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Performance Measures and Scheduling
Policies in Ring Networks

Leandros Tassiulas, Member, IEEE, and Jinoo Joung

Abstract—A unidirectional ring network is considered. A node
may transmit at most one packet per slot to its downstream
neighbor. Potentially all nodes may transmit at the same slot.
The achievable performance is studied and policies are proposed
for both the evacuation mode and continual operation. In the
evacuation mode each node has initially an amount of packets
destined for every other node of the ring, and no more packets
are generated later. It is shown that the furthest destination
first (FDF) policy, that gives priority to the packet with longest
way to go at each node, minimizes the time until every packet
reaches its destination. Furthermore it is shown that the closest
destination first (CDF) policy, that gives priority to the packet
with the shortest way to go at each node, minimizes the average
packet delivery time. A formula for the optimal evacuation time
is obtained. The continual operation of the ring is considered
then where packets are generated according to some arrival
process. It is shown that, for any arrival sample path, the FDF
maximizes the fraction of the time at which the ring is empty.
The performance analysis of individual origin-destination traffic
streams under FDF is facilitated based on the following. For each
traffic stream, a single server priority queue is identified such that
the average sojourn time of the traffic stream in the ring is equal
to the aggregate transmission time plus the queueing delay of
the low priority stream in the quene. Formulas for the sojourn
time are obtained for i.i.d. arrivals. The performance of CDF and
FIFO in continual operation is studied by simulation. It turns out
that the CDF, minimum delay policy for the evacuation, has the
worst performance in continual operation.

1. INTRODUCTION

HE RING is a fairly common communication network

architecture for local area networks (LAN) as well as
processor interconnection networks. As the transmission speed
increases, simultaneous transmissions in nonoverlapping seg-
ments of the network (spatial reuse) should be facilitated in
order to maintain certain levels of efficiency. Several new
ring architectures have been proposed in order to provide the
desired levels of spatial reuse. Those architectures include the
slotted ring, register insertion ring, etc., [3], [4], [8]. There has
been considerable activity lately on studying the stability and
the achievable throughput in these networks [6], {7], [12]. Our
goal in this paper is to study the interaction of different traffic
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streams and the effect on performance. We adopt a simple ring
network model that captures these interactions. The achievable
performance under different measures is investigated and
certain policies are identified in evacuation mode as well as
continual operation.

‘A unidirectional ring is considered with N nodes numbered
0,1,---,N — 1. Each node 7 may transmit to its downstream
neighbor i © 1' and receive from its upstream neighbor ¢ © 1
simultaneously. We assume that the packet length is fixed and
the actual transmission time plus the propagation delay and
communication startup overhead is equal to one time slot. The
slot length is the same for all nodes and they are synchronized
to begin transmission in the beginning of the slot. In one slot,
each node may transmit at most one packet to its immediate
downstream neighbor. A packet may be forwarded by one
hop per slot. A transmission scheduling policy determines the
transmission priorities at each node.

A number of packets z;; is Tesiding in node 7 at ¢ = 0 to be
delivered to node j. That is z = (z;;,,4,5 =0, - LN —1)is
the initial backlog vector. Let D" be the delivery time of the
ith packet under policy m when the initial state is = and there
are no further packet arrivals generated after ¢ = 0. When there
is no ambiguity, the superscripts z, 7 are dropped from the
notation later. The performance of the policy for the evacuation
of the network, is fully specified by the delivery time vector
D= = (DP™,i=1,-,K) where K = Y0 o' S0t ai
is the total number of packets in the system at ¢ = 0.

One performance measure associated with a scheduling
policy is the maximum delivery time

Viz,n) def _ maxK{Df’”}

=1,
which is also called schedule length, makespan or evacuation
time. The schedule length has been used widely to evaluate
the performance of communication algorithms in parallel
architectures. It is also referred to as the communication
complexity of the algorithm in this context.

Certain standard communication tasks that are considered
in the evaluation of the performance of communication algo-
rithms in parallel architectures, involve the minimization of
the evacuation time for certain types of initial conditions [1],
[2], [5], [10]. The scattering problem, as it is considered in [2],
[5], [10], is the evacuation of the network in minimum time
when only one node has packets at the beginning of time. The
gathering problem [2], [10] is the evacuation of the network
in minimum time when all packets in the network have a

1'We define i @ j = (i + j)modN and ¢ © j = (i — j)modN.
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L1~
Fig. 1. A ring network with 8 nodes is depicted. At each slot, each node ¢
may transmit at most one packet to its immediate downstream neighbor i @ 1.

common destination. The broadcasting problem, that is deliver
a message from node ¢ to every other node of the network,
is equivalent to the problem of node i sending a message to
itself, in the case of a unidirectional ring. The total exchange
problem is equivalent to having each node sending a packet
to every other node. A detailed account of all the different
communication tasks can be found in [2], [10].

In this paper, in addition to the evacuation time, we consider
another performance measure namely the average delay which
is defined as

1 K
D(.T,?T) déf —E ZD;-E’".
=1

Initially we focus on the evacuation problem where there is
an initial backlog and no new arrivals in the system. We show
that the FDF and CDF policies minimize the evacuation time
V(z,7) and average delay D(z,m) respectively, for every
initial state. Note that the FDF policy has been considered
in [10] for the scattering in a ring of processors. It was proven
that it is optimal for the scattering operation in [5] where its
complexity was also obtained.

Both the evacuation time and the average delay are sensible
performance measures for the evacuation operation. Further-
more, as it is demonstrated later, the policy that is optimal
with respect to one measure, may be suboptimal with respect
to the other, for certain initial conditions. Hence there is no
single policy that is optimal with respect to both measures for
all initial conditions.

The continual operation of the system, where packets are
generated in the nodes according to some arrival processes
during the operation of the system, is considered next. The
FDF policy is studied and it is shown that it retains its optimal
evacuation time in continual operation as well, in the sense
that it minimizes the fraction of time at which the ring is

nonempty. Regarding the evaluation of the performance of
FDF, we show that the average sojourn time of a source-
destination session in the ring is equal to the total transmission
time plus the average queueing delay experienced by a traffic
stream in an equivalent single server queue with priorities. This
result readily provides closed formulas for the sojourn times
in the case of i.i.d. arrivals, while it considerably facilitates the
performance evaluation for other arrival processes. The CDF
policy is studied by simulation. In addition to FDF and CDF,
the first in—first out (FIFO), first arrival-first out (FAFO) and
maximum sojourn—time first (MSTF) policies (to be defined
later) are studied by simulation.

The paper is organized as follows. In Section II the evac-
uation problem is considered and the FDF, CDF policies
are studied for this problem. In Section III the FDF policy
is considered in continual operation and some optimality
properties are identified. In Section IV, performance analysis
and comparisons of the CDF and the other policies are done.

II. OPTIMAL EVACUATION

The system starts from some initial state and there are no
further arrivals. The following two problems are considered.
* Minimum Evacuation Time: Find a scheduling policy
7™ that achieves minimum evacuation time for any initial
state x. That is,

41 1nin Viz,w).
™

Vizg,7*) = V(z)

* Minimum Delay: Find a scheduling policy =* that

achieves minimum average delay for any initial state
z. That is,

D(z,n*) = D(x) 4 min D(z, ).

A. Evacuation Time and FDF Scheduling

Consider the furthest destination first policy where every
node ¢ gives priority to the packet the destination of which is
furthest away from ¢ (the packet with the largest cumulative
remaining service time) among those residing in i. Packets
with the same destination are served arbitrarily.

Theorem 1: For any initial state x, the FDF policy mini-
mizes the evacuation time.

Proof: Theorem 1 follows from Theorem 4 which is a
more general result shown for the continual operation of the
system in Section III. Theorem 1 is stated separately here for
the sake of completeness. ]

If the ring has the cut-through capability, it has been
shown in [6] that the evacuation time is the same for every
work-conserving policy. The minimum evacuation time for
the cut-through case is certainly smaller than the store-and-
forward case considered here. The difference of the two
evacuation times though cannot be larger than a quantity which
is independent of the size of the backlog and depends only on
the number of nodes. This is a consequence of a more general
result shown in [11]. Hence, the evacuation time of any work
conserving policy becomes asymptotically optimal in the store-
and-forward case as well, when the backlog increases. It is
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Fig. 2. The node dj is the jth upstream node of ithat contains packets

waiting to cross 7 while d; @ 1 does not contain any such packet. The number
of packets in nodes d,- -, d3+1 @ 2 that need to cross ¢ is y;

worth noting at this point that the average delay may vary
for different work-conserving policies even if the ring has
cut-through capability.

The optimal evacuation time V (z), achieved under the FDF
policy, is obtained in the following. For every node 4 consider
all the packets that need to cross ¢ in order to reach their
destinations, or in other words all the packets with origin node
i © 1 and destination node : @ m, I > 0, m 2> 1 such that
m+1 < N —1 where N is the number of nodes in the ring.
When for every node i all such packets cross 4, the network is
clearly empty. We obtain first the time at which all packets that
need to cross some node i do so. Let dj- be the jth upstream
node of ¢ with the property that, at ¢ = 0, node d’ has a packet
that needs to cross ¢, while node d} @ 1 has no such packet. If
i is nonempty at ¢ = 0 then by definition d? = i. Assume that
there are k; such nodes. The notation is illustrated in Fig. 2.
Let yj- be the number -of packets that need to cross ¢ and at
t= 0 are residing in the nodes dj,d; © 1, - 4 B 2. Let
Vi be the time at which all those packets will cross node i.
The following lemma provides Vi,

Lemma I: The time Vi is equal to Vi where V},j =
1,---,k; are defined recursively as follows.

V=

vi=

(ied)+vi,

max{Vji_l,(iedé)}+y§-- qY)

Proof: Observe that under the FDF policy, any packet
that has to cross 4 to reach its destination, at every node before
i, has priority over any packet that does not have to cross %
to reach its destination. Hence, Viis equal to the evacuation
time of the tandem network obtained if we cut the ring just
after node 7 and we let in the initial state only those packets
of the ring that need to cross i. Note that the evacuation time
of the tandem is the same for all work-conserving policies.

Focusing on the tandem for node ¢ now, if we assume
that the packets are served FIFO, then Vj" is interpreted
as the time at which all the packets at the first j groups
of contiguous nonempty nodes, reach their destination. The
validity of formula (1) then follows inductively. Clearly the
relation for V; holds. The recursive formula for v} follows
if we observe that the last packet of group j will leave the
network yj- slots after the first packet of this group leaves the
network. The first packet of this group reaches node 1 after
traveling the distance of : © d;- links and after all the packets
in the group j — 1 leave the network, something that will
happen at time V]-i_l. Hence the last packet of group j will
reach the destination at time max{V;_y, (i © d})} + yi. W

The following theorem provides the optimal evacuation
time.
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Fig. 3. The initial conditions for Lemma 3.

Theorem 2: The optimal evacuation time V(z) from some
initial state T is

V(z)= max _I{Vi}.

=0+,
Proof: Note that at any time ¢ < V' there is some packet,
among those that need to cross 7 to reach their destination, that
has not crossed ¢ yet. Therefore

max

>
Viz) 2 i=0,---,N~1

{vi. ()
At any time t < V(z) there is some packet in the system
that hasn’t reached its destination yet. Hence there is a node 4
between its current node and its destination for which Vi > t.
Therefore it is not possible that

V(z) > (v} 3)

max
1=0,--,N—1

since in that case there would be a time ¢ such that t < V/(z),
¢t > max{V*} and this is a contradiction. u

B. Minimum Delay and CDF Scheduling

Consider the closest destination first policy where every
node i gives priority to the packet the destination of which
is closest to 4, among those packets residing at 7. Packets with
the same destination may be served arbitrarily.

Theorem 3: For any initial state z, the CDF policy mini-
mizes the average delay.

The proof of the theorem relies on the following lemma,
shown by an interchange argument.

Lemma 2: Assume that for some initial state zo and some
policy m, node ¢ at time ¢o does not follow CDF. There is a
policy 7' identical to 7 in the slots 1,---, %o, except that 7’
follows CDF at tg, such that

D(zo,7") < D(zg, 7). 4)

In the proof of the lemma we need an intermediate result
presented in the following. Consider two initial states i
and 5 that are identical except of the following. Nodes g
and i in state z; have packets R and G respectively, with
corresponding destinations r and g. Node 7 in z; has packet
R while packet G is not in the system. The order of the nodes
in the direction of the ring is ¢ — g — 7. The configuration
is depicted in Fig. 3. The following holds.
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Fig. 4. The configuration of the packet under policies = and #’ are depicted,
at some time slots.

Lemma 3: For any policy « there is a policy 7’ such that
when 7 acts on the ring with initial state z; and =’ acts on
the ring with initial state z» then the delivery times of the G
and R under the two policies are related as

D% = max{D% + (r o g), D§}. (5)

Furthermore the delivery times of all other packets under 7’ are
less than or equal to the delivery times of the corresponding
packets under .

Proof: The policy 7’ is constructed based on 7. Consider
first the nodes »,7r @ 1,---,g © 1. Every node among r,7 &
1,---,961 atevery slot ¢ transmits under 7, the packet that is
transmitted under 7, given that this packet is not G. If anyone
of the nodes r,r @ 1,---,9 © 1 transmits packet G under r,
then under «’ it transmits R. The construction of the schedule
for nodes g,g @ 1,---,7 © 1 is more elaborate as follows.

* Every node [ among g,g ® 1,---,r & 1 transmits under
« the same packet as under 7’ at every slot preceding the
slot at which node [ will transmit packet R under 7.

« If at slot ¢! node ! transmits R under 7 then under «’ it
will transmit the first packet (among those residing in !
at t!) that is going to leave the node under 7 after . If
under 7’ node [ is empty then it idles.

+ If at some slot ¢t > ¢! packet R arrives at node [ under 7’
then it is to be forwarded to the next node in the next slot.

* Atany slot ¢t > ¢! that node [ transmits some packet under
m, policy 7’ attempts to transmit the same packet. If that
packet does not reside at the node in the system under 7/,
then the packet that will leave first under 7 after ¢ (among
those that reside already in the node) is transmitted at ¢
under 7/, -

If 7’ is constructed as above there are two possibilities. At
some slot ¢ packets R under both policies will reside at the

same node ¢ among ¢g,g & 1,---,7 & 1 in which cases the
states match and

Dy = D5,

The other possibility is that after packet R under 7’ reaches
node g, it will be forwarded by one node per slot in which
case it will be delivered to r at slot

Dg+(rog).

Hence, the lemma follows. |
Proof of Lemma 2: The policy «’ will be constructed for
t > to such that (4) holds. -

Assume that according to CDF, node i should transmit at
time ¢o packet G with destination node g. Node ¢ either idles
at to under 7 or transmits another packet R, with destination
another node r which is further downstream from : than g is
from «.

If node 7 idles under 7 then the construction of «’ is easy.
Just let every node under n’ imitate the corresponding node
under 7 until the time node ¢ under 7 transmits packet G in
which case node i idles under 7’. At this slot the states of
the systems under the two policies, match and from this slot
onwards, we let 7’ be identical to . It is clear that (4) holds
either with equality or with strict inequality if it happens the
destination of packet G to be node ¢ @ 1.

When node ¢ transmits packet G at ty under , the config-
uration of the system state at £y is as depicted in Fig. 4(a).

Let ¢; be the time when packet R reaches node g under
7. In the time slots to + 1,---,%; let the transmissions of a
node under 7’ be identical with the transmissions of the same
node under 7 except if the node under n transmits packet G
or R in which case under 7’ it transmits R or G respectively.
Hence at slot ¢; packet G will reach its destination under =’/
and will leave the system. The configuration of the packets
will be as depicted in Fig. 4(b). From Lemma 3, the policy
7' can be constructed from time ¢; and onwards such that for
the delivery times of packet R under 7’ and of packets R, G
under 7 the relation (5) holds. Note that for all packets that
reached their destination until time ¢, the delivery times are
the same under 7 and 7. All packets other than G and R, that
reached their destination after ¢;, have delivery times under
7’ smaller than or equal to those under 7. From (5) and the
fact that packet GG under n’ reached its destination at ¢y, it
can be easily checked that for the delivery times of packet R
and G it holds

DE + D < Dy + DE.

Hence, the lemma follows. n

Proof of Theorem 3: From Lemma 3 we can easily see
that for any policy my we can construct a sequence of policies
7, ¢ = 1,2,--- such that

D(:Cvﬂ-i—f—l)SD(iL',ﬂ'i) 7,:0’1, (6)

and mgn acts identically to CDF at least during the first &
slots. Since the network will empty within a finite time, all
the policies 7; will be identical among themselves and with
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Fig. 5. An initial packet placement for which the FDF policy has strictly

larger average delay than the minimum achieved by CDF. For this initial
condition CDF has strictly suboptimal evacuation time.

CDF, for i > ig where g is an appropriately large integer.
The theorem follows then from relation (6). |

The CDF policy may be strictly suboptimal with respect
to the evacuation time while the FDF policy may be strictly
suboptimal regarding the average delay, as it is demonstrated
for the initial condition depicted in Fig. 5. For this initial
condition the delivery times under CDF are 1,1,2,2,3,3,6 and
the average delay is 2.57. The delivery times under FDF are
1,2,3,3,3,4,4 and the average delay is 2.857. Notice also that
the CDF has evacuation time equal to 6, which is strictly larger
than the optimally achievable one under FDF, which is equal
to 4.

III. THE FDF PoLICY IN CONTINUAL OPERATION

The minimum evacuation time property of the FDF policy
holds in a stronger sense than that implied by Theorem 1.
FDF evacuates the system in minimum time, even if there
are additional arrivals generated after time ¢t = 0. To express
this property in the generality that it holds we introduce the
following notion of domination.

A scheduling policy 7, dominates a policy 72, and it is
written as w; > o, if the system is empty under 71 at any
slot £ at which is empty under 72, for any initial condition and
arrival process common for both policies.

Theorem 4: The FDF policy dominates any other schedul-
ing policy .

FDF > .

The theorem relies on the following lemma that is proved
by an interchange argument.

Lemma 4: Consider an initial backlog state Zo, 2 sample
path of arrivals and assume that node 4 under policy = does
not follow FDF at some slot ¢o. There is a policy «’ which is
identical to 7 in the slots 1, - - -, to, except that under 7’ node
i acts like in FDF at to, such that if the system is empty at
any slot ¢t under 7 then it is empty under 7’ as well.

Proof: Clearly for all ¢, 1 < ¢ < to, the system is empty
under 7 only if it is empty under 7’. The policy n’ will be
constructed for ¢ > to such that the same holds for all t > o.
At time to, let R be the packet at node ¢ with the furthest
destination, 7. Under policy =’ packet R will be transmitted.
Under 7 node # either idles or transmits some packet G with
destination node g which is closer to ¢ than 7 is to 1.

If under 7 node i idles at to then ' is easy to construct.
Let every node under 7’ act similarly as under 7 at all ¢ > %o
except if at ¢ node ¢ under 7 transmits packet R in which case

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 5, OCTOBER 1995

Rl Ced Cr]

m O—0O oO—=0
o O
9 9
O t,

Fig. 6. The configuration under 7 and «' for the proof of Lemma 4 is
depicted.

under 7 it idles. After that time ¢ the state of the system under
the two policies matches. Note that if r = i@ 1, the system
may empty earlier under policy «’ than under 7.

If under 7 node i transmits packet G then the configuration
of the packets under 7 and x’ is as depicted in Fig. 6.

The policy n’ acts as follows for t greater than Zo.

« All nodes that are transmitting neither packet G nor
packet R under m are scheduled to do the same under
7.

« When a node transmits packet G or R under 7 it is
scheduled to transmit R or G, respectively, under .

« If at some time t' packets G and R reside in the same
node under 7 and 7’ then the states of the two systems
match and let 7’ be identical to 7 from this time onwards.
Otherwise let ¢; be the time at which packets G and R
under 7 and 7, respectively, reach node g.

« After time slot ¢; when a node transmits packet R under
7 it transmits packet G under 7/, until time ¢2 at which
packets G and R, under «’ and 7 respectively, reach node
g. Also packet R under 7' is not transmitted from time ¢;
until time ty. At time £o the states of the systems under
x and 7' match and the systems evolve identically.

Clearly the system is empty at ¢ > %o under 7 only if it is
empty under 7', |
Proof of Theorem 4: Given Lemma 4, the proof is simi-
lar to that of Theorem 3. |
Note that Theorem 1 follows readily from the fact that
FDF dominates any other policy in a system with no arrivals.
Also Theorem 4 implies that in two systems with that same
initial condition and arrival process, operated under FDF and 7
respectively, it holds that V/(£(t)) < V(=z(t)) for all ¢, where
4(t) and z(t) are the queue length vectors at t under FDF and
under the other policy, respectively. Furthermore, Theorem 4
implies that the FDF policy minimizes the busy cycle length
where as busy cycle we understand the time period between
two successive slots at which the ring is empty.

A. Sojourn Time Analysis of FDF

The long time average performance of FDF is analyzed
in this section. We refer to the traffic from a specific origin
node to a specific destination node as session in the following.
Usually the performance of a network is difficult to analyze
because as the traffic is forwarded from node to node, its
characteristics change in a manner that cannot be modeled
easily. When the relative priority of two sessions is the
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Fig. 7. A ring with 7 sessions is depicted.
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Fig. 8. . The notation for session 5 of the ring in Fig. 7 is illustrated.

same in all network nodes then the performance analysis is
considerably facilitated, even in arbitrary topology networks,
since the highest priority stream can be analyzed independently
from all the rest, the second highest priority stream can be
analyzed based on the performance of the higher priority
stream and independently of the rest lower priority streams
and so on. In the FDF policy the packets at each node are
served according to a fixed priority ordering. Even though the
priorities are fixed at each node, they are not fixed throughout
the network, and it is possible that the relative priorities of two
sessions alternate from node to node. Despite this fact, there
is a special version of FDF, that is analyzable. Consider the
FDFO policy which is similar to FDF except that the packets
with the same destination are given relative priorities based
on their origin. They are served furthest-origin-first. Due to a
local consistency property in the priority ordering under the
FDFO we are able to analyze its performance by identifying
an appropriate single server queue for each origin-destination
pair, such that the queueing delay of the session is the same
with the delay in the queue. We introduce some notation in
order to state the result.

Denote by o' and d' the origin and destination nodes of
session 1. Let u! be the furthest upstream node of node d',
from which originates some session that exits the network at
d' or transverses d*. Let finally S(I) be the set of sessions for
which one of the following holds : a) the session crosses node
d'; b) the session originates from a node in the segment of
the ring from u' to o' and terminates at d'. Note that S(I) by

7™
N

A'(1=3)+A (1-2)+A {-1)
A (t—I )

Fig. 9. The tandem and the equivalent node. The output processes of stream
5 in queue (b) and session 5 in the ring are identical.

{

definition contains exactly those sessions that may have higher
priority than [ at some node. The notation is illustrated in
Fig. 8. Let AY(t1,13) (or Al(tl, t2)) be the number of packets
of the session [ with origin node ¢ and destination node j,
that arrived in the network during the slots #;,¢; + 1, - -, ts;
let A¥(t) € Au ) Al © Al(t, ). Tt is assumed
that the arrival streams are ergodic and the arrival rate of
stream [ is denoted by a'. Traffic streams will be identified
with superscripts the origin-destination nodes or the session
symbols alternatively in the following. The departures from
link 7 are denoted by the binary variables D!(t), where D!(t)
is equal to 1 if at slot ¢ a packet of session [-is transmitted
by link ¢ and O otherwise. Associated with session [, consider
a queue with two arrival streams {A}(¢)}52, and {45(¢)}2,
which are as follows:

AL(t) = Alt—(d'eod)y+1) t>d'od
0 doo>t>0
= > A™(t—(deo™) +1).

meS(l)

The service discipline is work conserving with the stream

2 having strict priority over 1. Denote by D'(t) the binary
variables that represent the departures of stream {A4}(¢)}$2,
in the queue. Assume for simplicity that the ring as well as
the queue are initially empty. The following holds.

Theorem 5: The departures of stream 1 in the queue are
identical to the departures of session [ in the ring, that is

DYt)=DLi(t),t=1,---. )

If the average queueing delay of stream 1 in the single queue
exists and is equal to @', then the average sojourn time J* of
session ( exists as well and is

J'=Q '+ (d e o). (8)

Note that d' © o' is the number of hops from the origin to
the destination node of session [ and therefore the cumulative
transmission time for that session. Hence Q* is the cumulative
queueing delay experienced by session [ packets.

The proof of the theorem is based on the following fact.
For each traffic stream [ we identify a unidirectional tandem
network T" in which there is strict priority between the streams
and the traffic characteristic of session [ in the ring coincide
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Fig. 10. A two node tandem queueing system and the equivalent single
queue.

with those of a traffic session in the tandem. The tandem T"
has N + 1 nodes. The origin and the destination end nodes
correspond to node d' in the ring. The rest are in one-to-
one correspondence with the other nodes of the ring. All the
traffic exits the tandem at the destination end node. There
are two distinct traffic classes. Class 1 enters the network at
node o! and the arrival stream is identical to the arrival stream
of session [ in the ring. For class 2 there might be arrivals
potentially at any node of the tandem. The class 2 arrival
stream at node 4 is identical to-the aggregation of the arrival
streams of all sessions in S({) entering the network at node ¢,
excluding session [ if i = o'. Fig. 9(a) illustrates the tandem T*
for the session | = 5 in the ring of Fig. 7. The traffic of class 2
has strict priority over the traffic of class 1 at all nodes of the
tandem. The service is work conserving and arbitrary within
each class. Let {D;(t)}2, be the departure process of stream
1 from node i in the tandem. Then we have the following.
Lemma 5: For the streams [ in the ring and 1 in the tandem

it holds

Dy(t) = Di(t),t > 0,i =o', 0' ® 1,---,d' el

Proof: Observe that a session m in S(I) that enters the
ring in o™ has priority over any session not in S{I) at every
node m,m&1,---, d'. Furthermore the traffic of session [ has
lower priority than the traffic of any session m in S(l) at all
nodes o™, 0™ @1, -, d'. Therefore, as far as the session [ is
concerned, the ring is equivalent to the tandem. |

Corollary 1: The sojourn times of session [ in the ring and
1 in the tandem are the same.

The analysis of the sojourn times of session ! in the tandem
T is reduced to the analysis of a single queue by the repetitive
application of the reduction stated in Lemma 6. Consider the
two and one node queueing systems depicted in Fig. 10. The
packet length is fixed and the system is slotted. The streams
1 and 2 have strict service priority over the streams 3 and 4
both in (a) and (b). We have the following.

Lemma 6: The aggregate departure process of streams 1
and 2 in system (a) is identical with the aggregate departure
process of streams 1 and 2 in system (b). Similarly, for the
aggregate departure processes of the streams 3 and 4 in the
two systems.
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Fig. 11. Average queueing delay in a ring with 10 nodes, for A=0.01t
0.18 by 0.01. Input traffic and destinations are assumed to be Bernoulli and
uniformly distributed, respectively.

Proof: Since streams 1 and 2 have strict priority over 3
and 4, both the two node tandem in (a) and the queue in (b)
operate as if the streams 3 and 4 do not exist for the streams 1
and 2. It is argued that the downstream queue in (a) is empty
from packets of stream 1 or 2 if and only if the queue in (b)
is empty of packets from steam 1 or 2. If the queue in (b) is
empty from packets of streams 1 and 2, then the only packets
of streams 1 and 2 that may be present in the tandem are the
A;(t) packets arrived at slot ¢ and all those will be residing in
the upstream node. If the downstream queue in (a) is empty,
then all the packets of stream 1 arrived in the system until slot
t — 1 will be out of the system. Therefore the queue in (b)
will have no packets of stream 1 or 2. Because of the above,
the aggregate departure process of streams 1 and 2 in systems
(a) and (b) are identical.

For the streams 3 and 4, notice that if the downstream queue
in (a) and the queue in (b) are nonempty from packets of
streams 1 or 2 then clearly the aggregate departures of 3 and
4 is O at that slot in both system. If the downstream queue in
(a) and the queue in (b) are empty from stream 1 and 2 packets
then the queue in (b) has nonzero packets from streams 3 or 4
if and only if the downstream queue in system (a) has nonzero
packets of streams 3 or 4. Therefore there will be a stream 3
or 4 packet departure at system (a) if and only if there will be
a stream 3 or 4 departure at system (b). |

Proof of Theorem 5: By applying iteratively the reduc-
tion in Lemma 6 to the tandem associated with session !
we reduce the tandem to the equivalent queue of Theorem
5. Relation (7) is an immedijate consequence of Lemmas 5
and 6. For the relation (8) we argue as follows.
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The amount of packets J(t) of stream [ = (4,
in the system at the beginning of slot ¢ is

‘)= Al(r-1)= Di(r-1). )
r=1 =2

_ Consider the equivalent queue for stream [ and let Q' (t) be
the number of packets of the stream that corresponds to /.
Then we have

J) which are

t t
iy =Y Alr-1-> D'(r-1)
T=1 =0
t—(jOi)+1 t
= A(r—1) =Y Di(r-1). (10
=1 =0
From (9) and (10) we have that
t
JH=Qim+ > A(r-1). (11)

r=t—(j©1)

From Little’s Law, we have that the average sojourn time J'
of session ! is

- [
e Y a2
From (11) we have
1 t 1 t 1 t T
;E Jl(T)=;E Qll(T)‘*‘ZE >, An-1)
=1 T=1 T=1n=1—(j61)
and from (12)
1 1
U _ : !
J —mri.zz;@l( )+
1 1 t T
!
Zl—ltli»rgof E E A(n—1) (13)

Note that the first term of the sum in the right side of (13)
is the average waiting time in the equivalent system, that is
the queueing delay Q' plus 1. The second term, given the
existence of average rates of the arrival processes, is equal to
7 © 1 — 1. Hence the theorem follows from (13). |

IV. PERFORMANCE ANALYSIS IN CONTINUAL OPERATION

The performance of CDF was studied by simulation. In
addition to CDF, three other policies were considered; the
FIFO,FAFO and MSTF. In the FIFO policy, each node 3
applies the first in—first out rule locally, based on the arrival
times of the packets at node 7. In FAFO each node ¢ applies
the first in—first out rule based on the arrival time of the
packets at the ring and not at . In MSTF an estimated sojourn
time is considered and is given priority to the packet with the
largest estimated sojourn time. The estimated sojourn time for
a packet is taken to be the remaining cumulative transmission
time (the number of hops to the destination from the current
node) plus the elapsed time since the arrival of the packet at
the ring. Three different types of arrivals were considered.
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Fig. 12. Average queueing delay in a ring with 10 nodes, for A = 0.01 to
0.15 by 0.01. Input traffic and output nodes are assumed to be on-off bursty
with average burst length 30 and uniformly distributed, respectively.

In one case we had Bernoulli aggregate arrival process at
each node and the destination of each packet were random
with uniform distributions. The average packet delay, that
is the end-to-end sojourn time minus the transmission time
is depicted in Fig. 11. In Fig. 12 we see the delay for on-
off binary arrivals process at each node with average burst
length 30. Finally we considered the case where each origin-
destination session had its own Bernoulli arrival process and
the delay is depicted in Fig. 13. In the last case a formula can
be obtained for the delay based on the equivalent queue result
of Theorem 8. For a session (§ 61, j) the equivalent queue has
two traffic streams. One is the aggregation of (N2 — N —21)/2
independent Bernoulli streams with rate ¢ and the other is a
Bemoulli stream with rate ¢q. By using z-transforms [9] we
can obtain the delay of a discrete time queue with M identical
Bernoulli processes of rate ¢ which is

—. (M ~1)q
W= =g

(14)
Since the stream 1 has priority over stream 2 the average delay
W, for stream 1 is given from (14) for M = (N2 - N —2i)/2
while the average delay W> of all traffic is given by (14) for
M =1+ (N% - N — 2i)/2. Hence, the average delay W of
stream 2 is
W = (N? =N = 2i)(Wy — W1)/2 + W1.

Note that the CDF policy, which minimizes the average delay
when there are no arrivals, loses this property in continual
operation. The FIFO,FAFO and MSTF have approximately
the same performance, better than both CDF and FDF.
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