queueing was shown to work in the
case of time-varying policies as well. That scheme may be
used for emulating the PF policy and providing packetized
service.
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