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Fig. 5. Example of nonconcavity of Ry

Fig. 5 gives the graph of R, R,, and R}"°. We see that R}"" is
not a concave function.

V. DiscussioN AND CONCLUSIONS

The obvious conclusion is that these are treacherous waters, and
something may hold very often, without being true. It may even, as
in the case of our first two examples, be supported by a plausible
argument, but remain false.

The second example, revealing a breaking of the obvious symme-
try, is less surprising, but may have more of a cautionary impact.
Failure of this naive symmetry makes us more doubtful about the
larger symmetry assumed in the restriction to k-out-of-n rules. That
restriction has been of practical importance, in reducing astrongmi-
cal numbers of possibilities to small numbers of possibilities. It
leads us to suspect that the sufficiency of k-out-of-n rules, even for
identical sensors, may never be established as a theorem, but will
remain a heuristic. The more positive conclusion of our analysis is
that the deviations found here, which show certain conjectures to be
false, are all numerically small. This holds open the possibility that
they are small in every case, so that assuming the conjectures to be
true will lead to small numerical errors in the determination of the
optimal tuning and fusion of a distributed sensor system.
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Jointly Optimal Routing and Scheduling in Packet
Radio Networks

L. Tassiulas and A. Ephremides, Fellow, IEEE

Abstract— A multihop packet radio network is considered with a
single traffic class and given end-to-end transmission requirements. A
transmission schedule specifies at each time instant the set of links which
are allowed to transmit. The purpose of a schedule is to prevent
interference among transmissions from neighboring links. Given amounts
of information are residing initially at a subset of the network nodes and
must be delivered to a prespecified set of destination nodes. The trans-
mission schedule that evacuates the network in minimum time is speci-
fied. The decomposition of the problem into a pure routing and a pure
scheduling problem is crucial for the characterization of the optimal
transmission schedule.

Index Terms—Radio networks, scheduling, routing, throughput, mul-
tiple access, delay, protocol, network topology.

I. INTRODUCTION

In this correspondence, we study the problem of joint link activa-
tion and route selection in Packet Radio Networks (PRN’s). We
consider the case of network evacuation, that is the case in which
we wish to deliver all packets initially residing at each node of the
network to a fixed, common destination node. At each node we
assume that there exists a single transceiver. Consequently, to
ensure conflict-free transmissions, no two links that share a common
node may be activated simultaneously. We also assume that suitable
spread-spectrum signaling modulation is used, so that no additional
restriction on simultaneous link activation is needed to ensure
conflict-free communication, i.e., there is no ‘‘hidden terminal”
problem [7]. The problem of scheduling link activation in PRN’s
has been studied extensively under various assumptions [1]-[3], [5],
[6]. Hajek and Sasaki in [1] have studied the optimal scheduling
problem for given link flow requirements. They derived an algo-
rithm of polynomial time complexity that solves the problem of pure
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scheduling when link flows are specified. They also show that the
link flows can be obtained from given end-to-end transmission
demands, by means of a linear program.

In the case that we consider (namely that of evacuating a PRN
from initial amounts of information in minimum time), the problems
of route selection and link activation, scheduling are coupled. In
Section II, we show how the joint optimization problem decomposes
into a pure scheduling problem and a pure routing problem. The
routing and scheduling problems are those that have been studied in
[1]. We show that the danger of ‘‘under flow’’ in the evacuation
schedule can be averted.

The computed “‘optimal’” schedule in most cases is not practical
since it requires changes of the transmission set too frequently.
However, its performance, namely, the computed optimal length, is
a strict lower bound for the length of any other schedule that
achieves the evacuation goal and, thus, it can be used as a bench-
mark for comparison to the performance of heuristic schemes.

II. PROBLEM FORMULATION AND DECOMPOSITION

We represent the PRN with a directed graph G = (V, E) where
the nodes of the graph correspond to communication nodes and the
edge (i, j) denotes a radio link directed from node i to node j.
According to the operating assumptions that we have made in the
introduction, a subset of links T can be operated simultaneously
without conflicts if every two links that belong to the set do not
share a common node. A subset of links with the above property is
called a transmission set. Note that the transmission sets of the
PRN are the matchings' of the graph G. To each transmission set
T, we associate an indicator vector / TeR!El The elements of the
vector correspond to the edges of the PRN and they are given by

1
1?:{ ’
J O,

We wish to specify at each time instant the transmission set that is
activated. Thus, a schedule s of link activations is a sequence of
pairs each of which consists of a transmission set and the corre-
sponding duration of its activation time; namely,

if jeT,
otherwise.

s={(T;,7),i=1,--+, N},

where N is the total number of distinct activation epochs (note that
we permit a transmission set to repeat itself in the sequence). The
length of the schedule s is defined by L(s) = Zf-vz , 7;. Clearly set
T; is activated during the interval (¢;_,, ¢;), where ¢; = =t T
and t, = 0. We consider the information residing at each node to be
described by a quantity taking values in a continuum. Thus, we let
q(t) = [a:(5), -, q,v (#)], where g,(?) is the amount of informa-
tion that resides at node / at time ¢. We further assume that all links
have transmission capacity of one unit of information per unit of
time. Thus, given an initial amount of information g(0) residing at
the nodes of the PRN at time ¢ = 0, and assuming that no new
information enters the network from exogenous sources, we can
obtain the amount of information on the nodes at time ¢ for a given
schedule s by means of the following?

g(t) = max (q(t_,) - (¢ - te_y) AIT,0)

(2.1)

‘A matching in graph G is a subset of its edges that contain no pair of
adjzacem edges.
The max in (2.1) is taken component-wise.
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for

&
= 2T

e St <1,
, i=1

Here A is the node-edge connectivity matrix of dimension | V'{ X
| E|, i.e., the element a,; of A is equal to 1 if the directed edge /
originates at node /, to —1 if it terminates at node /, and to O,
otherwise. The quantity g(¢) is obtained by the indicated max since
the activation of an intermediate link before any information arrives
at its origin node does not effect any information transfer and
leaves, therefore, the total information distribution unchanged. We
refer to this phenomenon whenever it may occur as the ‘‘underflow”
problem. We consider arbitrary topologies for the graph of the
PRN. However, we classify the set of nodes of the PRN as follows
(see Fig. 1). We let ¥ denote the set of ‘‘originator’’ nodes, i.e.,
the nodes that, initially, possess information; we let V', be the set
of destination nodes, and we assume Vg and V, to be disjoint.
Finally, we denote by V' the set of remaining nodes. The interpreta-
tion of this classification is the following. First of all it permits us to
consider more than one destination nodes without considering neces-
sarily more commodities (a commodity is a “‘type’’ of information
that is indexed by a distinct destination node). It represents a slight
generalization over the case of a single destination node. In our case
all nodes in ¥, are equivalent in the sense that any information that
reaches an arbitrary member of ¥V, is considered to have been
““‘delivered’’ or ‘“‘evacuated.”” Of course this model corresponds to
the case where in reality we do have a single destination node
which, however, is connected with dedicated links to every node in
the set Vp. Secondly, the set ¥ permits us to model the real
sources of information (e.g., terminals or other devices) as separate
node entities, each of which is separately attached to a network node
that belongs to V. Note that, as shown in Fig. 1, each of the nodes
in either set ¥, or Vy is connected to some node of the set ¥,
which has a totally unrestricted topology.

It so happens that this classification does not diminish the general-
ity of an arbitrary network graph (since our interpretation is legiti-
mate) while at the same time it achieves a special structure for the
graph that allows the use of crucially useful properties later on.

The equations in (2.1) that correspond to the destination nodes are
redundant since they can be simply obtained from the rest; thus, in
the following, we consider only those equations that correspond to
nodes in V5 and V’. We can now state our problem as

inf L(s),

seS

(P)

where S is the set of all schedules such that g(L(s)) = 0 when
q0) = g4

Remark: Note that problem (P) is a dynamic optimization
problem of high complexity. The objective function L(-) takes
values in the set S that can be large and ill-structured. The main
result of the correspondence is that problem (P) can be reduced to
two static (finite-dimensional) optimization problems of reduced
complexity.

For every schedule s define the link activation vector f as

N
f: é Z TjITj'
Jj=1

The ith element of this vector indicates the total activation time of
link i. Now for each link activation vector f consider the set of
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Fig. 1.

Topological structure of the PRN.

schedules S » defined as
Sp={s:f=1}.

Notice that the schedules in S '+ do not necessarily belong to S.
Furthermore, consider the set F of link activation vectors defined
as

F={f:9,=Af}.

We can state now our main result.

Theorem 1: The optimization problem (P) is decomposable into
two optimization subproblems as

infL(s) = { inL }
infL(s) = min { minL(s)

Before proceeding to the proof of the theorem, we give some
definitions and two lemmas.

A schedule s in S is defined to be gy -admissible if it never
activates links that cause the ‘‘underflow’’ phenomenon to occur
when ¢(0) = q,; that is, such a schedule ensures that g(¢) = 0 at
all times ¢, without taking the ‘‘max’’ as indicated in (2.1). Let Sq0
denote the set of g,-admissible schedules. For such a schedule
(2.1) becomes

q(O) = 4o,

g(t) =q(t,_) = (t —ty_ ) AT,  fort,_ <t=<1t,

(2.2)

k=1,-,N and ¢(¢) =0, vt=0.

Let us now consider a variation of problem (P) by restricting the
schedule to be g;-admissible, that is,

inf L(s).

SESqO

For every schedule in S, we can find a gy-admissible one with the
same duration just by interrupting the operation of those links that
cause underflow; thus the restriction of the optimization problem to
admissible schedules does not increase the optimal value of the
length. This is proven in the following lemma.

Lemma I:

infL(s) = inf L(s).

seS ses,,o

Proof: It is clear that inf ¢ L(s) < inf, Sqq L(3) since S, C
S. Thus, it suffices to show that infsesqo L(s) < inf g L(s). For
each schedule s, we will construct a g,-admissible schedule s” with
the same length that achieves the same final information distribution
in the network as s. We construct the schedule s’ as follows: if
during transmission slot k of schedule s the information at node i
becomes equal to zero at time f, we break the duration 7, of
transmission slot k into two parts. During the first part, i.e., during
the interval (Z,’-:]1 7;, 1) we activate the transmission set T, and
during the second part, i.e., the remaining interval (¢, Z,’;l 7;), we
activate the transmission set T that is the same as 7T, except that
the edge that was adjacent to node i and caused the underflow is
now removed. By doing this adjustment to s for every instance of
underflow, we eventually obtain a schedule s’ that is by construction
go-admissible. Furthermore, s’ has obviously the same length as s
and results in the same information distribution on the network
nodes. O

Now, note that by summing (2.2) for ¢ = f,,**
obtain

*, ty, we clearly

go = Af. (2.3)
provided s is g,-admissible. Let now Sqo( f) be the set of g,-ad-
missible schedules that have a particular vector f as their link
activation vector, i.e.,

S, (f) = {s:sis gy-admissible and f; = f}.

The following lemma is crucial for the proof of the theorem.
Lemma 2:

inf L = inf L(s).
ceinf £05) = [nf L)

Proof: We will show that
vs' €S;,Ve>0,35€S, (f)suchthat L(s) < L(s') +e.

Let 5" = [(T}, 7{),i=1,---, N] be a schedule such that ¢, =
Af. Assume for the moment that each node v in ¥’ has nonzero
initial amount of information §,. Let

N
d, = 37 3 L%, (2:4)

= ecE(v)

where E(v) is the set of links originating at v; the quantity d,,
therefore, represents the total amount of information that will depart
from node v during the execution of schedule s’. Consider a
schedule § that is identical to s’ except that the activation duration
times 7; are

where K is a constant sufficiently large so that

§,=zd,, VveV, (2.5)

where c?v is defined as in (2.4) but for the new schedule §. Relation
(2.5) ensures that we can apply the schedule § without risk of
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underflow. From the definition of § it follows that

L(s)
K

L(3) =

and that the amounts of information will change by (1/K)¢0) in
the nodes of Vs, and by zero in the nodes of V”. That is, with
schedule § the information in the source nodes will be reduced by
1/K of the amount by which it would be reduced if s’ was applied
and the length of the schedule § will be K times less than that of 5.
In addition, (2.5) ensures that underflow does not occur during the
execution of S;. Also, since the information in the intermediate
nodes (i.e., those of V") remains unchanged during the execution of
the schedule s;, that schedule can be repeated. Consider now a
schedule that consists of K repetitions of the schedule §; obviously
this repetition schedule has length equal to L(s’) and transfers all of
the information from the source nodes to the destinations; further-
more, it has link activation vector equal to f. What is left is the
amount of information §, that we assumed was residing in each
node of V. Since the only assumption about that information was
that it be greater than zero, we can take it to be arbitrarily small.
Thus, we can consider that these amounts 8, are transferred to the
nodes of ¥ from the origin nodes ¥ before we start the execution
of § and that we transfer them afterwards to the destinations to
complete the total evacuation via an arbitrary trivial schedule that
has length arbitrarily small (since 8, can be as small as desired) and
link activation vector f. Thus, the final schedule s is the schedule
that consists of the concatenation of the schedule that transfers the
initial amounts-of information to the nodes of V' from the source
nodes, the K repetitions of § and the schedule that transfers to the
" destinations the information remaining in the nodes of V. O

We can proceed now with the proof of the theorem.

Proof of Theorem I: Since every g -admissible schedule
satisfies (2.3), we have

Seo= U Sqo(f)'
feF

Hence, we have

inf L(S) = min{
SES,, feF

inf L(s)}. (2.6)

s€S4, ()

From (2.6) and in view of Lemmas 1 and 2, we obtain

inf L(s) = r}g{ infL(s)}. (2.7)

seSy

The infimum on the right-hand side of (2.7) can be actually achieved
by a schedule in S, as we show in the following. Consider all
possible transmission sets 7, -+, T, of the network. For every
schedule 5" €S,, s’ = {(1}, 1)), i=1,""", M}, consider the
schedule s = {(r;,T}), i =1,--+, M}, where 7; is the sum of
those 7/’s for which the corresponding T;’s are the same set T;.

J
Clearly, we have

L(s) = L(s')and f, = f,.

Therefore, s € S;. Thus, it follows that the solution of the optimiza-

tion problem (P’) defined as

N
min Y 7;
i=1

(P)

subject to

i=1,, M,

is equal to ,infseS/L(s) and the 7;’s that achieve the minimum
provide the optimal schedule. g

Remark: In order to obtain the optimal value in (P) we need to
solve (P”). After we obtain the optimal value in (P”) as a function
of f, we optimize further by choosing fe F. These two optimiza-
tion problems have been studied in [1] and algorithms for their
solution have been proposed.

III. ConcLUSION

The results in this correspondence can be useful in the process of
topological design of a Packet Radio Network. There are still
important problems associated with joint routing and scheduling that
remain unaddressed. Specifically, the case of unequal link capaci-
ties, the case of multiple commodities that need to be routed, and,
most importantly, the case of not evacuation but, rather, sustained
network operation under random message generation remain unre-
solved and, largely, unaddressed.
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The Zak Transform and Some Counterexamples in
Time-Frequency Analysis

A.J. E. M. Janssen

Abstract—It is shown how the Zak transform can be used to find
nontrivial examples of functions f, g€ L*(®R) with f-g=0=F- G,
where F, G are the Fourier transforms of f, g, respectively. This is then
used to exhibit a nontrivial pair of functions A, k€ L>(R), 4 # k, such

that {h| = | k|, | H| = | K |. A similar construction is used to find an
abundance of nontrivial pairs of functions 4, ke L>(R), h # k, with
| Ay| = | Ag| or with | W, ) = | W, |, where 4,, 4, and W, W, are
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the ambiguity functions and Wigner distributions of 4, k, respectively. One
of the examples of a pair of 4, ke L>(R), h # k, with | 4, | = | A, ]| is
F. A. Griinbaum’s example given previously. We find, in addition,
nontrivial examples of functions g and signals f, # f, such that f, and
f, have the same spectrogram when using g as window.

Index Terms—Zak transform, ambiguity function, spectrogram.

1. INTRODUCTION

In [1], F. A. Griinbaum presents a nontrivial example of two
functions A, k € L*(R) such that | A, | = | A, |. By nontrivial we
mean that 4 and k cannot be obtained from one another by a
time-frequency translate or by muitiplication by a ce®, [c¢| = 1.
Here, A refers to the ambiguity function: when f, geL*(R), the
ambiguity function A, of f and g is defined by

bl ) 1
Ay (6,7) = / e‘z’”’”f(s +3 T)
. 1
g(s——Er) ds, 6,7eR. (1.1)

When f =g, we write A, instead of A, ,. The purpose of this
note is to show that Griinbaum’s example is a particular case of a
whole class of such examples that can be constructed by using the
Zak transform. A second purpose is to present similar examples, by
similar constructions, of Fourier pairs, spectrograms and Wigner
distributions.

The Zak transform of an fe L*(R) is defined by

o

(zr)(r.2) = X

= —

e 2k 4 k), 7,0€R. (1.2)

We recall here the properties of the Zak transform needed for the
present purposes. We have the following, cf. [2].

1) Z is a Hilbert space isometry of L*>(R) onto L?([— %, 31%).
More precisely, when Z(7, ) is a function satisfying

Z(r+1,90) = "%Z(7,Q),

Z(T,Q+1) =Z(T,Q)’, _7,0el,

(1.3)

and Ze L*([~ 5, 4]%), there is exactly one fe L*(R) such
that Z = Zf. Conversely, Zfe L*([— 1, 3]*) and Zf satis-
fies the (quasi) periodicity relations (1.3) when f e L*(R).

And

(1.4)

where the left-hand side inner product is that in L*([— 3§, 41%)
and the right-hand side inner product is that in L*(R).
2) For fe2(R) we have the formulas

(zf. zg) = (/. g), [ eel*(R),

/0= (Z) (. 0)da,  F()

1
=/ e 27 (Zf)(r, w) dr,  t,weR, (1.5)
0

where F denotes the Fourier transform of f,

F(w) = /_m e 2mivlif(1)dr, weR. (1.6)

3) For f, g€ L*(R) we have the formula

(2. 9)(28)" (7.9)

= nz (f, R_mT_"g)e—27rinﬂ+21imr’ (17)
,m

where for a, b€ R the operators T,, R, are time, frequency
shifts defined by

(Rof)(1)
= e=2mibt f(1),

(T,/)(2) = f(t + a),

teR.

(1.8)

4) We have for fe L*(R), a, beR,

(2T.)(7,9) = (2f)(r+a,0),  (ZR,f)(7,Q)
=e 27 (ZfY (7,2 + b). (1.9)

Formula (1.7) provides an important link between the Zak
transform and the ambiguity function since

Apg(8,7)=e™(f,R_4T_,g), 6,7eR. (1.10)

II. THE EXAMPLES
Example 1: f, geI*(R) such that f-g=0=F- G.

Let U and V be two subsets of {— 1, 2]* such that for any
T, Q € ["' %7 %]

(2.1)

w(U)(¥,) = w(U") (V) = 0.
Here,

U =1{0/(r,2) eV}, U= {7(r,2)eU}, ec., (2.2)
and p is Lebesgue measure on [— 1, 3]. Let ¢, ¢ e L*([— 1, 1]%)
have their supports in U, V, respectively, and extend ¢, ¥ quasi-
periodically according to (1.3) to all of R2. Then ¢ = Zf, y = Zg
for some f, ge L*(R), and, as readily follows from 2), we have
f-g=0=F"G.

Note: In terms of ambiguity functions we have here an example
of an f, g such that A, (0,7) = A/ (6,0) for all §, 7€ R. That
A/ , cannot vanish identically follows from

/g / | 4,0, ) dodr=|7)2lel?.  (2.3)

Example 2: h, ke L*([R), h # k, such that || = [ k|, | H|
= | K|.

It is easy to find such 4, & as follows. Let s e L*(R) be such that
| h(t)] = | h*(—=1¢)|, and set k(t) = h*(—t). Then K(w) =
H*(w),sothat | K| = [ H|. A less trivial example is obtained by
setting h = f+ g, k = f — g, with f, g as in Example 1, so that
Al =171+ 1l =1kl |H|=]F| + |G| =]|K|.

Example 3: For the next set of examples we need a lemma on
the supporting sets of ambiguity functions. B

Lemma I: Denote for fe L2(R) by S '+ the supporting set of Zf
(by (1.3) this set is periodic in both variables). Furthermore, denote
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for fe L*(R) and 74, Qg€ [~ 3, 51 by S;(7y, Qp) the set
Si(70, Q) = {(ro+ 7,2+ Q)I(T, QeS}. (2.4)

Finally, denote for f, g€ L*(®) by ¥/, the set

fZg = {(r0, 20) €[~ 4. 4] ma (5,1 S, (0. 20)) # o}.
' (2.5)

Here, u, is Lebesgue measure in R2. Then A s.¢ is supported by
the set ¥, . given by

Vig= {(n+ro,m+ Qo)|n. me2, (ro,Qo)efZ } (2.6)
.8

Proof: We combine (1.7), (1.9), and (1.10) to obtain

e %7 (Zf) (7, @) (28) " (7 — 76, 2 ~ Q)
— Z e—wi(m+ﬂo)(n+ro)

n,m

As(m+ Qg n+ 1) mm =D,

(2.7)

for 7,7y, 0, @y € R. Now we have for 7y, Q,e[— %, 3] that

Ap (m+Qo,n+17)=0, aln meZ,

(2.8)
if and only if

1 (S, N S, (79, Q) = 0. (2.9)
Since any point (8, 1) € R? can be written as (m + Qq, n + 1) for
some n, me 2, 74, Qo€ [— 3, 31, the lemma follows. O

To give some insight how the lemma can be used to construct
counterexamples, we present Figs. 1-4. Observe that ¥, , =
~Y,.s» S0 that 3,  is symmetric about the origin.

With the aid of Lemma 1, one can construct functions f whose
ambiguity function A, has, in the terminology of Price and Hofstet-
ter [3], volume-clearance around the origin arbitrarily close to 4.
That is, for any 6 > 0, € > 0, there is an fe L*(R) and a convex

-set C with p,(C) = 4 — 6 such that A,(8, 7) = 0 for 6, 7)eC,
82 + 72 = €2. One can take for f any function whose Zak trans is
concentrated in a small disk around the origin. The volume-clearance
result in [3] says that p,(C) cannot exceed 4. As a limiting case,
when €0, 610, one can take f= Y6, so that A,(0,7) =
¥ . m8,(0)8,,(7) (here, &, is the delta function at n).

Example 4: h, ke L*(R), n # k, such that | 4,| = | A.].

It is easy to see that we have | A,| = | A,| when heL*(R)
and k = cR,T,h for some @, beR, ce@, |c| = 1. Less trivial
examples can be constructed as follows. Take f = f,, g = g as in
Fig. 3. Now we have

SAyY=¥n

f.e fSf  &f

T =

£f

SnY -

f.8 2.8

Z‘}n S =0.
T )

Hence, Ay, A, =0, etc. When we set h =f+ g, k=f—-¢g
and observe that

Afsgreg=Apst Ag, + (Af,g + Ag,f)’ (2.11)

we readily see that | A, | = | A, |. An example of this situation of
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Fig. 1. S, and ¥ , for a monocomponent f in the Zak domain.

2L 2L
1.1 T 1.1 2.1 T 1.1

('2'_2) (2' 2) ( 27 2) (2' 2)

Fig. 2. S, and X, ; for a multicomponent f in the Zak domain; the two

components in ¥, » lying symmetrically about the origin are due to period-
icity of the set S;.

Zfl,f1= Zfz,fzz 2"g,g 7

- Z’fz,g

1.1 T 1.1

(' 21" 2) ( 21 2)
Sg, Sy, and Sy, for three monocomponent functions in the Zak
domainand thesets Xy o, Xf 70 Lpyp0 Lsgrlgg

(32 (5
3.

Fig.

the Griinbaum type is given in Fig. 4. Griinbaum considers func-
tions f and g with supportin |f| = land 4 = || =5, respec-
tively. By appropriate translation and scaling, it can be achieved that
f and g have their supports in intervals (¢, 2¢€) and (% - 26, % - 8).
It follows from the definition of the Zak transform that S, and S,
are as in Fig. 4. Again, we have a situation in which (2.10) holds.

Example 5: h, ke L*(R), h # k, such that |W,}| = | W,].
When f, g€ L*(R) we define the Wigner distribution of f and g
by

Wyg(tow) = [ e moop(t 4 ds)g* (1 - 4s) ds,

tweR. (2.12)
Unlike the ambiguity function, W; . is always real. We have

Wf'g(t,w) =2Afyg_(2w,2t), t,weR, (2.13)



I ‘ IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 1, JANUARY 1992

44
(2.3) (2.2)
_...Sg
Q
(44 ] (33
St

Fig. 4. Sf‘, Sg, Zf'f, Xf,,gf Zg’f for twovfunctions concentrated in a
strip in the Zak domain.

where g_(f) = g(—1). Noting that (Zg_)(7, Q) = (Zg)(—1,Q),
we can easily modify the argument in Example 4 to construct
examples of /4, k € L*(R) such that | W, | = | W,|. In particular,
F. A. Griinbaum’s function provides such an example.

Example 6: h, k, g such that & # k have the same spectrogram
using g as window.

When g is a window function, the spectrogram of fe LX(®) is
defined as
2

/ e—21riS¢..vg(t _ S)f(S) ds =|Af,g*(°)y t)lz’ t,weR,

—

(2.14)

where £ = g*. In Fig. 3, we have f,, f, such that

>Ny =0,
Si1.8 f2.8
hence 4, , - Ay, o =0 Whenwetake h = f, + f,, k = f| = [,
and replace g by g, we see that & and k have the same spectro-
grams.

(2.15)
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On Convergence of Lloyd’s Method 1
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Abstract— Although Lloyd’s method 1 for optimal quantization was
proposed more than thirty years ago and has been frequently referred to
in the literature, its convergence has so far not been shown. This
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A
correspondence proves that Lloyd’s method I converges for a large class
of error measures, if the density function is continuous, positive, and
defined on a finite interval. The proof is done by modeling the behavior
of a continuous optimization algorithm by a finite state machine.

Index Terms—Convergence of sequences, optimal quantization, fixed
point iteration, finite state machine.

I. INTRODUCTION

The well-known Lloyd’s method I [7] for optimal quantization is
a fixed point algorithm to compute a locally optimal quantizer. The
method was originally derived for the mean-square error measure,
but is applicable for a wide range of error measures, as we will see
later. After its invention in 1957, Lloyd’s method I was extended by
Netravali and Saigal [9] for optimal quantization under entropy
constraints. Then the fixed point iteration scheme of Lloyd’s method
I was generalized from scalar quantization to vector quantization,
resulting in the popular Linde-Buzo-Gray (LBG) algorithm [6].

Despite its long history in use no one, to the best of author’s
knowledge, has proven the convergence of Lloyd’s method I before.
Interestingly, the convergence of the LBG algorithm, the vector
version of the scalar Lloyd’s method I, was shown by Abaya and
Wise [1], by Selim and Ismail [11] when they proved the conver-
gence of the K-means algorithm, and later by Sabin and Gray [10]
in a more general setting. It should be noted though that the LBG
algorithm is by nature one of discrete optimization. Being iteratively
applied to an initial code book the LBG algorithm generates a
sequence of ever-improved code books. All these code books con-
tain a finite number of words (points in a vector space). A code
book which may be perceived as a vector quantizer is a partition of
a finite point set, hence the both sets of input and output for the
LBG algorithm are finite. The original Lloyd’s method I is, on the
contrary, a continuous optimization algorithm, trying to partition an
infinite number of points obeying a continuous density function
p(x) into K sets. Due to this significant difference, the proofs of
convergence cited previously for the LBG algorithm cannot be
extended to the original Lloyd’s method I. i

The convergence of Lloyd’s method I was previously studied by a
number of researchers [2], [5], [12] in the context of uniqueness of
a locally optimal quantizer. It was shown that Lloyd’s method I
converges to the globally optimal quantizer if the density function is
continuous and log-concave. and if the error weighting function is
convex and symmetric. In this correspondence, we will prove that
Lloyd’s method I converges for all continuous, positive densities
defined on a finite interval under the class of convex and symmetric
error measures. This more general result is obtained by a finite state
machine that models the behavior of Lloyd’s method I and by using
a monotonicity property of the method.

II. FORMULATION AND PREPARATION

In order to facilitate the key proof of the correspondence, we
need to formulate the problem of optimal quantization, and list some
published results about the problem. It is assumed that the signal
amplitude density function p(x) is continuous, positive, and defined
on a finite interval which is normalized to [0, 1], that is, (Vx,
xel[0, 1Dp(x) >0, (vx, x¢[0, 1D p(x) = 0 and /Olp(x) dx =
1. Concisely, a K-level quantizer for p(x) may be characterized by
two vectors geR*"!, g, <q;, 1 =j<K, and reR*. The
vector ¢ partitions the range [0, 1] into X intervals: [0, ¢,], (¢ et
g;] for 1 <j<K~1, and (gg_,, 1]. Here the conventions
go =0 and g, = 1 come naturally and will be used in the sequel.
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