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The optimal scheduling problem in two queueing models arising in multihop radio
networks with scheduled link activation is investigated. A tandem radio network is
considered. Each node receives exogenous arriving packets which are stored in its
unlimited capacity buffer. Links adjacent to the same node cannot transmit simul-
taneously because of radio interference constraints. The problem of link activation
scheduling for minimum delay is studied for two different traffic types. In the first
type all packets have a common destination that is one end-node of the tandem. In
this case the system is modeled by a tandem queueing network with dependent
servers. The server scheduling policy that minimizes the delay is obtained. In the
second type of traffic, the destination of each packet is an immediate neighbor of
the node at which the packet enters the network. In this case the system corresponds
to a set of parallel queues with dependent servers. It is shown that the optimal policy
activates the servers so that the maximum number of packets are served at each slot.

1. Introduction

Queueing systems with dependent servers are considered in this paper. The
servers are dependent in the sense that they can not provide service all of them
simultaneously. A collection of sets of servers is prespecified and the set of servers
that provide service at each time instant is constrained to belong to that collec-
tion. We call these queueing systems constrained queueing systems. The problem
of scheduling the server activation to minimize the delay in constrained queueing
systems is studied. Queueing models as above arise in multihop radio networks
with scheduled link activation among other communication and computer
systems. In radio networks neighboring links interfere when they transmit simul-
taneously. Only certain sets of links may transmit simultaneously without
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conflicts. These links should be sufficiently spatially separated so that all constraints
for conflict free transmissions are satisfied. The system of queues of packets formed
in the nodes of the network corresponds to the constrained queueing model specified
in the beginning. The links of the radio network correspond to the servers and the
dependency among them reflects the constraints for conflict free transmission.

The scheduling schemes employed in constrained queueing systems can be
classified into static and dynamic. In static schemes, the sequence of sets of servers
which are activated at each time instant, that is the schedule, is predetermined and
fixed. Several problems related to the design of static schedules have been consid-
ered in the context of radio networks. Much of the related work is reviewed in
[6]. The design of efficient periodic schedules has been studied extensively. In
periodic schedules a sequence of N sets of links is predetermined and the whole
schedule is derived by repetition of this sequence. The problem of determining
the sequence of the N sets so that the links are activated in a fair manner has
been considered in [2, 4, 7, 8, 10, 13] for several different performance criteria.
Scheduling schemes where the system state is taken into account have been consid-
ered in [3]. Another problem that has been considered is to determine whether a
vector of link activation rates is achievable by some schedule [1, 5]. The design of
delay optimal static schedules for multihop networks has been studied in [9].

In this paper we consider dynamic scheduling where the server activation 18
scheduled based on the lengths of the queues in the network. In [14], stability
problems have been addressed in a general topology constrained queueing network
with dynamic server activation scheduling. In this work the problem of queueing
delay is studied. Two queueing systems, a tandem and a parallel, are considered.
Both arise in a tandem radio network with scheduled link activation for two different
traffic types. For the tandem queueing network we obtain the link activation schedul-
ing policy that minimizes the delay. More specifically, we show that for the optimal
policy the number of packets in the system is minimized at every time instant and
for every arrival sample-path. The result is obtained using the technique of forward
induction [15] for an appropriate partial ordering in the state space of the queueing
network. For the parallel queueing system we show that the optimal scheduling
policy should select the activated servers at each slot so that the maximum number
of nonempty queues is served [13]. Notions from stochastic ordering theory are
employed in the proof of this result. The problem of optimal scheduling in systems
of parallel queues with general constraints is discussed. By a counter example we
show that the optimal policy does not necessarily have the property of maximizing
the number of served queues when the constraints are arbitrary.

This paper is organized as follows. In section 2 we specify the model. In
sections 3 and 4 the optimal scheduling problem in the queueing systems that
correspond to the two different traffic types is considered. A few words about the
notation before we proceed. The random quantities are denoted by upper case
letters and the nonrandom quantities by lower case letters. The vectors are denoted

by boldface letters.
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2. The model

Consider a tandem network consisting of N + 1 nodes indexed from 0 to N.
There is a link directed from each node i to node i — 1 which is denoted by i. There is
a single transceiver at each node i, therefore at most one link of those adjacent to
node i may transmit at each time instant without conflicts; hence a node cannot
receive and transmit at the same time. A set of links may be activated simul-
taneously without conflicts if and only if no two links in the set are incident at
the same node. Any set of links that satisfy the above property is called activation
set. The indicator vector i of an activation set T is a binary vector with one element
for each link which is not zero if and only if the link belongs to T; the vector i is
called activation vector. Let S denote the set of activation vectors of the system.
The activated links at each slot should constitute an activation set.

The time is slotted. The packets have constant length equal to the length of
the slot. The transmissions are synchronized to start at the beginnings of the
slots. Each node i at each slot ¢ receives 4,(¢) exogenous arrivals. The vector of arri-
vals at all network nodes during slot ¢ is denoted by A(t) = (4,(¢),i=1,...,N).
The results in this paper are obtained for every sample path of arrivals therefore
they hold for arrival processes of any statistics. Exogenous arriving packets, as
well as packets which are forwarded to node / from neighboring nodes are queued
for transmission. Let X;(¢) denote the length of the queue of packets at node i by
the end of slot # the corresponding queue length vector is denoted by
X(t) = (X;(1),i=1,...,N) and lies in ZY which is denoted by Z. The queue length
process {X(1)}:2, is denoted by X. The vector X(¢) is called state of the system in the
rest of the paper. We study the link activation scheduling problem for the following
two types of traffic.

T1. All packets entering the network have eventual destination the node 0 from
where they leave the system.

T2. The packets which enter the network at node i have as destination node / — 1
from where they leave the system.

In fig. 1 we see the queueing models of the network for the two traffic types. The
servers correspond to the links and the constraints for interference free trans-
missions require that two servers that correspond to neighboring queues should
not be activated simultaneously. Under traffic type T1 the network is modeled by
a tandem queueing system; the queues that correspond to different links interact
both because there is traffic forwarded from one queue to the other and because
the servers that correspond to different queues are dependent. Under traffic type
T2, the network is modeled by a set of parallel queues; the queues interact only
because their servers are dependent.

Whenever node i is empty, the activation of link i has no effect on the system.
For notational convenience we assume in the following that a link is activated only
if its origin node is nonempty. Let I(¢) be the indicator vector of the activation set
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(a)

(b)

(©)

Fig. 1. In (a) we see the diagram of a packet radio network. In (b) and (c) we see the queueing models of
this radio network under traffic types T1 and T2 respectively.

which is activated at slot ¢. For the traffic type T1 the queue length vector evolves
according to the equation

X(t+1) = X(t) + It + DR+ A(t + 1), (2.1)

where R is an N x N matrix with elements

1, ifj=i+1,
rl‘j: '—1, lfl:],
0, otherwise.

for the traffic type T2 the queue length vector evolves according to the equation

X(t+1)=X()—It+ 1)+ A(t+ 1). (2.2)
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The decision of whether each link j will be activated or not, that is the value of
the jth element of 1(¢), is taken by a central controller which selects the whole vector
I(1) at each slot. The selection is based on the queue lengths in all network nodes.
The objective is to minimize the average packet delay over the whole network.

3. Tandem networks with adjacency constraints

The queueing system arising in the tandem radio network under the traffic
type T1 is considered in this section. The packets that enter the network at any
node have as their destination node 0 from where they leave the system. The net-
work is modeled by a tandem queueing system. Servers corresponding to adjacent
queues cannot provide service simultaneously. The optimal scheduling policy is
obtained. According to this policy, priority is given to servers closer to the desti-
nation while a server does not idle in a slot if it is not conflicting with its neighbors.

Consider the stationary policy 7, which at slot ¢ selects the activation vector
I(t) = go(X(t — 1)) where go : & — S .is defined next. Lc?t i = go(x) and‘ij, x; be the
jth elements of vectors i and x respectively; the vector i is defined recursively by the
following equations

. 1, if X > O,
1T =
"7 lo, ifx;=0;

j=2,...,N.

J

) _{1, iij>0andij_1=0,}
0, otherwise,

In fig. 2 we see the activation vector which is selected by 7 for the particular state
of the network in the picture. Let G be the class of all possible activation policies.
Policy 7, is optimal within G as it is stated in the next theorem.

THEOREM 3.1

Consider the evolution of the system under policy 7y and an arbitrary policy -
7 € G. Let X, X° be the queue length processes under 7 and m, respectively when the
system starts from the same initial state under both policies. For all £ =0, 1,... we

have

N N
SNox)) <y X0 as. (3.1)
i=1 i=1

Fig. 2. In this picture we see the servers (black) which are activated by policy my when the state of the
system is as indicated in the figure (the shadowed queues are nonempty and the white are empty).
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The above theorem implies that policy 7y is optimal in a very strong sense,
since under m, the number of packets in the system is minimum at every time slot
and for every sample path of arrivals. For the proof of the theorem a partial order-
ing is identified in the state space 2’ which implies an inequality for the total number
of packets in the system. Then it is shown that if an arbitrary policy 7 and
schedule transmissions in two systems that start from the same initial state then
the partial ordering holds at any time instant; therefore the number of packets in
the system under 7, is smaller at all times. The proof of the theorem will follow
after some definitions and lemmas.

DEFINITION 3.1

Consider two vectors x, y € &. Let X, Y be the queue length processes when
the initial queue length vectors are X(0) = x, Y(0) = y respectively, there are no
exogenous arrivals and policy my schedules link activations. We say that the vectors
x and y are related with the partial ordering < and we write x <y if for all
t=0,1,... we have

(X(1)) < U(Y(1)), (3.2)

where /(x) = S° | x;is the total number of packets in the system when the state is x.
Notice that x < y implies /(x) < /(y). We show that if at time ¢ = 0 we have

X°(1) < X(1) (3.3)

and processes X, X 0 are as in theorem 3.1, then relation 3.3 holds at any time ¢ > 0;
hence theorem 3.1 follows. The propagation of the partial ordering is shown
by induction in time. We need an alternative characterization of the partial ordering

in the proof of the theorem. To each state x we associate the departure times £,
i=1,...,1(x) and the positions d*, i = 1,...,I(x) which are defined as follows.

DEFINITION 3.2
Assume that the system is initially in state x (X(0) = x), there are no exogen-

ous arrivals and policy m, schedules link activations. Let {X()};Z, be the corre-
sponding queue length process. The time ¢ is defined by

tF=min{r:¢>0,(X(1)) <lx)-i}, i=1...,0x),
and the position d;" is defined by

J
ai* =max{j+1 : ZXI(Z) < i}7 i=1,....0(x).
=1
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The departure times and positions as defined have the following interpreta-
tion. Index the packets by an index i that denotes the order in which the packets
reach node 0 when the system is in state x at ¢ = 0, my schedules link activation
and there are no exogenous arrivals. The departure time t¥ is the slot by the end
of which packet i reaches node 0 and the position d;* the node where packet / was
residing at ¢ = 0. For a state x the departure times and the positions are related
as stated in the following lemma.

LEMMA 3.1

For all states x € & we have

d,'x lf l = 1,
F = ifdF =1, (3.4)
maX{t{v_l + 2,dix} if i > l,dix > 1.

Proof

Consider the system operated under policy 7y, with initial state x and without
arrivals. The first packet is forwarded towards the destination by one node at each
slot. Hence we have ¢f = d¥ and (3.4) is true for i = 1. At each slot one packet is
forwarded from node 1 to node 0 until the time that node 1 becomes empty for
the first time. If 4% = 1 then the ith packet will reach the destination at the end
of slot 7; hence if dF = 1 then ¢F = i and (3.4) holds. If i > 1 and 4;" > 1 then we
distinguish the following cases.

(A)d* -1 22

Notice that at any slot 7 < 7, the packet i — 1 should reside in a node j such
that j < r¥, — t since it should reach the destination in ;7 — ¢ slots and can not be
forwarded faster than one hop per slot. The packet i should reside at time 7 in a node
m such that m > d* — ¢ since it can not move faster towards the destination than
one hop per slot. Hence we have m > d* —t > t, — t+2>j+2 which implies
that packet i — 1 will be, at each slot ¢, at least 2 nodes closer to the destination
than packet i. Therefore packet i will be the first packet in its queue and the next
node towards the destination will be empty. Because of that packet i will be for-
warded by one node towards the destination at each slot (since packet i — 1 will
never prevent it from doing so) hence it will reach the destination by the end of
slot 47, that is ;7 = d;* which agrees with (3.4).

B)d* —t2 < L.

Notice first that if i > 1, d* > 1 then ¢ > £ + 2. This is so because any
packet, which is not placed initially at node 1, may reach node 1 only when this
node is empty (because if it is not the transfer of any packet to that node is
prevented from the activation of link 1). Hence at the slot in which packet i — 1
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leaves the system, packet i will be in node 2 or further away from the destination;
hence it needs at least two additional slots in order to reach the destination. We
show in the following that ¢ = | + 2 which agrees with eq. (3.4) in this case. If
packet i is forwarded towards the destination by one node at each slot then it will
reach the destination by slot 47; but this is impossible since 4 — #;~; < I and as
we just argued, we should have 7 — 17 > 2. Hence at some slot the packet / is
not forwarded from its node. This may happen only because packet i — 1 at that
slot is either in the same node with i or in the node in front of i towards the destin-
ation. Because of that, at the slot at which i is not forwarded and at all subsequent
slots until the time that packet i — 1 leaves the system, packets i and i — 1 can not be
in two nodes j, m such that j — m > 2. Hence two slots after the time packet i — 1
reaches node 0, packet i reaches node 0 as well, that is £ = £ + 2 as we have
claimed. 0

The ordering < between two vectors x, y implies certain relations on the
departure times associated with those two vectors. The next lemma provides an
equivalent characterization of the partial ordering between x and y in terms of
the departure times associated with the vectors.

LEMMA 3.2

For two vectors x, y € Z we have x < y if and only if

i< i=1,...,1x), (3.4a)

i+k?
where k = I(y) — I(x).
Proof

Let X(¢), Y(¢), t=0,1,... be the queue length processes when the initial
queue length vectors are X(0) = x, ¥(0) = y respectively, there are no exogenous
arrivals and m, schedules link activations. If ¢/, < " then by the end of slot ek
exactly i + k packets have departed from the system when the initial state is y while
less than i packets have departed from the system when the initial state is x. Hence

we have
(Y(15) =1p) —i—k=I(x) — i < (X(],)),

which contradicts x < y and the necessity of (3.4a) follows.

Next we show the sufficiency of (3.4a). For an arbitrary slot ¢ let j be
the packet most recently departed from the system when the initial state is y. If
j < k apparently (3.4a) is satisfied at ¢. If j > k then, since ¢, <t by time ¢ at
least j — k packets have departed from the system with initial state x. Hence we
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have

(X(1) < l(x) —j+k=1Up)—j=UY({)),
and the sufficiency of (3.4a) follows. O

After the two preliminary lemmas relating the partial ordering <, the depar-
ture times and the positions we proceed to the proof of theorem 3.1. The following
two lemmas are essential for the induction step in the proof of the propagation of
the partial ordering. The next lemma implies that the partial ordering propagates
if there are no exogenous arrivals.

LEMMA 3.3

If we have x < y for x, y € & and i is an arbitrary activation vector, then for
the states u = x — Rgy(x) and z =y — Ri we have u < z.

Proof

We show that for all i = 1,...,/(x) we have #/ <ty and from lemma
3.2 we conclude that & < z. Let I(y) — {(x) = k. We distinguish the following cases.

(A) l(u) = I(x),1(z) = U(y).

In this case we need to show that for all i = 1,...,/(u) we have
t < tz+k (35)

From the definition of the departure times we can easily see that
it =1t -1, (3.6)

since # = X(1) in the definition of the departure times. We show by induction on i
that

>t > -1 (3.7)

For i=1 we have t/ =d{ >df +1 =1+ 1; therefore (3.7) holds for i=1.
Suppose that (3.7) holds for i. We show that it holds for i+ 1 as well. If 4%, =1
then we have t&,; = t/,; =i+ 1 and (3.7) holds for i + 1. If 4%, > 1 then we have
th, = max{tf +2,d; +1} If packet i + 1 is forwarded by one node because of the
activation of vector i then we have di, = d’,, — 1; otherwise we have di}, = d7,;.
We distinguish the following cases. If either d3, =4}, or di, = d}, —1 and

t¥ >t — 1 we can easily see that

max{t} +2,d},,} — 1 < max{#f +2,d%,} <max{f +2,d%,}. (3.7a)
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Therefore (3.7) holds for i + 1. If d%, = d},, — 1 and ¢} = ¢ then
max{t) +2,d%,} > max{tf +2,d},} > max{#f +2,d},} -1 (3.7b)

Therefore (3.7) holds for i + 1. If &%, = d7, and ¢/ = ¢/ and (3.7) holds for i + 1.
Relations (3.6), (3.7) and the fact that x <y imply that (3.5) holds for all

i=1,...,0u).
(B) l(u) = i(x) — 1,1(z) = I(»).
In this case we need to show that for all i=1,...,/(u) we have
t < s (3.8)

The (i + 1)th packet in state x becomes ith packet in state u; hence we have

For the state z the situation is identical to that of case A; hence (3.7) holds. Equa-
tions (3.7), (3.9) immediately imply (3.8).
(©) l(u) = I(x) — 1,1(z) = I(y) — 1.
In this case we need to show that foralli=1,...,/(u) we have
i < tig (3.10)
For the departure times of state u (3.9) holds as it has been argued in case B. We
show by induction that

ty

Tzt~ L (3.10a)

i+l

Whenizlwehavetf:dfgdzygtg;iftzy:dzythentf:df:d2y~1:tf—l;
if f = dJ +1 then tf = df = dJ =] — 1. Hence (3.10a) holds for / = 1. Assume
that it holds for i; we show that it holds for i+ 1 as well. We show first that
i, >t If tf =di, then we have 1 =df <di, <t I, =4 +2
then from the induction hypothesis we have i, =1/ +2<1f,,+2<t +2.

Now we show that %, >/, —1. If i}, =d}, then we have t, =d}, =

Eo4+l=1f, + LI i, =12, +2 then we have i > +22> tHo+2-1=
), — L. If ], = d’, then we have 1}, =d’, =di, + 1=t} + 1. That com-

pletes the proof of the induction step. Relations (3.9) and (3.10a) immediately
imply (3.10).

(D) [(u) = i(x),/(z) = I(y) = 1.
In this case we need to show that for all i =1,...,/(u) we have

S (3.11)
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For the departure times of u, (3.6) hold as we have shown in case A while for
the departure times of z, (3.10a) hold as we have shown in case C; hence (3.11)
follows. U

The following lemma states that the ordering < between two states is
preserved after a packet arrives at any network node. More specifically let e; be
the vector which has all its elements equal to 0 except of the element j which is equal
to 1. Then we have the following.

LEMMA 3.4

If we have x <y for x, y€ & then for all j=1,...,N we also have
x+e<yte;.

Proof

Letu = x + ¢,z = y +¢;. Since x < y we have that /(y) — /(x) = k > 0 which
implies that /(z) — /() = k. We show in the following that foralli=1,...,/(x) + 1
we have

<t (3.12)

which in view of lemma (3.2) completes the proof. Let

J J
m = Z X+ 1 = Z i+ 1.
=1 I=1
The newly arrived packet is the mth packet of state u and the nth packet of state z.
We consider the following cases.
(A)i<mi+k<n.
The transmissions of all packets in nodes 1 to j, which are preceding the new
packet that has arrived in node j, are not affected by the presence of that packet

which joins the system in the end of queue j. Hence we have =1ttty =11,
and (3.12) follows.
B)i>mi+k<n
Notice first that for all i such that 1 < i < /(x) we have
di < df, (3.13)

since for i < m, d* = d*, form = 1 < I(x) we have dy, < d, and form < i <I(x) w
have d = d, < d;". We show by induction in the following that for all i such that
1 <i<I(x) we have

i <. (3.14)

!
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Fori = 1 we have from (3.13) ¢} = d{* < di* = #7. If (3.14) holds for some i we show
that it holds for i + 1 as well. If t* | = d}%; and 7,4}, then, in view of (3.13), (3.14)
holds. If %, =1t!+2 and ;= +2 then (3.14) holds by the induction
hypothesis. If ¢, =¢+2 and ¢ =df; then we have ¢ +2>

X, >df, =t and (3.14) holds. If ¢, = d¥, and 1/ = t{ +2 then we have
X, > tF+2>1t"+2 and (3.14) holds. From case A above we have 2=t
whenever i + k < n which together with (3.14) imply (3.12).
Q) i<mi+k>n.

We show (3.12) by contradiction. Assume that

1 > thy. (3.15)
We claim that if (3.15) holds and m > i > 1,i+ k > n then we have
o> i (3.16)
Since i + k > n,i < m and because of lemma 3.1 we have

the 2 die 2] 2 di (3.17)

Hence if (3.15) holds and because of (3.17) we conclude that
th =1t +2>d" (3.18)
From (3.15) and (3.18) we get

i +2> 1k > tha o T2 (3.19)

Equation (3.19) implies (3.16).

By iteratively substituting i with i — 1 in (3.15) at some point we will have
either i = 1 or i + k < n. In the first case from lemma 3.1 we have #| = d{’, which
contradicts (3.18). In the second case, as we argued in case A, we have 1}, = tl.y+k,
which in view of (3.15) and since ¢ = ¢ for i < m contradicts the fact that x < y.
(D)i>m,i+k>n.

If i > m then the ith packet of state &, is the same with the (i — 1)th packet of
state x, hence we have

d! =d (3.20)

i-1-
Similarly, if i + k > n we have

di = di);-k—l‘ (3:21)
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If i + k = n < I(z) then we have d;} < d7, which implies
tf=max{/_, +2,df} <max{r,_ +2,d]} =1;. (3.22)
We can easily show by induction that

o>, ifitk>n (3.23)

i+k—1

For i+k = n, since tf,, > tf,_; =t/ ,_;, (3.23) holds. Assume that it holds for
i+ k = [ > n. Then from (3.21) and the induction hypothesis we obtain

th =max {tf +2,df,,} > max {1} +2,d'} =1 (3.24)
We show (3.12) by contradiction. Assume that
i >tk (3.25)

When (3.25) holds, we can not have ¢ = d/* since in that case and because of (3.20),
(3.23)

thy>di =df =t >f >,
which contradicts x < y. Hence we have
i =1+ 2. (3.26)

Notice that if 4%, = 1 we should have i + k = n which implies that / = m; therefore
we have d?, > 1 which implies ¢7, > tf,,_; + 2 and from (3.25), (3.26) we obtain
1y > tf .. By applying the same argument several times (as in case C) we reach
a point where

1 > ti, (3.26a)

and either i = m or i+ k < n. If i = m then (3.26a) contradicts either case B or C

depending on whether i + k <nori+k > n. If i+ k <n then (3.26a) contradicts

case B. Hence (3.25) can not hold and (3.12) should hold in this case also. O
We proceed to the proof of theorem 3.1.

Proof of theorem 3.1

We show that
X°() < X(n), t=0,1,2,.... (3.27)
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Hence (3.1) is implied. We use introduction to show (3.27). For ¢ = 0, (3.27) holds
trivially since X°(0) = X(0). Assume that (3.27) holds for some ¢; we will show that
it holds for ¢ + 1 as well. Let I(¢ + 1) be the activation vector under 7 at 7 + 1. Then
from lemma 3.3 we have

(X°(1) + Rgo(X°(1))) < X(¢) + RI(t + 1). (3.28)

The arrival vector A(¢ + 1) can be written as

N

A(t+1) =) A(t+ e

i=1
Hence from lemma 3.4 and eq. (3.28) we can easily see that

N
XO(t+1) = X°(1) + Rgo(X°(1)) + > _ At + Ve
i=1
< X()+RIt+1)+ EN:A,-(z + 1)e; = X(t +1).

i=1

U

Theorem 3.1 states that the number of packets in the system under m, is
smaller than the number of packets under any other policy 7 at all time instants.
This property of m, implies that the long-run time average number of packets in
the system under 7, is smaller than the corresponding number under any other
policy m € G (whenever the long-run time averages exist). From Little’s law, the
long-run time average delay over the network is directly proportional to the aver-
age number of packets in the system. Therefore policy my minimizes the average
delay within G.

Remarks

(1) In order to implement 7, we just need to know whether each queue is
empty or not and we do not need the exact queue length. That is, m uses limited
state information for decision making.

(2) Under policy 7, the activation decision j(t) for link j which originates
from node j is based on the state at node j and the activation decision i;_,(¢) for
link j — 1. If node j — 1 is empty then the activation decision for link j may be based
on the queue length at node j only.

(3) We do not pose any restriction on the policies of class G; a policy in G may
select the activation vector I(¢) based on the knowledge of the whole arrival sample-
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path and not only of the past system history. Hence G contains even nonanticipative
policies which may use for decision making information about the future evolution

of the system.
4. Parallel queues with adjacency constraints

The queueing system arising in the tandem radio network under the traffic
type T2 is considered in this section.The packets that enter the network at node i,
transverse the link from i to i — 1 and leave the network at node i — 1. Hence the
traffic streams of different queues do not interact and the network is modeled by
a system of parallel queues. There is one server for each queue; the service is depen-
dent in the sense that when server i provides service, none of its neighbors i — 1 and
i+ 1 can do so at the same time. The dependence is inherited from the communi-
cation constraint that no two links adjacent to the same node can be activated at
the same time since there is a single transceiver per node. Our main result in this
section is that the optimal policy schedules at every slot activation sets with maxi-
mum number of servers; this holds for arrival processes of arbitrary statistics.
The above fairly intuitive property of the optimal policy does not hold for any arbi-
trary constraints as it is demonstrated by a counterexample in section 5.

3 g O O O k=6

2 o= [ o @ . i
o= o o o T
b= O O O
T o e o I;= j4=9
T O O ®
o= e O O j=12j=13
T o e e ° §
b= O O O
T e e o
T O o O0

: o> [ [ [

1 _Pp—= O ®) ®)

I1 IZ I3

Fig. 3. In this picture we see the queueing system that corresponds to a radio network with 13 nodes
and traffic type T2. The shadowed queues are nonempty while the others are empty. The boundary
indices and the activation vectors of the set S(x) for this particular state are indicated. The activation
vectors are represented by columns of circles where the black circles correspond to activated servers.
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Let S(x) be the set of all activation vectors which are such that if the
servers are activated according to any of them and the system state is x then the
maximum number of nonempty queues is served. We show that for every policy
 there exists a policy ' which achieves smaller delay than = and is such that the
activation vector I'(z) selected by n’ at ¢ belongs to S(X(t - 1)). The number of
activation vectors in S(x) is considerably smaller than the number of all activation
vectors.

We give first an explicit characterization of the set S(x). Let k = k(x) be
such that k/2 is the number of groups of consecutive nonempty queues and
ji = ji(x),...,jx = Jjk(x) are the nonempty queues which are neighboring with
one empty and one nonempty queue or they are in the end of the tandem. The num-
bers ji, - - - ,jx are called the boundary indices of x and they are uniquely defined by
the following conditions which should be satisfied.

(1)  All queues j such that j > ji or j < j; are empty.
(2)  All queues j such that joy, | <J < Jom, M = 1,...,k/2, are nonempty.
(3)  All queues j such that jp,, <j < jomt1, M= 1,...,k/2 — 1, are empty.

In fig. 3 the boundary indices are illustrated. The following lemma provides neces-
sary and sufficient conditions for an activation vector to belong to S(x).

LEMMA 4.1

An activation vector i belongs to S(x) if it satisfies the following conditions:

(1) If jom — jom—1 is an even number then for all links j, jom—1 <J < jom, W€ have

i =

{ 1 ifj— jom—y 1s €ven,
/

0 ifj — jom1 is 0dd.

forallm=1,...,k/2.
(2)  If joyu = jom_1 is an odd number then i should satisfy one of the following

conditions.

(2a)
_ { 1 ifj = jome1 18 €VeD, jom—i <J < Jjams
=
/ 0 otherwise;

(2b)

_ { 1 if j = jomo1 is 0dd, jom—1 <J < Joms
0 otherwise;
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(2c) there exists an / such that

1 if j— jo—; is even and jp,— <j </
i = Or jo,, —j is even and jo, > j > 1+ 1,
0 otherwise;

forallm=1,...,k/2.
(3) Ifj; = 1 then for all links j, jom—1 <j < jom, We have

i =

{1 if j, —jis even, j; <j < Jja,
j

0 otherwise;

forallm=1,...,k/2. Similarly for the case where j, = N.

Proof

We show that when an activation vector satisfies the conditions 1-3 above
then for each group of consecutive nonempty queues the maximum number of
queues are served. Then the lemma is implied immediately. If j,,, — jom—1 1S an
even number then all vectors in S(x) serve (jon —jam—1)/2+ 1 queues of those
indices j such that j,,_; <j < jy, when they are activated. No other vector can acti-
vate more queues of this group of consecutive nonempty queues since the neighbor-
ing queues of each one which is activated, should not be activated. If j,, — jam_1 1S
an odd number then all vectors in S(x) activate (jym — jam—1 + 1)/2 queues of those
with indices j such that j,_; <j < jom- No other vector can activate more queues of
this group of consecutive nonempty queues for the same reason as above. O

In fig. 3 the set S(x) for the particular state x in the picture is illustrated.

Consider the class of policies G that contains any policy 7 so that the acti-
vation vector I(7) selected by = at ¢ belongs to S(X(z —1)). For each policy  in
G there exists a policy 7 in G which performs better than 7. We define next the
policy 7 that corresponds to 7 and has the above property. Consider the mapping
J:S x & — S defined next which is so that J(i, x) € S(x). Let i’ = J(i, x); consider
the boundary indices ji, . . . ,ji for the state x. Since i belongs to S(x), its elements if
are uniquely specified for all j's other than those for which for some m we have
Jom = J > Jam—1> Where jo, — jop,_; is an odd number. For those j s, i} is defined as
follows:
(1) Ifi, ,=0then

1

;=

, { 1 if j — jom_; is an odd number, jom_1 <J < jom
J

0 if jo,_, is an even number.
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(2 1Ifi,  #0andi, =0 then

l. ==

y { 1 if j — jom_i is an even number,
J

0 if j— joym—1 is an odd number.

(3) Ifi, #0,i, ,# 0 thenlet/be the smallest number greater than j,,,_; such
that ;; = i;.; = 0. We have

1 if j — jo,— is an even number and jp,— <j </
i= Of jom —j is an even number and j, >j > [+ 1,

0 otherwise.

It is easy to check that such a number / as defined above in 3 does exist and also that
the i’ belongs to S(x). Policy 7 at slot ¢ selects the vector I(t) = J(I(¢), X(t — 1)). In
the following we denote the policy in G that corresponds to a policy = € G by put-
ting a tilde over the symbol of the policy. Policy 7 as defined above is better than 7 in
the stochastic ordering sense. Next we give a definition and a theorem from the
theory of stochastic ordering that will be used in the proof of our main result.

Consider the discrete time processes X = {X(¢)}i=1, Y = {¥(¢)};<, and the
space of all real-valued sequences £ = R?+. We say that the process X is stochasti-
cally smaller than the process Y, and write X < Yif P{f(X) > z} < P{f(Y) > z}
for every z € R, where f: # — R is measurable and f(x) < f(y) for every x,y € #
such that x(¢) < y(¢) for ¢t € Z_.. The next theorem provides alternative character-
izations of the stochastic ordering relationship between two processes.

THEOREM 4.1 [11]

The following three statements are equivalent:

() X<,7.

()  Plg(X(t),...,X(1,) > z) < P(g(¥(1)),..., Y(t,)) >z) forall (1,...,1,),all
z, all n, and for all g: R” — R, measurable and such that x; < y;,1 <j<mn,
implies g(xy, ..., %) < gW1,---sVn)-

(3)  There exist two stochastic processes X' = {X'(1)};2,, Y = {Y'(1)};2, on a
common probability space with the same probability laws as X and Y respec-
tively such that X'(¢) < Y'(¢) a.s. forevery t € Z,.

For the sake of completeness we state theorem 4.1 in the above form while we
use in our proof the equivalence of parts 2 and 3 only. For more details on the
stochastic ordering theory the reader is referred to [11].
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THEOREM 4.2

For each policy 7 € G the corresponding policy 7 € G is such that if the sys-
tem starts from the same initial state and the arrivals have the same statistics under
both policies m, 7, then for the corresponding processes of total numbers of packets

in the system Q(f) = SN, X,(1), Q(1) = SN, X;(t) we have
0 <. 0. (4.1)
The proof of the theorem follows after the next lemma.

LEMMA 4.1

Consider a policy m € G and its corresponding policy 7 € G. There exists
another policy 7’ € G which acts similarly to 7 at £ =1, is appropriately defined
at 1> 1 and satisfies the following. If the system starts from the same state x at
¢ = 0 under both policies 7,7, then for the corresponding queue length processes
X(1),X'(t) and forall 1 =0, 1,... we have

> o xi/(n < i X,(1) as. (4.2)
i=1

i=1

Proof

We construct 7’ and we show that (4.2) is satisfied. We show first thatat r = 1
the queue lengths satisfy the following:

@ X/(O<X(O+1,1=1,.. N

(b) If X/(t) = X,(t) + 1 and [ < N, then X}, (¢) = X () — L.

) IfX/(t)=X,(¢)+1and /> 1, then X, (£) = X;.1 (1) — 1.

(d) Ifj, =1,/ =Nand Nis odd, then X/(1) < X,(¢) and Xn(r) < Xy(2).

Condition (a) is obvious. For the conditions (b), (¢) we argue as follows. Fora
queue / we have X/(1) = X,(1) + 1 if and only if the queue is served by I(1) while it is
not served by I'(1), where I(1),I'(1) are the activation vectors selected by T,
respectively. If jy,_1 < I < jom and jyu — jom—1 1S €VEN then, by definition of 7, the
links /+ 1 and / — 1 are activated by I'(z) (if / < N and /> 1 respectively) while
the same links are not activated by I(z), since link / was activated by the latter acti-
vation vector. Therefore relations (b) and (c) follow. If jy,—1 <1< /s, and
Jjom — jam—1 is odd then, by definition of 7, the links /+ 1 and /— 1 are activated
by I'(t) (if / < N and [ > 1 respectively) while the same links are not activated by
1(1), since link / was activated by the latter activation vector. Therefore relations
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(b) and (c) follow. If j; = 1,j, = N and N is an odd number then by definition of 7
the links 1 and N are activated and therefore (d) follows. It is easy to see that if con-
ditions (a)~(d) hold for some ¢ then (4.2) follows.

For ¢t > 1 the activation vector I'(¢) is defined based on I(t) and X(z ~ 1). Let
) be the activation vector selected by 7 at slot . At the same slot, policy 7’ selects
t) such that all queues / for which we have

It
I'(

X/,(l— l) :X[([— 1)+1 (43)

are served; furthermore, all queues which are served by I(¢) and are not conflicting
with any queue / for which (4.3) is satisfied, are served as well.

We show in the following that if conditions (a)~(d) are satisfied at ¢ then they
are satisfied at ¢ + 1 as well. Then (4.2) follows for all ¢ by induction. Apparently
condition (a) is satisfied at ¢+ 1 since, by definition of 7', any queue / for which
at ¢t we have X/(¢) = X,(t) + 1 is served. For the conditions (b) and (c) we argue
as follows. Assume that at ¢+ 1 we have X;(t+ 1) =X,(t+ 1)+ 1(/ < N, > 1).
Apparently at time ¢ we can not have X/(f) < X,(¢). Notice that we can not
have X/ (f) = X,(¢) since in that case queue / can not be adjacent to any queue m
for which X,,(t) = X,,(¢) + 1; therefore if / is activated by m it is activated by 7' as
well. Hence we should have X/ (1) = X;(¢) + 1. In this case X,_{(r) = X;_;(£) — 1
(X/o1(f) = X1 (t) — 1) and since queue /—1 (/+1) is not served by either =
or 7 at t+1 we also have X/ ,(t+1)=X_(t+1)—-1 (Xj(t+1)=
X;1(t+1) = 1). For condition (d) we have the following. If X/ <X (-1
(X4(1) < Xy(1) — 1) then (d) holds for ¢+ 1. If X{(z) = X,(2) (Xx(t) = Xn(1))
then queue 1 (N) is activated by 7 if and only if it is activated by 7'; therefore con-
dition (d) follows. O

Now we can prove the theorem.
Proof of theorem 4.2

We will show that the policy # = J(m) has the property claimed in the
theorem. Consider a sequence of policies, 7,7, ... defined as follows. Policy
is the same as policy 7’ constructed in lemma 4.1, when policies 7 in the lemma
and the theorem 4.1 are the same. Policies 7,7 > 1, are defined inductively as
follows. Consider the construction of policy 7' in lemma 4.1 in terms of 7. Let 7
be such that at time ¢ it takes the same action as policy m,_; at time 7 — 1 + £. Let
7, at times ¢t = 1,...,7 take the same actions as 7 while at times t > 7 it takes the
same actions as the policy «’ at times ¢ — 7, where ' is constructed as in lemma
4.1 when 7 is as above. We denote by X7 the queue length processes under =, for
r=1,.... By definition of the policies, for all 7 we have

XH=X"(s), t=1,...,7. (4.4)
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From lemma 4.1 and from the construction of policy ,, for all 7 we have
(X)) > X)) > ...2 (X)) >.... (4.5)

Consider the time slots #;,t,,...,t, and a function g as in part 2 of theorem 4.1.
Consider also the policy , defined as above. By construction the variables
(X" (t)),---,/(X"(t,)) have the same joint probability distribution as the vari-
ables /(X(¢1)),- -, I(X(t,)). Hence for all z we have

P(g(I(X" (1)), .., {(X"(2,))) > 2) = PgU(X (1)), . UX(t))) > 2).  (4:6)
Since (X" (1)) < I(X(¢)) a.s. forall 1 =0,1,...,1,, we have

P(g(I(X™ (1)), .., (X "(2,))) > 2) < P(g(UX(1r)),.., {(X(8n))) > 2).  (47)
Equations (4.6) and (4.7) and part 2 of theorem 4.1 complete the proof. O

Theorem 4.2 does not imply anything about the existence of an optimal
policy. In fact, a policy which is optimal in the same sense as 7y was in the tandem
system might not exist. Under certain independence assumptions on the arrival pro-
cesses the existence of a policy which minimizes the long-run time average expected
delay in the system can be guaranteed. Formulating the optimal scheduling problem
in this framework is a topic for further research.

Remarks

(1) For each queue j, jou—; <J < jom> WhETe jo, — jom_1 18 an even number or
Jam—1 = 1 OT jo,, = N, the corresponding elements i; of all activation vectors i in S(x)
are identical. Therefore the necessary optimality condition specifies uniquely the
activation vector at slot 7 up to the elements that correspond to groups of consecu-
tive nonempty queues with even numbers of queues. If ¥ =13 then G contains
exactly one policy; that policy activates queues 1 and 3 whenever they are both
nonempty, queue 2 if either queue 1 or queue 3 is empty and queue 2 is non-
empty, or the nonempty queue whenever it is only one. Under that policy the pro-
cess of total number of packets in the system is minimized in the stochastic ordering
sense for any arrival process.

(2) The class G contains all policies that maximize parallelization in service.
All those policies are myopic in the sense that the activation vector at slot ¢ is
such that the number of packets in the system at slot ¢ is the minimum possible
given the state of the system at’slot r — 1. Hence under the activation constraints
of tandem topology the optimal activation policy, if it exists, is among the myopic
policies.
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5. General constraints

Queueing systems with constraints arise in several other than communication
networks. In [12] it is shown that systems of parallel queues with constraints are
appropriate models for certain parallel processing systems and databases with con-
currency control. The constraints in these cases are different in nature from those
arising in the network considered here. It is interesting to know whether theorem
4.2 can be generalized to other types of constraint sets as well. The following
counter-example demonstrates that theorem 4.2 does not hold for any arbitrary
constraint set; therefore each case of constraint sets should be considered separately.

Consider a system of 16 parallel constrained queues, slotted time and acti-
vation sets {1,...,8}, {9,...,16}, {4,...,12}. Assume that at =0 all queues
have exactly one packet and there are no future arrivals in the system. There is
only one policy, say 7, with the property that the maximum number of nonempty
queues are served at each slot. Policy = selects for activation the set of servers
{4,...,12} at slot t = 1, the set {9,..., 16} at slot =2 and the set {1,...,8} at
slot = 3. The numbers of packets in the system are 16, 7, 3 and 0 at slots 0, 1, 2,
3 respectively. Consider the policy 7' which activates the servers {1,...,8} at
¢t =1 and the servers {9,...,16} at t = 2. The numbers of packets in the system
under the latter policy are 16, 8, 0, 0 at slots 0, 1, 2, 3 respectively. Clearly policy
7 does not minimize the process of total number of packets in the system. In fact,
the average packet delay under 7’ is smaller than the corresponding delay under .
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