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Optimal Anticipative Scheduling with
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Abstract— Service is provided to a set of parallel queues by
a single server. The service of queue ¢ may be initiated only at
certain time instances {t}, }7°= ; that constitute the connectivity
instances for queue i. The service of different customers cannot
overlap. Scheduling is required to resolve potential contention
of services initiated at closely spaced, closer than the service
time, connectivity instances. At any time ¢, the future connectivity
instances are available for scheduling. An anticipative policy is
given, which at time ¢ schedules the transmissions until a certain
future time ¢ + h. The length of the scheduling horizon h is
selected based on the backlog att. The allocation of the server
in the interval [t, £ + k], is done in accordance to the backlogs of
the individual queues at ¢. The throughput region of the system is
characterized, and it is shown that the policy we propose achieves
maximum throughput. The policy has a low implementation
complexity which is bounded for all the achievable throughput
vectors. The average delay and the scheduling complexity are
studied by simulation, and the trade-off between the two is
demonstrated. The above scheduling problem arises in the access
layer of the cross-links of a satellite network.

1. INTRODUCTION

queueing model suitable for communication networks

with asynchronous transmissions is considered. M par-
allel queues receive service from a single server. The service
times are deterministic and equal to 7 for all queues. The
service of a queue can be initiated only at the connectivity
time instances of the queue. The connectivity instances may
differ from queue to queue, and they are arbitrary in gen-
eral. The connectivity instances for queue 4 are represented
by a nondecreasing sequence {t!}%° ;. The aggregation of
the above individual sequences of connectivity instances is
represented by the sequence {(t,, i,)}5%; of pairs of random
variables, where {¢,,}52.; is the superposition of the sequences
{tiyoo -+ {tM}2, and 4, n = 1,2, -+ is a sequence
of M-valued random variables that represent the type of the
connectivity times (the queue that may receive service). The
service of different packets cannot overlap in time. There-
fore scheduling is required to resolve potential contention
of transmissions initiated at closely spaced (closer than 7)
connectivity instances and eliminate transmission overlaps in
time. A system with three queues is illustrated in Fig. 1.
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Fig. 1. (a) A single server with three queues. (b) The connectivity instances
for each queue. Each possible service is represented by a triangular pulse
of width 7, where the height at any given time is the residual time for that
packet. (¢) Aggregate connectivity process.

A special case of the above model is when the connectivity
instances are synchronized to occur only at the beginning of
slots of duration 7, or in other words when for every n, £
we have [t, — tg] = {7 for some [ = 0, 1,---. This case
has been considered in [8] and [7], and it will be referred
to as the synchronous case here. In the synchronous case the
services at different slots do not overlap and can be scheduled
independently. The issue is how to schedule the server in every
slot such that a sufficient fraction of the server capacity is
provided at each queue at the slots that the queue may receive
service. In [8] a maximum throughput allocation policy was
given for the single server system, and in [7] a network with
changing topology and synchronized connectivity instances
was studied. The maximum throughoutput policy was schedul-
ing the services at every slot based on the connectivity process
and the state of the system at that slot only. This is not the
case for asynchronous connectivity processes.

Carr and Hajek [3] considered the asynchronous system.
They studied several scheduling schemes ranging from simple
greedy policies that allocate the server to the first available
connectivity instance to more sophisticated schemes that take
the future of the connectivity process under consideration.
The throughput of all the different scheduling schemes was
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evaluated for connectivity processes of Poisson type. It was
demonstrated that due to the potential partial overlap of
services at different connectivity instances in the asynchronous
case, it is possible to improve the throughput compared to what
is achievable by strictly nonanticipative policies, if the services
in longer time intervals are scheduled jointly.

In this paper we propose a class of optimal policies, the
anticipative adaptive horizon (AAH) policies, for the asyn-
chronous system. Two issues arise in the scheduling of such a
system. One is the selection of a sufficiently long scheduling
horizon to sustain the traffic load. The other is the allocation
of the service capacity to the different queues in a fair
manner, in accordance to the loading of the queues. The
AAH policy determines the scheduling horizon and the server
allocation adaptively, and it achieves maximum throughput.
The transmissions are scheduled in cycles. The cycle length is
an increasing function of the system backlog at the beginning
of the cycle which reflects the traffic load. The transmissions
are selected such that the weighted throughput in the cycle is
maximized, where the weights are equal to the queue lengths
in the beginning of the cycle. The scheduling of a cycle is
based on the solution of a maximum weighted independent set
problem on a colored interval graph that sufficiently represents
the connectivity process during the cycle. Unlike the case of
general graphs, the computation of the maximum independent
set problem on interval graphs can be done in polynomial time

‘and the AAH policy is efficient. The system is studied for
Poisson exogeneous arrivals. It is shown that the AAH policy
maximizes the long-term throughput for Poisson and periodic
connectivity processes. The performance of the policy and the
average scheduling complexity are studied by simulation. It
is shown that by adjusting certain parameters of the policy,
toward increasing the scheduling horizon, the average delay
decreases while the scheduling complexity increases.

The asynchronous transmissions scheduling problem arises
in the access layer of the cross-links of satellite networks.
Packet-switched satellite networks have been studied exten-
sively, initially as highly survivable communication systems at
periods of crisis and more recently as the natural solution for
providing globe wide wireless communication services. There
are several proposals [2], {5], {6] that involve large number
(60-240), low altitude (400 miles) satellites for providing
global coverage and/or survivability. The satellite cross-link
distances are up to 3300 nmi, and the average link lifetime
is approximately 7 min. The primary problem in such a
system is to find a resource efficient solution to the multiple
access/multiple resource capacity allocation required among
the satellites. In similar systems, most protocols resolve time
overlaps by allowing contention to occur at the receiving end
of links, resulting in wasted transmissions. But due to power
limitations and to the fact that propagation delay between
neighboring satellites is quite large, on the order of hundreds
of packet durations, the above-mentioned protocols are not ap-
plicable to satellite networks. An efficient scheduling scheme
should minimize, if not eliminate, wasteful transmissions.

An approach to scheduling transmissions called pseudo-
random scheduling (PRS) was introduced by Binder et al. [2].
A related protocol called adaptive receive node scheduling
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(ARNS) protocol was introduced by Kosowsky et al. [4]. A
key aspect of such an approach is that the synchronization
problem is solved locally by providing each satellite with a
schedule for each of its neighboring satellite receivers. This
means that each satellite uses a pseudorandom sequence which
dictates when it will listen for packet transmissions from each
of its neighboring satellites. Moreover, the times when a satel-
lite is in listen mode are composed of nonoverlapping periods,
with the length of each being the time needed to receive a
packet. During each period the satellite is assigned exactly
one neighbor to listen to, according to its pseudorandom
sequence. Therefore, contention is resolved by the division
and assignment of satellite’s receive time, such that no two
satellites ever try to transmit to the same node at the same
time.

During the transmit state, a satellite examines the neighbor’s
sequences and searches for any receive slots. Since the satellite
knows the pseudorandom sequences of its neighbors (which
means that it knows the times that each of its neighbors will
be listening to it) and can calculate the propagation delay to
each of its neighbors, it can easily determine when it has
opportunities to send to each of its neighbors. Every node
merges the transmission opportunities from all of its links
(since each link is synchronized independently), and therefore
two or more transmission opportunities may overlap. If no
transmit or receive opportunity exists for a satellite, a satellite
may use this time to schedule communications with terminals:
If a transmit opportunity exists, but a satellite has no traffic in
its queue for that neighbor, then this idle time can be used to
scan for new satellites or terminals.

In such an environment we need to consider methods for a
satellite to schedule packet transmissions to neighboring satel-
lites that eliminate transmission overlaps in time and maximize
the throughput. A satellite in transmit mode corresponds to the
server of our queueing network model while the neighbors
of the satellite correspond to the different parallel queues.
The beginning of a transmission opportunity to a neighbor
represents the connectivity time instance of the corresponding
queue.

This paper is organized as follows. In Section IT we specify
the class of scheduling policies that we consider and the
throughput region of the system. In Section III we specify the
class of AAH policies. In Section IV we study the stability of
AAH policies for Poisson connectivity process and in Section
V for periodic. In Section VI we discuss the complexity of
the policy, and we propose a modification. In Section VII the
delay and the scheduling complexity are studied by simulation.
In Section VIII there is some discussion of the results, and a
few open problems are mentioned.

II. SCHEDULING POLICIES AND THROUGHPUT REGIONS

A scheduling policy resolves possible contention of services
initiated at connectivity instances which are closer than a
packet transmission time. In general, scheduling policy is
any random subsequence {(t,, in;)}$2; of the connectivity
process such that |t,,.,, —tn,| > 7 with probability one, where
t’njs are the service instances scheduled by the policy. Let £
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{(41,2),(13,2),(14,3),(16,3)}
{(t1,2),(13,2),(t4,3),(t7.2)}
{(t1,2),(13,2),{t5,1)}
{(12,1),(t4,3),(t6,3)}
{(+2,1),(t5,1)}

$1=(0,2,2)
$2=(0,3,1)
$3=(1,2,0)
$4=(1,0,2)
$5=(2,0,0)

()

Fig. 2. (a) Aggregate connectivity process for M = 3 queues. (b) The
corresponding colored interval graph. (c) Some independent sets of the colored
interval graph and the corresponding service vectors.

be the class of all scheduling policies. By ST (¢1, t2) we denote
the number of services to queue % that are scheduled to initiate
during the interval [t1, t2 — 7) and therefore finish before ta,
under policy m. Define SF(t) = ST(0, ¢). Let also S™(t1, t2)
and S™(t) be the corresponding service vectors. The effect of
the scheduling during an interval (¢1, t2) on the throughput
of the system is completely represented by the corresponding
service vector for that interval. The collection of all possible
service vectors represents all the different scheduling options
for that interval; scheduling amounts to selecting one such
vector.

The collection of all feasible service vectors in the interval
[t1, t2) can be sufficiently represented in terms of the colored
interval graph that corresponds to that interval, which is
denoted by G(t1, t2). This graph contains one node for each
connectivity instance in the interval [t1, to — 7). The node
(tn, in) is colored by in, the type of the connectivity instance
tn. Two nodes (t,, in) and (t, ix) of the graph are adjacent
if and only if the difference of the corresponding connectivity
instances is smaller than 7, that is if |t, — tx| < 7. The
collection of all service vectors S™(¢1, t2), # € L corresponds
to the collection of independent sets of the colored interval
graph G(t1, t2). An independent set of the graph G(t1, t2)
is any subset of its nodes which contains only pairwise
nonadjacent nodes, that is any subset of nodes with no two
nodes in the set connected by an edge in G(¢1, t2). One
feasible service vector corresponds to each independent set.
The number of type-i nodes of the independent set is equal to
the ith element ST (¢1, t2) of S™(¢1, t2). The collection of all
service vectors associated, in the above sense, with a graph G
is denoted by S¢. These entities are illustrated in Fig. 2.

Note that the graph G(t;, t2) depends on the connectivity
process and is therefore a random object. Let H(t1, t2) be
the collection of all possible colored interval graphs that may
arise in the interval [t;, t2). By convention we denote G(0, t)
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and H(0, t) by G(t) and H(t), respectively. The probability
that the colored interval graph G(¢) is equal to G € H(t) is
denoted as

pC(t) = Pr{G(t) = G}, G € H(t).

The above probability distribution is implied by the statistics
of the connectivity process.

A. System Throughput Region

Assume that an actual packet is served at each time instant
scheduled by the policy such that the server finds no empty
queue. The expected potential throughput vector during the
interval [t1, t2) under policy = € £ is defined as

A (ty, t2) =

Pa— E[S™(ty, t2)].
In continual operation, when packets continuously arrive in the
system and the queues may be empty when they are scheduled
for service, A™(t;, t2) may be viewed as an upper bound to
the achievable throughput. By convention we denote A™(0, t)
by A™(t). The region of the achievable throughput vectors in
the interval [t;, t2) is defined as

A(tl, tg) = {/\W(tl, tg): T e [:}

and we denote A(0, t) by A(t).
A useful representation of the achievable throughput vectors
in the interval [0, t) is provided by the following theorem. ’
Theorem 1: A throughput vector A belongs to the region
A(t) if and only if there exist vectors A% in the convex hull
co (S%) of SC, for all G € H(t), such that

— 1 G, G
A= > A%p%(). (1)
GEeH(t)

Proof: The necessity is shown first. Assume that there is
a policy in £ which achieves throughput vector A in interval
[0, t). By using the definition of X conditioning on G(t) we get

x= 2 EIS()] = § BIEIS®) | G(t) = G

23 SPWEISE 6 = Gl @

GeH(t)

Notice that S(¢) is a random vector that takes values in SG
and hence clearly the vector A¢ = E[S(t)/G(t) = G] belongs
to the convex hull of S¢ and the necessity follows from (2).

For the sufficiency assume that A can be expressed as in (1).
Note that since A in (1) belongs to co(S¢) we can express
it as the following convex combination

/\G:ZBESGGSQ, a® >0, and Zafgl.

Consider the randomized policy that schedules a vector e € S G
with probability equal to the corresponding coefficient al
involved in the expression of A%, when G(t) = G. It can
be easily seen that the throughput vector achieved by such a
policy is equal to A. O

For deterministic connectivity processes, the following
corollary follows easily from Theorem 1.
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Corollary 1: If the connectivity process is deterministic
then

tA(t) = co(§FM®)

where tA(t) is the set that contains the elements of A(¢)
multiplied by ¢. O

The system throughput region contains all the throughput
vectors achievable during a long run operation of the system.
It is defined as

A = limsup A(?).

t—oco

Explicit characterization of A is not always possible and
depends on the statistics of the connectivity processes. The
difficulty in obtaining such characterization is due to the fact
that, in general, there might be indefinitely long sequences of
connectivity instances which are dependent in the sense that
services at successive instances overlap. An important special
case of connectivity processes for which the characterization
of A is fairly simple is for deterministic periodic processes.
Consider a connectivity process for which there is an integer
k > 0and T > 0 such that for every n

btk = tn + T, tnek = &, and

bikvr —te >7 1=1,2,---

It is not difficult to show that in this case the system through-
put region coincides with the region of throughput vectors
achievable in one period and from Corollary 1 we get

A= %co(SG(T))

where £ co(ST)) is the set that contains the elements of
co(SET)) multiplied by (1/T). It was assumed above for
simplicity that t; = 0. 7

Due to the asynchronous nature of the connectivity in-
stances, the service schedules in consecutive intervals [¢1, t2)
and [tz, t3) may be interdependent since the last service
scheduled in the first interval may conflict with the first
service scheduled in the second interval. Considering the
whole interval [¢1, t3) for scheduling instead of the intervals
[t1, t2) and [to, t3) disjointly will lead to more feasible
options in allocating the server, consequently increasing the
throughput. In other words, the collection S¢(¢1:t3) of all
service vectors in the interval [t1, ¢3) is strictly larger in
general than the collection of all service vectors which are
sums of any two service vectors from SE{t1:t2) and §G(t2:ts)
respectively. In general the longer future time horizon we are
considering in scheduling services at the present, the larger
the throughput that can be achieved. When the system is
heavily loaded, that is when the throughput vector is close
to the boundary of A, then long time horizons should be
considered for scheduling. After the appropriate horizon is
selected, then there is the issue of how to select the service
vector such that sufficient fractions of the service capacity are
allocated to the individual queues. Unless there is an explicit
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characterization of the throughput region, it is not possible
to determine either how heavily loaded the system is or how
to achieve the desirable allocation fractions. In the following
we present an adaptive policy that resolves both issues and
achieves maximum throughput.

III. ANTICIPATIVE POLICIES WITH
ADAPTIVE SCHEDULING HORIZON

We consider the system with exogenous arrivals where
packets arrive at each queue ¢ according to a Poisson process
of rate A;. Without loss of generality, assume A; > 0,
1 = 1,---, M. The connectivity instances at each queue
are assumed to occur with rate ;. The adaptive scheduling
policies operate in cycles, and the scheduling in each cycle
is done independently. The kth cycle lasts from time 7% to
Tk+1 = Tk + hi, where by hy we denote the scheduling
horizon in the kth cycle. The parameter hj, changes from cycle
to cycle. The length of the scheduling interval is determined
at the beginning of the interval based on the length of the
queues at that time. Denote by X = {X(¢), ¢ > 0} the queue
length process, where X (¢) = (X1(t), -+, Xa(t)) and X; (%)
is the number of packets of queue 7 at time ¢. The horizon
hy is hx = g(X (7)), where g: Z¥ — R*. The function g
distinguishes the different scheduling policies. It should satisfy
the following properties for the policy to have the desirable
throughput properties

9(X(®))

Iim — 2 = lim
X ®)ll—oo | X (&)l

X(t)) =00. (3)
1X (£} }—o0 9(x(®)
To avoid trivialities we also assume that g(z) > 0 forz € Z¥.
Within a scheduling interval [y, Txy1), the service vector
S(k) selected by the policy is such that
S(k) = arg

max {X(m)S}. )]

5SSk TR+1)

This means that the service vector S(k) is selected such that
the weighted throughput of the system in the corresponding
scheduling interval is maximized, where the weights of the
services of each queue are equal to the individual queue
lengths at the beginning of the scheduling interval. Note that a
service vector S(k) is not always realizable since it is possible
that the number of services S;(k) for queue 1 is larger than the
number of packets that will be available at that queue during
the interval [7%, Tk+1). If we denote by R;(k) the number of
actual services provided in the interval [, T¢1) then we have

R(k) > min {S(k), X (%)} 5

where R(k) = (Ri(k),---, Rps(k)) and the min is applied
componentwise. Some complexity issues regarding the com-
putation of the service vector are discussed in Section VI. The
number of packets at queue ¢ evolves with time according to
the following equation )

Xi(ts) = Xi(mr-1) — Ri(k) + Ai(k) 6)
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where by A;(k) we denote the number of packets that arrived
in queue 4 during the kth cycle. For Poisson and deterministic
periodic connectivity processes, the AAH policy achieves
maximum throughput in the sense that guarantees stability of
the system for any arrival rate vector in the interior of A.

IV. PoissON CONNECTIVITY PROCESSES

Assume that the process of connectivity time instances is
Poisson and independent of the process of indicator variables
that indicate the type of the connectivities; the latter process is
assumed to be independent and identically distributed (i.i.d.).
The AAH policy achieves maximum throughput in the fol-
lowing sense.

Theorem 2: If an arrival vector ) belongs to the interior of
the system throughput region A, then under policy AAH the
queue length process converges in distribution to a random
vector X such that

EX < . O

The proof of the theorem is preceded by some preliminary
results. We first consider the process {X(7x)}32,, where
X (%) = (X1(7%), -+, Xm(7x)), of the queue length vectors
observed at the beginning of the scheduling cycles and prove
some results regarding the steady state moments of X, as
stated in the following Theorem 3. Then we turn cur attention
to the process {X(t),t > 0} and using the regenerative
approach ([1]), we conclude Theorem 2.

Theorem 3: The process { X (%)} 72, is an irreducible ape-
riodic positive recurrent Markov chain. Under the stationary
distribution it holds

E[IX () llg(X (7))] < oo. M

O

The proof of Theorem 3 is done by drift analysis of a
quadratic Lyapunov function and relies on the following result
from Tweedie [9], which we present here in a form appropriate
for the problem under consideration.

Theorem 4 (Tweedie): Suppose that {X,}32; is an aperi-
odic and irreducible Markov chain with countable state-space
X.Let V(z), f(z) be nonnegative real functions on the state
space. If A is a finite set such that V(z) > f(z) > v > 0,
r € A°

EV(Xy)| X1 =a]<o0, €A
and for some ¢ > 0
E[V(Xo) = V(X1) | X1 = 2] < —ef(x), z€A°

then the Markov chain is ergodic and
Ef(X) < o0

where X has the steady state distribution of the Markov chain
{Xa}ozy 0

The drift condition proved in the following lemma is crucial
for the application of Theorem 4.
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Lemma 1: If an arrival rate vector A belongs tu interior of
the system throughput region A, then for a fixed € > 0 there
exists a number b such that

E[V(X(rr+1)) = V(X (7)) | X (1)}
< —el| X (me)llg(X(mx)), if V(X(7))>b (8
where V(z) = ., 7.

Proof: We can write

E[V(X(7k41)) ~ V(X (1)) | X (7&)]

M M

> XH(rk4) - ZXE(Tk) | X(Tk)]

i=1

ZX2 Tk) } 9)

The first term of the right-hand side of (9) can be written

M
B> X3 (mi) IX(m}

i=1

=F

M
= El:ZX ’T'k+1) | X Tk)

i=1

M

> (Xi(me) = Ri(k) + Au(k))? | X(Tk)}

i=1

M
=E ZX;"(@)}

(Ai(k) = Ri(K))* | X(Tk)}

=F

+FE

T

i=1
M
+E 22 Xi(mi)(Ai(k) — Ri(K)) | X(Tk)}
M = M
= B> XXm)| + E|> (Auk) — Ri(k))* | X(rk)}
=1 i=1
+ E[2X (1:)(A(k) = R(K)) | X (7%)]. (10)

The second term of (10) can be bounded as

M

> (Ak) -
= M

< Z E[A%(k)
The third term of (10) is rewritten as

E[2X (7)(A(k) — R(k)) | X (7&)]
= 2X (1) Mg — 2E[X () R(K) | X (7%)]
= 2X (1)6hiA — 2E[X (1) R(k) | X (7x)]
+2X (7)1 — 8)heA
= 2X(7)6heA — 2E[S(k)
+2X (1)1 — 6)heA
+ 2E[X (me)(S(k) —

E Ri(k))” | X(Tk)}

)| X ()] +ZER2 (k) | X(me)]. (1D

=1

X(me) | X (7))

R(k)) | X ()] (12)

where § > 1 is selected such that § belongs to the interior
of A. Note that since A belongs to the interior of A, a number
§ as above always exists.
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The scheduling interval hy can be expressed as

hr = mfB3+7y, where mz{%J and y = hg —mpf

where the parameter 3 is to be selected later. Denote by F(5)
the service vector chosen in the interval [t + 73, 7 + (7 +
1)3), j = 0,---,m — 1, such that the weighted throughput
X(m¢)FL(B) in that interval is maximized. Similarly Fi(y)
denotes the corresponding service vector in the remaining
interval of y time units. Note that F}/ 7(8) and Fy(y) are random
variables. Then clearly the followmg holds

m—1
2E[X (1x)8(k) | X(m)] > 2 X(n)E[FL(8) | X(7)]
7=0
+2X Tk E[Fk ]X(Tk)] (13)

The following difference that is involved in relation (12) can
be upper bounded as

X (1) A = 2E[S(K)X (&) | X ()]
< 2X(m)éhed — 2 X () E[FL(B) | X (74)]
3=0
= 2X(e) E[Fr(y) | X(7s)]
X ()8 /\mﬂ—2z X(r)E[FL(8) | X ()]
1=0
+ 2X (1%)6Ay — 2X (1) E[Fr(y) | X(7%)]
=N+ N (14)
where
m—1
N = 2X(r)8Amf — 2 X(r)E[FJ(8) | X(r)] (15)
j=0
and

N’ =2X(1)6Ay — 2X () E[Fi(y) | X()].  (16)

In the following we found upper bounds for the differences N
and N'. The difference N can be written as

N = Z N; (17)
71=0
where
N; = 2X(1)8A8 — 2X (m)E[FL(B) | X ()], (18)

Recall that § has been selected such that dA belongs to the
interior of throughput region A. Therefore there exist some ¢
such that ) belongs to the region A(t). Taking 8 equal to
that ¢, according to Theorem 1 we can write

A== S pSBC

(19)
g GeH(B)

where A% € co(S€).
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Since A6 € co(S¥) we can express it as the following
convex combination

G el G G
AV = e € a;, >0, and Zae <1
e€SC

where by e we denote a service vector associated with graph
G. Therefore N; can be written as

;=2 Z z al X (mp)e

GeH(B e€S%
- QX(Tk)E[Fé( ) | X ()]

=2 Z G(8) Z aC X (1p)e

GeH(B) e€SG
-2 Z X(Tk
GeH(B)
E[F{(8)]| X(x), G(8) = G
=2 Z (Z al X (i )e
GEH(B) ecSG
— X(m) E[FL(B) | X(7e), G(B) = G])- 20)

Since the transmissions in the interval of 3 time units are
chosen such that the expression X (73)F} () is maximized,
then the last term of (20) is greater than or equal to every
term of the form X (7 )e. Moreover since ), go af < 1and

ZG&H(/B = 1 we can easily conclude that N; < 0, for
j=0,- — 1. From this result and from relatlon (17) we
get that

N <0. Q2n

As we see from relation (16) we can easily bound the differ-
ence N’ as follows

N < dfj X (i)

where d is a constant that depends on the arrival process.
Now let us consider the last term of relation (12).
From the definition of R;(k) we have that R;(k) > min
{S;(k), X;(rx)}. We distinguish the following two cases.
First, if S;(k) < X;(rx) then R;(k) = S;(k) and therefore
we have that S;(k) — R;(k) = 0. Second, if X;(7x) < S;(k)
then we must notice that always S;(k) < hg/7 and therefore
X; (1) < hi/7. Moreover the difference S;(k) — R;(k) can
be bounded by hy /7. Therefore in any case we may write

E[X(m)(S(k) — R(k)) | X(7&)]

M

ZXi(Tk)<S (k) = Ri(k)) | X(Tk)}
< M(T) .

Substituting relations (14), (21), (22), and (23) in (12) we get
the following

E[2X ()(A(k) =

(22)

=F

(23)

R(k)) | X (7)) )
< 2X(m)(1 — §)Ahi + 2M(%> FdX ()l (24)
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Now using relations (10), (11), and (24) in (9) we get
E[V( (Te+1)) = V(X(7%)) | X(Tk)]

<ZE[A2 ) | X ()] +ZER2 (k) | X (7))

=1

2
+ 2X (1) (1 = 6) by + dl| X ()| + 2M(h—’°>

M i 2 hi
<SS AR+ M)+ | — ) +2M

oot am+ () ean(2)
+ 2(1 = §)AX (k)b + dI| X (72) ]

_Z /\22

n 2(1 = 6)AX ()g(X (7))

) + Xig(X (7)) + dll X ()]

(2M+1)( (Xiﬂc))>
M
2 7'
= || X (m)lg(X [Z/\ X (e +
AN M1 (g(X(n)
" ; Xl T ( ||X<m>n>
_ /\X(’Tk)
2l ‘”nX(m)n}' @5)

As || X (7i)]| increases, the first, second, third, and fourth terms
in the brackets in (25) become very small and converge to zero,
because g( ) satisfies condition (3). The last term in brackets
is negative since 6 > 1 and also holds that

lim sup AX(7E)
cmoollX(rlze X (TE)l

) >

Therefore there exists b large enough such that if V(X (7
b we get

E[V(X(re1)) = V(X (1) | X (1)) < =€l X () llg(X (%))

which completes the proof of Lemma 1. O
Proof of Theorem 3: Under the statistical assumptions
on packet arrival and connnectivity processes we mentioned
above, the queue length process X = {X (7%)}52, is a Markov
chain with state space X = Z*. Also under policy AAH X is
clearly irreducible and aperiodic. We use Theorem 4 to show
the ergodicity of the Markov chain X and prove the result of
Theorem 3.
Consider the function V defined in Lemma 1. Notice that
the set A, = {z: V(z) < b, z € ZM} is finite for all b. For
all z € A, we can easily conclude that

EV(X(1k41)) | X(1%) = x] < 0. (26)
From Lemma 1 we get
EV(X(res1)) = V(X(70)) | X(7k) = 2]
< =€l X(m)llg(X (), if =€ Ay @27

From relations (26) and (27), based on Theorem 4 we conclude
the proof of Theorem 3. a
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Based on Theorem 3 we proceed now to prove Theorem
2. Some definitions and intermediate results are needed. Let
X (m1) = 0 and define the stopping times 6. Consider §; = 1
and then

:inf{n>0k:

X(ra) = 0}.

That is 7, are the times at which X = {X(7,)}32; hits zero.
We can easily prove the following lemma.
Lemma 2:

Or+1

82—1

> X(Tn)g(X(Tn))} < 0.

n=1

E

Proof: Let dg = 041 — 8. From the ergodicity and the
positive recurrence of X(7,) we have: Ed; < oc. Observe
that {X(7,)}32, is regenerative with respect to the renewal
sequence {6x}32 ;. From the regenerative theorem, Asmussen
[1], we have

B[S0 X (ra)g(X ()]

Ed, (28)

E[X(a)g(X(m))] =

From relation (28), the fact that Fd; < oo and Theorem 3 the
lemma follows. ]
Now we turn our attention to the process {X(¢), ¢ > 0}.

~ Using the regenerative approach ([1]) we conclude the proof

of Theorem 2 and establish the stability of this process under
policy AAH.

Proof of Theorem 2:  Consider the times T, k =1, 2,---
defined as Tp = 7g,. That is T is the beginning of a
scheduling cycle at which the system is empty. Note that the
sequence {T%}32, is a renewal process and the queue length
process {X(t),t > 0} is regenerative with respect to this.
Define: Dy = Tx 41 — Tk. From Lemma 2 we get

;-1

> g(X(Tn))] < 0.

n=1

ED,=E 29)

From the regenerative theorem ([1]) we have that the limiting
distribution of {X(¢),t > 0} exists and for X distributed
according to this limiting distribution

EX———————E[T ()dt} 30
= 7D, . (30)
To prove that
EX < (31)
it is enough to show that
T
E X(t) dt] < 00 (32)
T
Observe that we can write
Ty N 6:—1
E X(t)dt| < E Z (X(Tk)'f'A(hk))hk:i (33)
Et k=1
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where hy = 7,41 — 7. From Lemma 2 we have that

—92—-1
E| Y X(mo)he| < 0. (34)
L k=1 J
Therefore to show (32) it suffices to show that
9,1 -
E| Y A(h)h| < 0. (35)
L k=1 _

Let o4 denote the sigma-field generated by X(m), £ =
1, 2,-.- and observe that 6, is a o-stopping time. Using
successively the facts that {#2 > k + 1} € oy, the process
{X(7)}32, is Markov, and all processes are assumed to be
mutually independent, we get

} ZE (he)hilie,—1>k)]
= ZE[E
= ZE[E[A

k=1

ZE[)\hil{ezzkH}]

k=1

= /\ZE[g
02 1
ZgQ(X(Tk))} <0
k=1

where the last inequality follows easily from Lemma 2 and
assumption (3). O

021

ZAhk

(hic) bk | ok]1{0, 50413

(hi)hi | X (1)1l (os 541}

(Te)) g0, >k41})

= AE (36)

V. PERIODIC CONNECTIVITY PROCESSES

Consider a periodic connectivity process, as it has been
defined in the end of Section II. There is an integer k > 0

and T' > 0 such that for every n
tn—{—k =tn+ Ta and

tigr1 — L1 > T

in+k:in
[=1,2,-

Recall that in the end of Section II it was shown that the
throughput region of the system with periodic connectivities
is A = 1/T co(S¢T)). Under the AAH policy the system is
stable as stated in the following theorem.

Theorem 5: If an arrival vector A belongs to the interior
of the system throughput region 1/7 co(S%T)), then under
policy AAH the queue length process {X(¢;)}:2, converges
in distribution to a random vector X such that

EX < 0.

a

The proof of the theorem follows the same steps as that
of Theorem 2, and it will just be outlined here. Let {7x}32,
be a subsequence of the connectivity instances, where 7y is
the connectivity instance closest to the beginning of the kth

2059

1 2 3 1 2
[W\\{\\ N\ I
t1 t2 t3 t4 t5
—_— —-——
u u

- —

T/2 — T/2

Fig. 3. The connectivity instances of a periodic connectivity process with
period T'.

cycle. Notice that the process {X(7x)}32; is a homogeneous
aperiodic Markov chain. Using basically the same approach
used in the proof of Theorem 3, we can show that this Markov
chain is positive recurrent and has finite first moment under
the stationary distribution. The proof is concluded using the
regenerative nature of {X(2;)}52;.

If the arrival rate vector belongs to the interior of
1/T co(SC™T)) then it can be expressed as a convex
combination of vectors in S¢(T)

Z af <L

— G G
A= E age, a; >0,
e€§G(T) e€SG(T)

and

It is not hard to show that the randomized policy that schedules
each period independently by selecting vector e with probabil-
ity a¢ stabilizes the network as well. The AAH achieves the
same result without needing to know the arrival rate vector.
Notice that an explicit characterization of the throughput
region as above does not exist for Poisson connectivities.
One question that remains to be addressed is the magnitude
of improvement on the achievable throughput by the use of
anticipative policies. Carr and Hajek [3] report simulation
results for two queues where it is shown that the throughput
region achieved by the adaptive threshold policy, defined in
their paper, is very close to the maximum throughput region of
the system. Furthermore it is mentioned that similar behavior
has been observed in systems with a larger number of queues.
If the connectivity process 1s not Poisson, then considerable
improvements may be observed by using the AAH policy
over what can be achieved by using a nonanticipative policy.
In the following we demonstrate this point by presenting an
example where the AAH policy increases the throughput of a
queue by 66% over what is achievable by the best threshold
policy. Consider a system with three queues and periodic
connectivity process, a period T of which is depicted in
Fig. 3. We denote by u the common overlapping time of
two successive overlapped opportunities for all opportunity
periods. It is not hard to verify that the throughput vector
(A1, A2, Az) = (A, A, X)) is within the throughput region of
the system, and therefore achievable by the AAH policy, for
every A < & in packets per time units. In the following we

T
argue that if

0.97 1
A VD | =
T <A<

(37)
then the system becomes unstable under any threshold policy
whenever Ay > 0.6/T. Therefore the throughput of queue 2
cannot be larger than 0.6/7" compared to 1/7 that is the tight
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upper bound on the throughput of queue 2 under the AAH
policy, for the same range of Aj, As.

A threshold policy, as defined in [3], is specified by a set of
thresholds T;;,4 =1,---, M, 5 = 1,---, M. At a connectivity
instant ¢ of queue j, service is provided to that queue if the
system is idle or if the queue ¢ that is under service at ¢ has
received service for an amount of time less than T;;. Note
that for the connectivity process under consideration, it only
matters for the operation of the policy whether a threshold
is larger or smaller than 7 — u and not its actual value. Four
different operation modes may appear depending on the values
of the thresholds:

A) Queue 1 is not preempted by queue 2, and queue 2 is
not preempted by queue 3.

B) Queue 2 preempts queue 1, and queue 2 is not pre-
empted by queue 3.

C) Queue 1 preempts queue 2, and queue 3 preempts queue
2.

D) Queue 1 is preempted by queue 2, and queue 2 is
preempted by queue 3.

In cases A), B), and C) we argue briefly in the follow-
ing about our claim. In case D) we verified our claim by
simulation.

In cases A) and B), the existence of queue 3 does not affect
the operation of queues 1 and 2. Furthermore because of the
symmetry, the utilization of each opportunity of queue 2 is
T)Ay/2 when the system is stable. Since queue 3 is served
only whenever the preceding queue 2 opportunity is idle, the
system is stable if Ao /24+ A3 < 1/T, thatis Ay < 2(1/T— A3).
If 0.97/T < Az < 1/T clearly A» < 0.6/T for stability.

In case C), queues 1 and 3 operate as if queue 2 were
absent. The utilization of each queue 1 opportunity is T'A;/2,
while the utilization of each queue 3 opportunity is clearly
T 3. The total throughput of queue 2 is A} + A2, where A}

is due to the packets transmitted at the queue 2 opportunity -

that overlaps with queue 3 opportunity, while A3 is due to the
packets transmitted at the other opportunity of queue 2. Clearly
for stability we need A} < 1/7 — A3 and A2 < 1/T — A\1/2,
that is Ay < 2/T — (A3 + A1/2) and for Ay, Az that satisfy
37), A2 < 0.6/T.

V1. SCHEDULING COMPLEXITY OF AAH AND MODIFICATIONS

An important consideration regarding the AAH policy is
the computational complexity for its implementation. In every
cycle of the policy, the maximum weighted service vector
needs to be evaluated in relation (4). Notice that evaluating
this maximum in the kth cycle is equivalent to solving the
maximum weighted independent set problem in the colored
interval graph G(7k, Tk+1) where the weight of a node is
equal to the queue length of the queue that corresponds to
the node. The component S;(k) of the corresponding service
vector is the number of nodes associated with queue 7 in
the maximum weighted independent set. Unlike the maximum
weighted independent set problem for general graphs which is
NP-complete, for interval graphs the problem can be solved
in polynomial time and more specifically with an algorithm
of complexity O(N?) where N is the number of nodes of
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the graph, that is the number of connectivity instances in the
interval [r%, Tk4+1]. In fact Carr and Hajek, in the context
of a class of policies proposed in [3], provide a dynamic
programming type of algorithm that solves this problem. We
use that algorithm in the implementation of the policy that we
used in the simulations.

From the fact that the complexity of scheduling a cycle
grows with the square of the number of connectivity points in
the cycle, therefore with the square of the cycle length, we may
deduce that the scheduling complexity per time unit grows as
the cycle length increases. Recalling by the definition of the
policy that the cycle length increases as the load increases,
we may deduce that the computational complexity of the
policy increases with the load. It turns out, though, that the
computational complexity per time unit of the AAH policy is
upper bounded by a constant, both for Poisson and periodic
connectivity processes, as long as the arrival rate vector lies
in the interior of A.

The key observation is that if the graph G(7k, Tk+1) consists
of several disjoint components then the maximum weighted
independent set can be computed separately for each com-
ponent graph, and the union of those independent sets is
the maximum weighted independent set of the graph. The
scheduling complexity of a cycle is of the order of the sum of
the squares of the nodes of the different connected component
graphs.

Consider periodic connectivity processes with period equal
to 7" and K connectivity instances per period. In this case
the maximum number of nodes in a connected component
of the colored interval graph of any cycle is equal to K.
The scheduling complexity per time unit is of the order of
O(K?/T), and it is independent of the load.

In the case of Poisson connectivity processes, consider
maximal sequences of connectivity instances in which adja-
cent connectivity instances are closer than a packet length.
Consider the subsequence of connectivity times specified by
the sequence of indexes )

miy =1, mg =rnin{i: b > by s b — i >T}.

The sequence of connectivity times &m,, tmeyys ") bmggy—1
can be scheduled independently of the rest connectivity in-
stances, without any degradation of the throughput. In other
words, the size of a connected component of the colored
interval graph of any cycle is stochastically smaller than
the number of connectivities in a sequence as the above. A
sequence of connectivities as above will be called conflict
resolution period (CRP) in the following. Hence let R be
the number of connectivity instances in such a run and T
the corresponding time length. The scheduling complexity per
time unit then is upper bounded by E[R/T]. Note that this
bound is independent of the load and is determined from the
connectivity process.

The following modified version of the AAH policy takes
under consideration the fact that the scheduling of different
conflict resolution periods can be done independently. The
modified policy is similar to AAH except of the determination
of the cycle length that is done as follows. Let ¢; be the
earliest connectivity instant after time 7 with the property
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Fig. 4. Average total queue length for a system with M = 3 queues and

7 = 1 under AAH policy. The total opportunity arrival rate is ¢ = 1.2, All
queues are equally loaded.
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Fig. 5. Average total queue length for a system with M = 3 queues and
7 = 1 under MAAH policy. The total opportunity arrival rate is 2 = 1.2,
All queues are equally loaded.

tiv1 — t; > 7. Then the length of the kth cycle is selected
to be hy = min{t; — 7%, g{X(7«))}. The modified policy
will be called MAAH in the following. The MAAH policy
has superior performance over the AAH, as shown in the
simulation study.

VII. SIMULATION RESULTS

The queueing delay and the scheduling complexity were
studied by simulation. Both the AAH and the MAAH poli-
cies were considered. The scheduling horizon was selecte{:}d
by functions of the following type: g(z) = (Zﬁﬁm) )
0 < a < 1. The parameter ¢ determines the length of the
scheduling horizon. Its effect on the queueing delay and the
throughput was evaluated. A symmetric system with three
queues was studied. The packet length was taken equal to the
time unit. Poisson connectivities were considered, with rate
w = 1.2 and uniformly distributed for the different queues.

In Figs. 4 and 5 we see plots of the average queue length
as a function of the total load for the AAH and MAAH
policies, respectively. Note that by Little’s Law we can readily
deduce the corresponding delay plots which have the same
qualitative behavior with the average queue length plots. The
three queues are equally loaded. The average queue length is
plotted for several different values of the parameter a. Clearly
the policy MAAH outperforms the policy AAH. Furthermore
‘the performance is improved as the parameter o increases.
Recall that the difference between MAAH and AAH is that
while MAAH never schedules more than one CRP at a time,
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Fig. 6. Average total queue length for a system with M = 3 queues and
r = 1 under MAAH policy and the dynamic threshold policy =2 . The total
arrival opportunity rate is 4 = 1.2. All queues are equally loaded.
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Fig. 7. Logarithm of average total queue length for a system with W/ = 3

queues and 7 = 1 under MAAH policy. The total opportunity arrival rate is
= 1.2, All queues are equally loaded.

the AAH may schedule several CRP’s at a time based on
the queue lengths at the beginning of the scheduling period.
The MAAH schedules each CRP separately using the backlog
information at the beginning of the CRP. Hence MAAH uses
more updated state information than AAH for scheduling.

In Fig. 6 we plot the average queue length as a function of
the total load for the MAAH policy with o = 0.75 and for
the dynamic threshold policy w2, proposed by Carr and Hajek
in [3]. The dynamic threshold policy 72 operates as follows.
For every pair of packet types ¢ and j that their transmissions
may overlap, a threshold T;;(¢) is defined as a function of the
queue lengths at time ¢ as follows

_ L, (14 X()/X:()
Tij(t) = - ln(m—-—>

Ky

The packet j transmission preempts a packet ¢ transmission at
time ¢, if the time spent in packet ¢ transmission until ¢ is less
than T5;(t). As we see from Fig. 6, the average queue lengths
under 72 policy are lower than the corresponding values under
the MAAH policy for low loads, while in medium and heavier
loads the MAAH policy outperforms the dynamic threshold
policy.

The improvement of the performance with the increase of
exponent « is due to the fact that the scheduling horizons
increase as well and more flexible scheduling is possible. In
Fig. 7 we see plots of the logarithm of the average queue
lengths as function of the load for the policy MAAH. We see
that in heavy traffic the performance of the policy for different
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Fig. 8. Computation complexity vs. packet arrival rate for a system with
M = 3 queues and 7 = 1. The total opportunity arrival rate is p = 1. 2.
All queues are equally loaded

values of o converge to a common value. The reason is that
the queue lengths are so large that even for small values of
a, the horizon estimated by the function g( ) is consistently
larger than the end of the current CRP therefore the MAAH
almost always schedules until the end of the current CRP. In
Fig. 8 the plot of the complexity per time unit, as a function of
the load, is depicted. We see that the complexity is increasing
as parameter ¢ increases, that is the improved performance for
larger o’s is achieved on the expense of increased complexity.
For high loads the complexity for the different values of «
converges to a common value, for the same reason that the
delay converges to a common value as well.

VIII. DISCUSSION

The AAH policies were proposed in this paper for the
transmission scheduling of systems with asynchronous trans-
mission opportunities. The policies achieve maximum through-
put, stabilizing the system for all stabilizable traffic loads.
Furthermore they are adaptive, and they do not rely on knowl-
edge of the traffic parameters. The scheduling complexity
of thé policies increases with the load. This is inevitable in
asynchronous connectivity systems, since an increase of the
load necessitates the joint scheduling of opportunities in longer
scheduling periods. Nevertheless the schedulihg complexity
is bounded by a constant independent of the arrival rates.
AAH (and MAAH) are a parameterized class of policies. Even
though the maximum throughput property holds for the whole
range of variation of the parameter o, the average delay as
well as the scheduling complexity varies with the parameter «
for a fixed load. By selecting the parameter «, as we did in the
simulations, we may achieve any desirable trade-off between
the scheduling complexity and delay.

The maximum throughput property has been shown here for
two types of connectivity processes: Poisson and deterministic
periodic processes. We believe that AAH retains the maximum
throughput property for a large class of connectivity processes
including renewal connectivities or connectivity process with
dependent interconnectivity times. Another important issue to
be investigated is the selection of the connectivity process.
By that we refer to both the selection of the statistics of the
connectivity time instances as well as of the fractions that
correspond to each queue. It is expected that the connectivity
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process itself will have a significant impact on the performance
of the system, in addition to the scheduling policy.
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