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Adaptive Back-Pressure Congestion
Control Based on Local Information
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Abstract—The problem of distributed congestion control as it
arises in communication networks as well as in manufacturing
systems is studied in this paper. In particular, a multistage
queueing system that meodels virtual circuit and datagram com-
munication networks and a class of manufacturing systems are
considered. The topology may be arbitrary, there are multiple
traffic classes, and the routing can be class dependent, with
routes that may form direct or indirect loops. The model incor-
porates the functions of transmission scheduling, flow control,
and routing, through which congestion control is performed in
the network. A policy is given that performs these functions
jointly. According to the policy, heavily loaded queues are given
higher priority in service. A congested node may reduce the
flow from upstream nodes through a flow control mechanism.
Whenever routing is required, it is performed in such a manner
that the lightly loaded queues receive most of the traffic. For
arrival processes with bounded burstiness, the policy guarantees
bounded backlogs in the network, as long as the load of each
server is less than one. The actions of each server are based on
the state of its own queues and of the queues one hop away.
Therefore, they are implementable in a distributed fashion. An
adaptive version of the policy is also provided which makes it
independent of the arrival rates. .

I. INTRODUCTION

YNAMIC control achieves a better utilization of the

transmission and switching resources of a communica-
tion network over static schemes. Dynamic schemes have
been adopted for packet routing, for sharing the transmis-
sion capacity of a link among several competing information
streams, or for controlling the flow of traffic in a packet
switching network. In large networks though, where the control
functions are distributed, dynamic control policies are prone to
misbehavior, and the network may enter intriguing instability
modes. The same phenomenon has been observed in manu-
facturing systems with distributed scheduling [10], [6]. In this
work, we present a new distributed dynamic control policy
in a multistage queueing system that models virtual circuit
and datagram communication networks, as well as a class of
manufacturing systems. The policy, which we call the adaptive
back-pressure (ABP) congestion control policy, schedules the
servers, routes the served traffic, and controls the flow based
on local information, and therefore is amenable to distributed
implementation. Each server is allocated dynamically based
on the state of the queues that it serves, as well as on the state
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of downstream queues, which are one hop away. When there
are routing options, the decision is taken again in a similar
distributed fashion. It is shown that under the ABP policy,
the backlog in the network remains bounded as long as the
utilization of each server is less than one.

A central problem in the design of virtual circuit (VC)
communication networks is the sharing of the transmission
capacity of a link among the virtual circuits that go through it.
Several schemes have been proposed, including round robin,
weighted round robin, golden ratio scheduling, virtual, clock,
and processor sharing (4], [9], [14], [8], [5]. In some of the
above schemes [4], [5], the link.transmission schedulmg is
combined with window flow control. One of the main prob-
lems arising in this context is how to evaluate the throughput
of a virtual circuit network, that is, the session /rates that
can be sustained by the network for certain transmission
control policies, without experiencing instabilities.; Cruz {2],
[3] has considered this problem in virtual circuit networks
by employing several different link transmis'sionl"disciplines
including FIFO, LIFO, and strict priority. He obtained bounds
for the backlog in the nodes of the network. These bounds
depend on the session arrival rates and burstmcss character-
istics, and guarantee stable operation of the System for the
traffic parameters for which they remain finite. In certain cases
though, in networks with virtual circuits that may form cycles,
these bounds explode for arrival rates which give utilization
strictly less than one at all network links. In this case, no
conclusion can be drawn for the stability of the network.
Chang [1] extended these results, obtaining backlog bounds
in multiclass networks with routing. The stability problem yet
remained open for certain cases in networks with cycles. Yaron
and Sidi [13] addressed the same question with processes
satisfying constraints on the tails of the backlog distribution.
Hahne [4] has shown that with round robin scheduling in each
link and hop-by-hop window flow control, there exist window
sizes to stabilize the network as long as the link utilization
is less than one. The selection of the window sizes depends
on the arrival rates. By the ABP policy, stabilization of the
network is achieved as long as the utilization of every link is
less than one, and no knowledge of the arrival rates is required
for its implementation. When the routes of the packets are
not prespecified but only their final destinations are given, as
is the case with datagram communication networks, then the
ABP policy combines routing with the scheduling mechanisms
described in the VC case to preserve bounded queue lengths.

A problem of stability, similar to the one discussed above,
arises in manufacturing systems operated under distributed
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scheduling policies. Perkins and Kumar [10] and Kumar
and Seidman [6] have studied the problem of stability in
a flexible manufacturing system with distributed scheduling.
While simple distributed policies are shown to stabilize acyclic
manufacturing networks in [10], a simple two-stage queueing
network is presented in [6]. In this model instabilities occur
in situations in which all servers of the system are strictly un-
derloaded and the system is operated under a work-conserving
policy. This example demonstrates how instabilities may occur
in multistage manufacturing systems due to the phenomena
of starvation and overloading. The queueing network that
corresponds to the manufacturing system considered falls
within the scope of the networks presented in our study. The
ABP policy stabilizes the manufacturing system as long as the
utilization of each machine is less than one. The scheduling of
each machine i is determined by the size of the backlog of the
different part types in %, as well as the size of the backlogs of
those part types in downstream machines one hop away from i.
Occasionally, the machines are forced to idle again, depending
on the local state. The queueing system presented here extends
the above manufacturing systems model to include the case
where a part type may have the option of several alternative
manufacturing scenarios and routing decisions are made. In
Section II-C, this is discussed in more detail. The ABP policy
in that case combines scheduling and routing decisions to
achieve the same goal. In [11], a single-class network was
considered, and a routing policy of the same nature was studied
for Poisson arrivals.

For the arrival process, we assume that the burstiness
is bounded by a deterministic bound [2], [3]. This traffic
assumption has been used widely lately since the outputs of the
traffic regulators that shape the traffic before it enters a high-
speed network satisfy this type of constraint. Lu and Kumar
{7] have used a similar type of traffic in the context of a
manufacturing system. '

The rest of the paper is organized as follows. In Section
I, the queueing network is presented, and the correspondence
with virtual circuit and datagrams networks as well as man-
ufacturing systems is demonstrated. In Section III, the issue
of stability is discussed, and the sufficient stability condition
is shown. In Section IV, a parametric class of policies is
specified, and their stability is studied. In Section V, the ABP
policy is specified and investigated. Finally, in Section VI, the
results are discussed and some open problems are presented.

II. THE NETWORK MODEL

We consider a network consisting of N servers and B
buffers (Fig. 1). Each server i can serve any buffer from the
-set of buffers B;, i = 1,---, N— it is allocated to the buffers
according to some scheduling discipline. The sets B; may be
overlapping, that is, a buffer may be served by more than
one server simultaneously. The served traffic from buffer j
can be directed to any buffer of the set R;. A routing policy
determines to which buffer in R; the traffic from j is routed.
From certain buffers, the traffic can be directed out of the
system; this is indicated by including a O in the set R;. We
make the natural assumption that, from every buffer, the work
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can be forwarded out of the system if it is routed through an
appropriate sequence of buffers. We consider a fluid model
for the work coming into the system. The time is continuous
and the instantaneous rate with which work comes to buffer i
from outside is a;(t). For simplicity, we assumne that the arrival
stream can contain no impulses, that is, the arrival rate a;(t)
for all buffers ¢ is bounded uniformly over time by a bound
A. In the time interval (¢, t2), an amount of work equal to

t2
/ a.,'(t) dt
t;

enters buffer ¢ from outside. We assume that the arrival
streams satisfy some burstiness constraints; that is, there are
nonnegative numbers a;, b;, ¢ = 1,---, B such that, for all
0 < t; < tg, we have
t2
ai(t) dt < ai(t2 — t1) + bi.

t;

@2.n

We will assume that the long-run average rate with which work
enters the system in buffer ¢ exists

].iml

t—00 t

t
a;(s)ds = a;, i=1,---,B
0

and a; will be referred to as the arrival rate to buffer :. The
latter assumption is not needed for the validity of the results.
It is introduced only because it is conceptually simpler to
think of the a; as being the arrival rate to buffer :. When
server ¢ provides service to buffer j € B; which is nonempty,
work leaves the buffer with a constant rate u;;, the service
rate of server % at buffer j. If server ¢ is assigned to buffer
j continuously for an amount of time T and the traffic is
directed to buffer ! in R;, then an amount of work Tu;; is
transferred from j to l. The selection of buffer j € B; served
by 7 and of buffer [ € R; to where the trafficis directed is done
by the control policy. This work is routed t6 some buffer in
R ;. We allow more than one server to serve the same buffer;
in that case, the service rate is assumed to be equal to the
sum of the rates of the servers that serve the buffer. When
server 7 that serves buffer j and directs the traffic to buffer &
switches to buffers | and m, respectively, a switchover time
J;Hm is involved during which the server idles. The results in
the paper hold for arbitrary and distinct switchover times. For
notational simplification but no loss of generality, however, we
will assumne that the switchover time denoted by 6 and be the
same for all servers and buffers. In the following, we discuss
how certain networks fall within the scope of the above model.

A. Virtual Circuit Networks

A VC network is characterized by its topology graph
G = (V, E), the transmission rates of the links and the
established VC’s. The topology graph contains one node for
every network node and one directed link e = (v, w) for every
communication link from node v to node w. The transmission
rate of link e is denoted by p.. A virtual circuit ¢ is specified
by the sequence of links ei,---,ely that traverses as it goes
through the network. The traffic of VC i enters the network
at the origin node of el and leaves it at the destination node
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Fig. 1. An example of the network specified in Section I is depicted. There
are three servers 1, 2, 3 (not depicted) which serve the queues in the sets By,
B,, and Bj. respectively. The traffic from each queue i may be routed to
any queue j to which there is an arrow from .

of link €. A scheduling policy schedules for each link the
transmissions of the virtual circuits going through it. Also,
at certain times, the link may be forced to idle due to flow
control actions.

A virtual circuit network is modeled by the above queueing
system as follows (Fig. 2). Each link corresponds to a server
with transmission capacity equal to its service rate. Clearly,
in this case, the service rate of server (link) j is the same
for all buffers in B;. There is one buffer for every VC i and
every link el is traversed by ¢. The buffers of virtual circuit
i contdin traffic of that VC waiting to be transmitted through
the corresponding link. When a link is allocated to any of the
buffers of the VC’s going through it, that buffer empties with
rate equal to the link transmission rate. The traffic from the
buffer.of virtual circuit ¢ at link e§ is routed to the buffer of
the same virtual circuit at link e, except if ej» is the last
link traversed by VC i; in the latter case, the traffic leaves the
systerri. Hence, the set R; contains a single element for each
7 and no routing is needed. The traffic in the VC’s consists of
streams of packets, and clearly, the link cannot switch from
VC to VC in a time period smaller than a packet transmission
time. In the assumptions we made, though, in the previous
section, the traffic is considered as a continuous flow. For the
resilts that we obtain here, it is not important whether the
traffic is continuous or in terms of packets since the policies
we propose can be easily modified to work with packetized
traffic.

B. Datagram Networks

in datagram networks, the traffic of a communication ses-
sion does not have to follow a specific route, but can be routed
arbitrarily, and different packets may follow different paths to
the destination. The packets are differentiated only by their
destination nodes. When a packet arrives at a node which is not
its final destination, a decision is made as to which outgoing

link the packet will follow next; then the packet is placed at *

the outgoing buffer of that link. There are no constraints on

N

Fig. 2. A virtual circuit network.

which outgoing link the packets of each specific destination
will follow; this is determined by the routing policy. Packets
of several different destinations are waiting in the buffer of
each outgoing link to be transmitted. The link scheduling
discipline determines which is the packet to be transmitted
next. In the corresponding queueing model, the buffers are in
one-to-one correspondence with the links. For edch server 1,
there is one buffer in B; for each destination node. The traffic
with destination node k, which is transmitted through link 3, is
stored in the corresponding buffer of B;. These buffers do not
necessarily correspond to physical buffers in the origin node
of link . Their introduction enables the differéntiation of the
traffic, based on the destination and the link the traffic will go
through. If, from the topology of the network or from other 7
constraints, it turns out that the traffic of a specific destination
never transverses link i, then the corresponding buffer in B;
will be permanently empty. ,’"

C. Manufacturing Systems

In manufacturing systems, several different types of parts
are fabricated. A part type, in order to be manufactured, needs
to be processed by a number of machines in some prespeci-
fied order. In flexible manufacturing systems, a2 machine can
process more than one type of part. In this case, the machine
has to switch from one part type to another at certain times
since the different parts are not processed simultaneously. The
switching of the machine involves a period during which the
machine idles. The switching should be done rarely enough
such that the fraction of time that the machine is utilized is
higher than the loading.

Perkins and Kumar [10] have obtained a distributed schedul-
ing policy that stabilizes any acyclic network of manufacturing
machines. When cycles are formed by the routes of the parts
in the manufacturing system, then the behavior of the system
is more difficult to characterize. The intrinsic complexity of
the problem was demonstrated by a counterintuitive example
of instability in a simple manufacturing system in [6). The
queueing network considered here is readily interpreted into
a manufacturing system model. The servers correspond to the
machines, the arrival streams to the different part types, and
the buffers of each machine store the part types at intermediate
processing stages. If a part type needs to be processed by a
machine more than once in its manufacturing cycle, then it
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waits in a different buffer each time. When the part types
have unique routes through the manufacturing system, then the
sets R; have a unique element, the next buffer that the parts
will join when they leave from j. Kumar and Seidman in [6]
propose a scheduling policy with a supervisor mechanism that
stabilizes the manufacturing system as long as the load of each
machine is less than one. The supervisory mechanism, though,
relies on knowledge of the arrival rates. The ABP policy
stabilizes the system without the arrival rate information. The
model considered here extends the one considered in [10], [6]
to include cases where a part type has the option to follow
different routes at certain points of its processing, in which
case routing is performed.

III. NECESSARY AND SUFFICIENT
STABILIZABILITY CONDITIONS

We are interested in the average rate with which work can
be served.. We consider that certain throughput rates can be
achieved if there exists a policy under which the network is
stable when the long-run average arrival rates are equal to the
desired throughputs. Denote by X;(t) the amount of work in
buffer j at the time t.

Definition: The system is stable under a policy = if

B
lim supt_,mZXj(t) <D

J=1

where D may depend only on the- arrival rates ¢ =
(a1,---,an), the burstiness coefficients b = (by,---,bn),
and the service rates u = (pij: ¢ = 1,---,N, j € B;), but
not on the initial condition.

The following condition on the arrival and service rates is
necessary and sufficient for the existence of a policy under
which the network is stable. -

C1: There exist nonnegative numbers fjx, j = 1,---, B,
k € R; that satisfy the flow conservation equations

a; + Z fii= Y fix, G=1,-,B. (1)
k:j€R: kER,
Also, there exist nonnegative numbers uz, i = 1,---,N,
j =1,---,B such that
Youi<1,  i=1,--,N, (3.22)
JE€B;
Yo fus Y wims,  j=1,--,B.  (32b)
leR, i§€B;

More specifically, it is shown that Cl is sufficient for
stability if the burstiness condition (2.1) holds, while Cl
is necessary for stability when the arrival process satisfies
a “bounded idleness” condition, to be specified later. No
existence of the arrival rate is needed. An intuitive justification
of C1 follows. The number f;x in the condition C1 represents
the long-run average rate with which work is transferred
from buffer j to buffer k. Hence, (3.1) is indeed a flow
conservation equation. A collection of nonnegative numbers
fikoj=1,---,B, k€ R; which satisfy (3.1) will be referred
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Fig. 3. A network with routing control.

to as flow in the following. The number u§ represents the
fraction of time that server ¢ spends serving buffer j. Inequality
(3.2b) expresses the fact that the rate with which work leaves
buffer j [the sum on the left side of (3.2b)] cannot be greater
than the server capacity [the sum on the right of (3.2b)] that
is allocated to that buffer.

In the case of a virtual circuit network, condition Cl is
equivalent to the condition that, for every link, the sum of
the average rates of all virtual circuits that go through the
link is strictly less than its transmission capacity. This can
be easily seen by observing the following. Since there is no
routing involved, R; contains a single element for all 7's and
fix is equal to the arrival rate of the virtual circuit that buffer
J corresponds to (recall that in the VC network case, each
buffer corresponds to one virtual circuit). Each buffer can be
served by one server (link) only; therefore, the sums at the
second inequality in (3.2) are reduced to single terms; these
inequalities are equivalent to the fact that the traffic load of
every link is less than one. The proof of the necessity of Cl
for stabilizability follows, while the sufficiency will be proved
in Section IV where the parametric back-pressure policy, the
predecessor of the ABP, will be specified.

A. Necessity

When the long-run average rate with which work goes
from buffer j tok as well as the long-run average fraction
of time spent by server 7 serving buffer j exist, the intuitive
interpretation of Cl given earlier tumns readily into a proof
of the necessity of Cl. These long-run averages, through,
do not exist for every policy, even if the system is stable,
as illustrated in the following counterexample; therefore, a
different approach should be taken to show the necessity of C1.

Counterexample: Consider the system in Fig. 3 that con-
sists of three buffers. Buffer 1 receives work with constant rate
0.8, and is served by a server of higher service rate; therefore,
it leaves the buffer instantaneously. The served work is routed
either to buffer 2 or to 3, from where it leaves the system
instantaneously. The switchover time is equal to 0. Clearly, as
long as the server does not idle, the system will be stable. The
routing is specified by the variable r(t) which represents the
buffer that is fed from buffer 1 at time ¢. Let

o {2 33 k=01,

7'( )" {37 32k+1 St532k+2, k=0, 1’

If f{, is the average flow from buffer 1 to buffer 2 at the ith
routing transition, then we can see that f}, fluctuates between
values which are greater than 1§5' and less than f‘g; therefore,
it cannot converge, and the long-run average flow does not
exist. ")



240 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40. NO. 2. FEBRUARY 1995

Next, we show the necessity of condition C1. The neces-
sity follows when the arrival streams satisfy the following
condition. i

S1: There exist nonnegative numbers b;; i = 1,---, B such
that

12 N
/ a;(r)dr > ai(ts — t,) — bi.
t

Condition S can be viewed as a constraint on the idling
of the arrival streams. '

Theorem 3.1: If the system is stable and condition S1 holds,
then condition C1 holds as well.

The proof of the theorem will follow after a lemma. The
following definition is needed. A collection of nonnegative
numbers fix, j =1,---,B,k € R; is called a superflow if

a; + Z fri £ ijk, j=1--\B (3.3)
k:jE€R. kER;
and a strict superflow if the inequality in (3.3) is strict
whenever 3_, . R, fix > 0. The notions of superflow and strict
superflow do not correspond to any physical quantities in the
system, and they are introduced only to be used in the proofs.
Lemma3l: ¥ f = (fi,i=1,--,B,k€ R;) is a su-
perflow, then there exists a flow f = (fjx, 7 =1,--- ,B, ke
R;) such that

f<f _ 34

where the inequality (3.4) holds componentwise. If f is astrict
superflow, then there exists a flow f such that (3.4) holds with
strict inequality, for the nonzero elements of f and .

Proof: Consider the transformation T defined by f**! =
T(f*)where

ai+Zl:jE‘R 1 i . i
Fitl = —E——‘—‘, o i Lier, 7 >0
FL . 1ER; i

f;k, otherwise.

It is claimed that if fi is a superflow, then j“b"'1 is a superflow
as well and
frer 3.3

while if f* is a strict superflow, then f**1 is a strict superflow
as well, and (3.5) holds with strict inequality. Notice that (3.5)
follows readily since the fact that f* is a superflow (strict
superflow) implies readily that
a; + 25er, flij
ZlERJ' flz]

is less (strictly less) than one. From the definition of T'( ), we
have

keR, LERy
From (3.5) and (3.5a), it follows that
S ftze+ Y £ (3.5b)

kER; LjER;

if f’: is a superflow, while (3.5b) holds with strict inequality
if ! is a strict superflow. Relation (3.5b) shows that fi*! js
a superflow and (3.5b), with strict inequality, that it is a strict
superflow. _

Obviously, if f* is a flow, then f*! = f'.Consider the
sequence of superflows f', i =0, 1,--- defined as =7,
1 =T(f), i =0, 1,---. This sequence is nonincreasing,
and as a consequence, it converges to a fixed point of T()
denoted by f™. Note, though, that all fixed points of T are
flows; hence, f° is a flow which is less than or equal to fin
general, and strictly less than f' if f' is a strict superflow. ¢

Remark: If f in the above lemma contains no cycles,
that is, there is no sequence of buffers Iy, la,---,lx such
that [} = I, lj+1 € Rj, 7= 1, k-1, fl,lﬁ.l > Q,
j =1,---,k — 1, then the sequence of the superflows I
i=0,1,--- in the proof of Lemma 3.1 will converge after
a finite number of steps. If there is a cycle in f', then the
convergence takes an infinite number of steps.

Now, we can proceed to the proof of the theorem.

Proof of Theorem 3.1: Assume that the system is stable.
From the definition of stability, there exists D such that for
every X(0), there exists 7', which may depend on X (0), for
which ,,:
B :
Y Xjt)<D, t2T. (3.6)

i=1

Assume that initially each buffer has a backlog equal to 2D,
and T is such that (3.6) holds for this initial condition. Let
Qjx be the total amount of work that has been transferred
from buffer j to buffer k£ € R; in the time interval (0, T"),
where T’ > T is a time to be selected appropriately, as we will
see in the following. Clearly, X;(T") < D,j=1,---,B and

Xj(TI) =2D + Z Qkj — Z Qjk

k:jER kER,

T
+/ aj(tydt < D, j=1,---,B. (3.6a)
4]

Consider the nonnegative vector f = (fjx:j=1,---,B, ke’

R;) where fix = Q;x/T'. If we divide (3.6a) by T', and
using S1, we get

a; + Z Srj

k:j€ER -
1 [T D
< Zf,-k+a,~-—/ at)dt -2, j=1,-,B
x, T 0 T
b, D
<Y fntF-E 3.7)
keR,

If we select D > maxj=1,...,8 b; and condition S1 holds,
then (3.7) implies that f is a strict superflow. Let T}, be the
amount of time that server i serves buffer j and directs the
traffic to buffer k during the time period from O to 7”. Define

i
o Zer, T
u P —
d T

*lreaka
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Since each server may serve at most ope buffer at a time, we

have
Y ai< (3.8)
J€B:
We also have
Qik= Y Thusj, keR;
#:jEB;
which yields
Q=Y Y Thuy, keR;
keR_,‘ kER,‘iijEB.
and therefore
Yofik= Y wwy  keR, (3.9)
kER, iEB,

From Lemma 3.1, since f is a strict superflow, there exists a
flow f’ such that f;k < fjk if fjk > 0. Let

!
e—max{;'c j=L1---,B,keR;, f,-k>0}.
i

Clearly, ¢ < 1. Define

ul = e’

7 J? ,Tl,jEB,‘.

i=1,---
It holds that

Zuj < 1.

JEB;

By multiplying each part of (3.9) by ¢, and given the fact that
Fix < €fix, it follows that

Zf_;k Zu#uy

kER; i1:7€B;

Jj=12,---,B. (3.10)

The necessity of strict inequality in relation (3.2a) of con-
dition C1 is.due to the definition of stability that we have,
and more specifically to the requirement that the asymptotic
bound of the backlog is independent of the initial conditions.
It is possible that bounded backlog is guaranteed without
strict inequality in (3.2a). This bound, though, cannot be
independent of the initial condition. This is illustrated in the
following counterexample. Consider the case of a single-server
queue with constant instantaneous arrival rate equal to a and
service rate u. Condition C1, with strict inequality in (3.2a),
boils down to the condition a < u. If equality is allowed in
(3.2a),. we may have a = p. In the latter case, and if the
instantaneous arrival rate is constant and equal to the service
rate u, then the backlog at all times will be equal to the backlog
at the time instant 0. Therefore, the network will be unstable
according to the definition of stability considered in the paper,
since there is no asymptotic bound in the backlog independent
of the initial condition.
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IV. THE PARAMETRIC BACK-PRESSURE POLICY

In this section, we will present and study the parametric
back-pressure policy PBP(«). This policy determines whether
a server idles or not, and if it does not idle, which queue is
served and where the traffic is directed. The frequency with
which a server is switched from queue to queue depends on a
parameter a > 1. We include « as an argument in the name
of the policy to emphasize that dependence

PBP(a) :While the server i serves a buffer j; and directs
the traffic to a buffer ko, it is constantly monitoring the
quantity

Ai(t) = ﬂ?{“"ﬂ%{x‘(t) - X,,(t)}}. 4.1

If

Qlbijy (on (t) - Xko (t)) >0

and
Ai(t) 2 af"'ijo(XJ'o (t) - Xko (t))

then the server is rescheduled to serve the queue [ € B;, and
the traffic is directed to queue n € R;, which together realize
the maximum in (4.1), with ties broken arbitrarily. Service is
reassumed after the switchover time §.

If

Ai(t) <0

then the server idles for a time period 6. If at the end of the
idling period it is still A;(t) < 0, then the server restarts
an idling period of the same duration. Otherwise, server i
is rescheduled to serve the queue ! € B;, and the traffic is
directed to queue n € Ry, which together realize the maximum
in (4.1).

Some clarifications on the operation of PBP(a) follow.
According to PBP(a), the served traffic of buffer { is routed
to buffer n which achieves the maximum in

max {Xi(t) = Xa(t)} (¢.12)
whenever buffer [ is served. Server i selects which buffer
! € B; to serve based on the terms

pamax{X,(t) - Xn(t)}, le B;.
neR,

- It selects the one which achieves the maximum in (4.1). The

policy is illustrated in Fig. 4. In order to avoid server 7 switch-
ing from queue to queue too often, the policy reschedules the
server only if the quantity (4.1a) for the queue [ under service
becomes considerably smaller than 4;(t). How much smaller
it should become is determined by a, which regulates how
often the server switches. This feature is reminiscent of the
clear a fraction policy considered in [10). If the backlog in
all the downstream queues is larger than the backlog in the
queues of B;, that is the quantity A;(t) is negative, then the
server ¢ idles.

Note that the scheduling of server ¢ relies on information
about the queue lengths of the buffers in B; and in R;, j € B..
This is local information for server % in several practical
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Fig. 4. Server i is allocated to one of the queues 1, 2, 3. When the backlogs
areas illustrated in the picture, then queue 2 will be selected for service and
the traffic will be directed to buffer 4.

systems. For example, in the case of the VC network, the
buffers in B; and in Rj, j € B; reside in the origin and
destination node of the server/link j; therefore, policy PBP(«)
can be implemented in a distributed fashion.

* The stabilizability properties of PBP(cx) are stated in the
fotlowing.

Theorem 4.1 If the arrival and service rates satisfy condi-
tion Cl, then there exists an a > 1 such that the system is
stable under PBP(a).

Note that the policy PBP(c) needs only the service rates for
its application. Furthermore, the stability holds for any value of
the parameter § in the definition of the policy. The proof of the
theorem relies on the following lemma, which is a drift-type
condition on the sum of the squared backlogs in the system.

Lemma 4.1; If the arrival and service rates satisfy condition
Cl, then there exists an a which depends only on the arrival
and service rates and the burstiness coefficients such that when
policy PBP(a) is employed, the following holds. There exist
numbers Dy, T, and € such that

B
if ~>_ X}(t)> Do.

i=1

Zx*(t +T) - ZXZ(t) < —e€

i=1

Proof: The proof of the lemma is lengthy, and relies on
some intermediate results. It is given in Appendix A. ¢

Proof of Theorem 4.1: We show that there exists a T,
which may depend on X(0), &, p, and §, and a D', which
may depend on a, , and §, such that

B
supy X;(t) < D"
tZTj=l

(4.1b)

Let T and ¢ be such that

B

B
BB HOREE

B
if Y X3(t) > Do.
i=1
i 4.1c)
From Lemma 4.1, T and ¢ as above exist. Let k be the smallest
integer k such that

B
S X}(kT) < Do.
j=1

2. FEBRUARY 1995

Fig. 5. The link from node 1 to node 2 that carries 4 VC’s and the buffers in
the origin and destination nodes of the link are illustrated. When the backlogs
are as they appear in the picture, the link will transmit VC2.

From (4.1c), clearly such a k exists. Define T = kT and

2

B
D=|VDo+) (a;T +5;)
j=1

We show by induction that we have

B
S x2ar)<BD, 1

=1

v
P-outd

(4.1d)

The induction step is as follows. If Zil X]?(ZT) < Dy,
then, clearly, Z L XA+ l)T) < BD If D <
Z, -1 X"’(lT) < BD then ZJ 1 X2 (¢ + 1)T) <
Z 1 X}(IT)—e, and therefore, Z XX (+1)T) < D.¢
The actions taken by policy PBP(rx) in the general network
correspond to scheduling the server, routing of the traffic, and
idling of the server. If routing is not involved, then the policy
is simplified considerably. This is the case,,'in a virtual circuit
network where PBP(a) acts as follows. Every link is allocated
to the virtual circuits that go through it based on the backlogs
of the buffers of these VC’s in its origin node and in its
destination node. For each VC, the differences of the backlog
of the buffer in the origin node of the link minus that of the
buffer in the destination node of the link are formed (Fig. 5).
If all differences are negative, then the link idles. Otherwise,
the quantity
Xi(t)}

Ai(t) = x(ré%)‘c{X(t) - (4.1e)

is computed where [ and [ are the buffers that correspond to
the same virtual circuit in the origin and destination node,
respectively, of link i. If

Ault) > o (X5() = X5(8)

where j, 7 are the buffers that correspond to the VC currently
transmitted, then the server switches to the VC that achieves
the maximum in (4.le).

Note that in the model, it is possible that work goes
through the same buffer more than once. It appears that this
possibility may lead to instabilities under a distributed policy.
The following is an intuitive explanation of why this is not
happening with PBP(a). The goal of the policy is to push all
the traffic out of the network. It is possible that work may
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visit a buffer more than once, following a cycle of buffers
with small backlogs, instead of following a route out of the
network, when the buffers that lead out of the network are
congested. Eventually, though, the latter buffers will empty,
and the work will find its way out of the network by selecting
the route with the low-backlog buffers.

The PBP(a) policy achieves a bounded backlog in the
network under the necessary and sufficient stabilizability con-
dition Cl1, and is indeed distributed since the decisions at each
node rely on the one hop away state information. Nevertheless,
the arrival and service rates and the topology of the network
need to be known in order to select the appropriate a. In the
next section, the ABP policy (an adaptive version of the PBP)
is obtained, which does not rely on knowledge of the arrival
and service rates.

V. THE ADAPTIVE BACK-PRESSURE POLICY

The adaptive back-pressure policy is identical to PBP(a),
except that a is not preselected, but is computed at each
node based on the local (one hop away) state. Each server 1
computes a parameter ¢;(t) based on the lengths of the queues
that it may serve and the queues that it may direct the traffic
to, as follows. Consider a function g: Rt — R* which is
nonincreasing, strictly greater than 1, and such that

lim g(z) =1

T

lim z(g(z) — 1) = co. (5.1)
-0

The function g(z) = 1+ 2~° satisfies (5.1) forall 0 < a < 1.
Define o;(t) as

e a0 - X(0}}):

ou(t) = o ma
The policy ABP is as follows

ABP: Each server acts as in the PBP(a) policy with the
difference that server 7 uses the locally computeda;(t) instead
of a.

The following holds for ABP.

Theorem 5.1: The network is stable under ABP if condition
C1 holds.

The proof of Theorem 5.1 is the same as that of Theorem
4.1, given the drift condition stated in the following lemma.

Lemma 5.1: If the arrival and service rates satisfy condition
C1 and the network is operated under ABP, then there exist
numbers Dy, T, and € such that

B : B
D XHE+T) =Y X3(t) < —e

i=1

B
ify_X(t) > Dy.
j=1

i=1

Proof: The proof is given in Appendix B. QO
Note that there is no parameter estimation taking place in the
policy. In fact, the average arrival rates might not even exist.
The logic of the adaptive policy is that it adjusts a such that it
goes closer to 1 with a certain rate as the backlog increases. In
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this manner, it is achieved that the servers switch to the queues
that have the heavier backlog difference frequently enough.

V1. CONCLUSIONS AND DISCUSSION

In the ABP policy, each server is scheduled based on the
lengths of the queues that it serves and of the queues one hop
away, which were assumed to be instantaneously available to
the server in our study. This is not always the case, though. For
example, in the virtual circuit network, the link scheduling was
based on the queue lengths at the origin and the destination
nodes of the link. Clearly, the queue lengths in the destination
node could not be made available at the origin node without a
delay greater than or equal to the propagation delay of the link.
In high-speed networks, the link propagation time is enough
for the state of the queues to change considerably. Therefore,
there will be a discrepancy between the actual queue lengths
and those available to the server. Nevertheless, as long as
the difference between the actual queue lengths and those
available to the server is bounded independently of the queue
length values, then the results obtained in the paper remain
unaffected. That is, the ABP policy stabilizes the network with
delayed information about the queue lengths as well.

According to the ABP policy, server ¢ idles if the quantity
A;(t)becomes less than or equal to-0 or, in other words, if for
every queue [ € B; the backlog of all queues in R, is greater
than or equal to that of queue [. The results remain unaffected
when A;(t) is compared with an arbitrary negative number
instead of 0 in the definition of ABP. That is, the server idles
only if the backlog in the downstream queues becomes greater
than that of the upstream queues by a certain amount.

The delay through the network is an issue left open for
further research. Bounded backlogs imply bounded delay;
therefore, under the ABP policy, the delay will be finite when
the stability condition C1 holds. There are several questions
which are left open, though. How does the delay vary when
the function g that estimates the parameter ¢ in each node
changes? Which is a good choice of g as far as the delay
is concerned? As we said earlier, the backlog in the network
remains bounded even if the server 7 idles whenever A;(t) < h
for an arbitrary k. and not necessarily for h = 0. What is a
good choice of h for small delays? Alsv, what will be the
effect of the delayed information about the state of the one
hop away queues on the delays through the network, and how
will the latter be affected from the propagation delay? The
investigation of these questions might lead to refinements of
ABP with improved performance with respect to delay.

APPENDIX A

Lemma 4.1 is proved here. Two lemmas precede its proof.
The first quantifies the property of policy PBP(a) that the
switching of the server becomes less frequent as the queue
lengths increase and more frequent as a approaches 1. Note
that the maximum rate with which the difference of two queues
may vary (increase or decrease) is less than or equal to

N
BA+ZZ#,‘J' =M.

i=1j€B;
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Lemma A.l: If for a server ¢ we have

4a
ﬂas)f{uijfg%)j{x j(t) - X((t)}} > E———].MT (A.1)

then  will switch at most once in the time interval (¢, t+ T)
and

Yo QalXi(t) - Xu(e)

JEBIER;

> 17 - el omast,00 - xi(0}}
= a jeB; | Yier;

— 4M(T + 6)? (A2)

where Qi is the amount of work served by server i and
transferred from buffer j to buffer { during the time interval
¢t t+T).

Proof: At time t, server i serves queue j; and directs the
traffic to queue I;. We distinguish two cases. Assume first that

pijy (X5, (8) — Xy, (2) = %aé’f{ﬂijfle‘%-’f{xj(t) - Xz(t)}}-
(A.3)
Since the maximum rate with - which any difference
pij, (Xj, (£) = Xi, (t)) may vary is M, we have
apsj, (X5, (') = X, (¢)

> a(ﬂg{uﬁ{g%f{xj(t) - Xz(t)}} - 2MT)v 7

te(t, t+T). (A4)
Also, for any pair of queues j € B;, [ € R,
pii(X5(t) = Xa(t)) _
> E%aéf{uij{fel%{xj(t) - Xz(t)}} +2MT,
t'e(tt+T). ' (A.5)

From (A.4), (A.5) we can see that if (A.1) holds, then

api, (X5, () = X, (8) 2w (X5(8) = Xa(t)),
je€B,j#q,leRit €t t+T) (ASa)

and the server will not switch in the time interval (¢, t + T).
Then, clearly

T 37 Q4K (1) - Xu()
JEBIIER;

= Qi (X5, (t) = X, (8))
= T»u'ijl (le (t) - Xllv,(t))

= T%agf{#ij}g%’;{xj(t) - Xa(t)}} (A6)

and (A.2) follows. Note that (A.6) assumes that the server is
always busy during (¢, t + T), which is a valid assumption
based on (A.l).

Assume now that (A.3) does not hold. From the definition
of the policy at time ¢, we have

e (X5 () = X0, 2 max{ a0 - X0 .

' (A7)
If server i will not switch queues during the interval (¢, t+T),
then from (A.7), relation (A.2) follows easily. If the server will
switch, then let ¢; be the first time after ¢ at which the server
switches. Let j, be the queue that is served after the switching,
and [, the queue to which the traffic is routed. At time ¢; + 8,
we have

ufj:(sz (tl + 6) - Xlz(tl + 6))
= gé%{{m,-{g%f{«’fj(tl +6)-Xi(ti + 5)}} |
2 ;%%’f{#ij{g%{x_j(t) - Xz(t)}} —2M(ty — t+6)
! (A.8)
and arguing similarly as above 'I
“ijz(XJ'z (tl) - qu (t/)) /
> %aé)f{u,-jlnel%{}(j(t) - Xz(t)}} - ?MT. (A.8a)

/

!
Equation (A.8a) together with (A.5) imply that if (A.1) holds,
then the server will not switch again in the time interval
(t1 + 6, t + T). Let Q3 be the amount of work served by
server i and transferred from buffer j to buffer [ during the
time interval (t, t;); let Q%; be the same quantity for the time
interval (t; + 6, t + T). Then, clearly, Q= i + Q% and

ST QLX) - Xut)

JEBIER;
= (tl - t)u’ijl (ij (t) - Xlr. (f'))

> é(tl - t)i%agf{#ij;g%f{xj(t) - Xz(t)}} (A9)
while
I 5T QLX) - Xi()
JEBIIER;
= Qb (X5 (1) = X1, (1))
= (T+1t—t1 = 6)pijy (Xjp () — Xip (1))
Notice that

Bija (X (8) = X1 (8)) 2 pije (Xjp (81 + 6) — Xy (1 + 6))
—4AM(t; —t+6). (A1)

(A.10)

From (A.8), (A.10), and (A.11), we get
Y > QX)) - Xi(1)

JEBIER;
2(T+t-t 5)52%"‘{#1'1'{}51%’5{)@(0 - X,(t)}}
~ 4T M(t, — t +6). (A.12)
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From (A.9) and (A.12), we have
DD QX (t) - Xi(t))

JEBLIER,;
1
2 (b~ t)gég{uﬁg%f{&(t) - Xl(t)}}

+ T+ =t = e e (X,(0) - x()
—4TM(t; -t +6)
2 ST - Omar{ wsmax( 3,00 - Xi(0) )

—4M(T + 6)2. (A.12a)

0
In the following, we show that one of the differences
X;t)-Xi(t),j =1,---,B, 1l € R; is on the order
of Eil X2(t). A result similar to the following lemma
has been shown in [11]. The lemma is included here for
completeness. Notice that it holds independently of the policy
and is a characteristic of the network.
Lemma A.2: There is a constant ¢ > 0 that depends only
on the topology of the network so that

B
1 P, 5 (0) = X0} 2 @
e, >

Proof: Consider the queue j, with the maximum length.

Clearly
B
Xio(t) 2 | > XX(t)/B.
7=1

There exists 2 sequence of queues through which the work can

be routed out of the network; that is, there exist a sequence

11,7++,%p such that n < B, i; = Jo, 0 € Ry, igqy € Ri,,
=1,---,n — 1. Then we have

n—-1

(Xin(8) = Xipy, (8)) = X, (8) = X4 (2)
k=1
L Xa(®) 1/ o1 X2()
= k=1,~§,)r(|—1(Xik - ik+1) 2 B 2 B3 ! :

0

Proof of Lemma 4.1: With simple calculations, we get
for every T

B B
Y xHe+T) =3 X2)
1=1

J=1

B N

=23 (X;(t+T) - X;(0)X;(t)
=1

5
+ Y (X(E+T) = X;(0)% (A1)
i=1
Notice that
(X;(t+T) - X;(1))* < M°T?,

j=1'...’B

245

where M is the maximum rate with which any queue may
vary, and it has been defined before Lemma A.1. Hence,

B
D (Xi(t+T) - X;(¢))? < BM?T?.

i=1

(A.14)

In the following, we proceed to bound the first term of the
right-hand side of (A.13). Let Q¥ be the amount of work
served by server i and transferred from buffer j to buffer !
during the time interval (¢, ¢t + T'). Let Q; be the amount of
work transferred to buffer j from outside, and Q;o the amount
of work served by server i and transferred from buffer jto

outside during (¢, ¢t + T'). Clearly[ 0]
N N
XE+D) =X0+Q+ 3 3 05— Y S e
LjER, i=1 IER;i=1

Hence, for the first term on the right side of (A.13), we L -
B

(Xt +T) - X;()X;(t)

=1

B B N
=2 QX+ Y Y QLX)
j=1 .

J=1L:7€R i=1

B N
- Z Z ZQ;sz(t)

i=lleR;i=1

B B N R
=2 QX0+ 3.3 Y QL) - X;(1).

i=1 J=1lER;i=1
(A.15)

From the burstiness constraints on the arrival streams, we have

which, together with condition C1, gives

B B B
DX STY a;X;(t) + S X;(8)b;
j=1 i=1 j=1

B
=T) (Z fa= Y ftj) X;(t)
j=1 \UeR; L:jER,
B
+ Xj(t)bj

i=1

B . B
=T 3 fulX;() - Xu(t) + 3 X;(8)b;

Jj=lER; j=1

B
ST Y Finmax (X;(¢) - Xi(t))

J=lEeR;

B .
+ ) X;(t)b;.

1=1

(A.16)

In the following, we upper bound the second term on the right
side of (A.15). Note that

WX - X)) > -M?*T?,  i=1,.--,N,

j’l=1,"'7B- (A.l7)
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This is so because, first

OSQ;[SA’[Tv i=la"'9N1 j,l=l,"',B
and, second, if X;(t)—X;(t) < —MT, then X;(t')~Xu(t) <
Oforalt € (¢t t+T), and Q will be equal to 0 since no

server will serve queue j in the time interval (¢, ¢t + T). By
mterchangmg the order of the summation, we have

ZZZQ (Xult) - X5(8))

i=lEeR;i=1
N B o
== QulX;(t) - Xu(t). (A18)
i=1j=1lER;
Define D = 21—1 X ,2 (t). From Lemma A.2, we get that for

some %, say ¢ = ip, we have

g { s ppan 0 - X0}

j€B

- s {mn - o)}

> min

. () — > )
= J'EB.',1=1.-~~,N{”’U}?éaé}i({g%)f{xj(t) Xl(t)} 2z C\/B.

Hence, for D large enough, inequality (A.1) is satisfied for at
least one server. Let F be the set of servers for which (A.1)
holds. Replacing in (A.18) from (A.2) and (A.17), we get

B N
> ZQ;:(XI(t) - X;(t)

j=UER;,i=1

-y ir- 5)maX{uumax{X (1) - ()}}
t€.7~'
+4M(T + 6)* + NB*M*T?

\1
<=3 (1 - 2“3) o1 mex

i€F FEB;
: {mjlfg%f{xj(t) - Xz(t)}}
+4M(T + 6)* + NB*M*T?

| —Z(Zu )Tmu{uumax{x xi(0}}

IEF \jEB

aEB

B9

. xmt)}}. (A19)

+Z ma_x{“uma.x{X(t Xa(t)}}

: {“ijfg%’f{xj(t)
Define ‘

u= mm 1- Zu = min ;.
© =1, ,N =1,--,N,j€B,

JEB;
(A.19a)

Then, we can easily check that

> (1 =Y 4 ) Tmax{.u.JmaX{X Xt(t)}}

i€F JEB,

2u%Tm max__ {X;() - Xu(0)}. (A20)

j=1,--,B,l€ER;

Clearly
VD> _ max  {X;(t)~ Xu(t)}. (A21)

i=1,-,B, )

Let 4 = max;=1,...,N, jeB: ui;- 10EN, from (A.21)

{p,,ma.x{X (t) - Xu( t)}}<u\/_ i=1,---\N

Jj€ 8

and

Z‘smax{uumax{x ) = Xu(2) } < Né,‘-uvb.
iE.FaJeB a
! (A.22)

From (A.21), and since 1/a < 1, we have  /

Z(Zu) (——1>ma><{uqmax{x - xi(0)}

i€F \JEB

> ZT(— - 1)2;“/_ |

i€F

> 2NT(-— - 1) vb. (A23)

From (A. 19) (A.20), (A.22), and (A.23),',\/~e have

ZZZQ (Xi(t) = X;(8)

J=lleR;i=1

< -u-i-Tmc\/B +4M(T + 6) + NB2M’T?

+N—§u\/5—2NT(§ - 1);»/5
-Z(Zu)Tmax{meax{XJ(t - X0} }.

iEF \JEB
(A.24)
Let F be the set of all queues j for which
4o
Then, from (A.16), we have
B
QX
i=1
< Zx (t)b; + TZ ma.x{X - Xe(t)} D fi
j=1 jE€F lER;
4o
+ Bzai —MT (A25)

i=1
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Note that from (A.24a), if j € F, then all i’s such that JEB;
belong to F. Based on this fact, in the following, we verify that

Zmax{X - X1} D fi

Je}‘ IER;

< Z(Zu ) {uumax{X (t) - Xu(t )}} (A.26)
i€F \jE€B

Note first that

> (Zu )Tmax{u.,max{X (t) — Xi( t)}}

i€EF \jEB
> TZZ“ ,u.,,ma.x{X
E€FjEB;

-Xu(t)} (A27)

and from the fact that if j € F. then all i’s such that JEB;
belong to F, we have

TS Y uf uumax{X ()}

1EFJEB;
> TEZ’U. ul,max{X (t)
i€ FIEB:

- Xi(t)}. (A28)

From (A.27), (A.28), and (3.2), the relation (A.26) follows. By
adding the inequalities (A.24)—~(A.26) and (A.15), and after the
simplifications, we get

B
D (Xt +T) - X;(8)X;(t)

j=1
< —uéTmc\/B +4M(T + 6)? + NB2M?T?

+ N-‘S-m/fa - 2NT(1 - 1)u\/5
+ \/—Zb +BZa1

=1

(A.28a)

i=1

By replacing in (A.13) from (A.14) and (A.28a), we get

B B
Y XHt+T) -y _XI(t)

j=1 7=1
1 = =
S ClT2 - CQET\/_D_'*' C3\/B
ry 1
+aTVD (1 - E)
4
+es— T (A29)
a-1
where c;, - - -, ¢ are positive constants which depend only on

the system topology and the arrival and service parameters.
Select a > 1 such that ¢4 — (c2+ cafa) = =¢ < 0, and let
= (D)3, Then (A.29) becomes
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B B
Y XXt+T)- Y _X:)

i=1 i=1 i
< (D)2 = ((D)¥/4 + ca(D)/?
+os a“ (D)4, (A.30)

It is clear that if D is large enough, the right side of (A.30)
becomes strictly negative and the lemma follows. 0

APPENDIX B

The proof of Lemma 5.1 is given in this Appendix after
some intermediate results. Define

of = g(grggf{us‘j{g%f{xj(t) - Xx(t)}} + 2MT>-

Lemma B.1: If for a server ¢, we have

4aT
i (t) - ! .
;ré%x{u,max{X ) X;(t)}} T 1)MT (B.1)
then ¢ w .. switch at most once in the time interval (¢, t + 7T)
and
35 QuX;(0) - Xu(t))
JEBIER;
1 .
> (0 - max{ a0 - X0}
—4M(T + 6)* (B.2)

where Q;, is the amount of work served by server i and
transferred from buffer 7 to buffer ! during the time interval
(t, t +T).

Proof: The proof follows the same steps as with Lemma
A.1, except for the following differences. Inequality (A.4)
holds with o replaced by c;(t) on the left side and with o
on the right side. Inequalities (A.5a), (A.7), (A.9), and (A.12a)
hold with « replaced by o;(t). 0

Proof of Lemma 5.1: From (A.13)~A.15), we get

sz(t +T) - ZX2(t)

]—l

= ZQjXJ (t)

i=1

B N ]
DIPIPWCAC

J=UHER;i=1
+ BM?T2.

X;(t)
B3)

Also

ZQJ

i=1

() < TZ Zf,,ma.x X;(t) -

Jj=UEeR;

Xe(t))

B
+3_X;(t)b;. (B4)
=1
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In the following, we upper bound the second term on the right
side of (B.3). Note first that

Q]l( () Xl( ))> M2T2 i=1!"'1N1
j,l=1,--.,B. (B.S)

By interchanging the order of the summation, we have

ZZZQ (Xu(t) - X;(t))
j=leR;i=1
"ZZZ%(X - Xut). (BS)

i=1j=1leR;

Let F be the set of 'servers for which (B.1) holds. Replacing
in (B.6) from (A.2) and (B.5), we get

B N

> D Qa(X(e) - X5(t)

j=1lE€R;i=1

< —Za 0 (T - 6)ma.x{u,,max{X (t) - x,(t)}}

i€F
+4M(T + 6)* + NB*M?T?

51 5t

i€F JEB
(w0 - X:(t)}}
+4M(T + 6)* + NB*M*T?

2> (Zu )Tma.x{p,,maX{X )- 0}

1€F \JEB:

+ ;E'(t—)ﬁ%%’f{mj}g%{)@(t) - X;(t)}}

_Z(Z") (a 0] 1)%‘?‘

1€F \JEB;

~{ui,~p€x%§{x,-<t) - x,(t)}}- e

To simplify the right side of inequality (B.7), we upper
bound the terms appearing in it in the following. Based on
the definition of u and m in (A.19a), the nonincreasingness of

g(), and the definition of a;(t), we have

'EZ}_( ,%u) 0l J€B {ux,ma.x{X ) = Xy( t)}}

1
T
2 g(mmaxj=1,... ,B,IER; {X,'(t) _ X{(t)}) m
X i=1,fx~1.%)§l€RJ{Xj(t) - Xi(t)}. (B.8)

Since ¢;(t) > 1,i=1,---,N, ¢t > 0, we have

> s 0 - X
< Now_ max_ (X,(0- X0}, (B9)

Similarly, since 1/ai(t) < 1,4 = 1,---,N, t > 0,

B, u < 1, and for p as defined in (A 19a) we have
(B. 10) as found at the bottom of the page. From the definition
of F and (B.1), (B.10) becomes .

2 (E“ ) (a ® 1)32%’5{““%2%’5{"1'?‘) . X'("}}

i€F \jE€B;

1
>N (s )|
{X;(1) - Xu()} '

BI‘R

> NT(M - 1) uj=1.-I-EaBJ,(l€R,-{Xj(t) - Xl(t)}.

(B.11)
From (B. 7)—(B 9) and (B.11), we have ‘_./'
Z > ZQ (Xi(t) - X;(t)
j=1lleR;i=1
<-u 1 Tm
= g(mmaxj=y,... B IE‘R,- {X;(t) - (1)}
X, max {X = Xi(t)} + 4M(T + 6)*
+NBZM2T2 N&ujﬂﬁ)‘%x‘ R, {X;(t) - Xu(t)}

1
—NT(W—I)M BIE’R {X X[(t)}

- (Zu )Tmax{u,,max{x () - X t)}}

i€EF \ jJEB
(B.12)

i€EF \j€B

1
2 NT ( max;er o;(t)
1

£ (50)r G rlmoso -xo)
- 1) 2#j=1,~I-I-X,aB;),CIER,- {X;(t) - Xu(t)}

(X,0)- X)) (B.10)

>NT -
2 (g(nun,-efma.x‘,‘esi {/J.,',- maxieR, {Xj(t)

-Xi()}}) - 1) Hi1 BBler,
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Let F be the set of all queues j for which

(X;(t) = Xi(t) > 200 yrp B.13)
mfxex%‘( 1(t) ( T_T) . (B.
Then from (B.4), we haye
B B
ZQjXJ(t) < ZXj(t)bJ
Jj=1 j
+ TZ ma.x{X (t) - Xe(t)} > fi
JE}' lER;
(B.14)
i=1
Notice that
Bzm T - MT
=1
B 1
< M i BM i,
<2B T,—Z;a +2 Tga miner 5ol 1
B B
<2BMTY) ai+2BMTY a;
i=1 =1
- 1 -
g(umax;=y ... Brer, {X;(t) - Xu(t)}) - 17
(B.15)
Defining D = Zle X?2(t), we have
ZX £)b; <ZB VD. (B.16)

Jj=1

From (B.15) and (B.16), relation (B.14) becomes

B
ZQJX t
< Eb T 2BMTZA + 2BMTZa,

i=1

1
g(u maxj=i, ... ,B,leR, {X;(t) - Xi(®)} + ZMT) -1

+TZmax{X (t) = Xe(®} Y fit. (B.17)

jeF lER;

Note that from (B.13), if j € F, then all i’s such that j € B;
belong to F. Based on this fact, and arguing similarly as in
the proof of Lemma 4.1 [relations (A.27), (A.28)], it easily

follows that -
IZmax{X —Xk(t)}Zf,'l
lET\’.j

i€¥

< Z (Zu )Tnmx{p,ﬂnax{X (t) — Xu(¢ )}} (B.18)

i€F \JjEB;
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By replacing in (B.3) from (B.12), (B.17), and using (B.18)
and Lemma B.l, we get

ZX2 t+T) - ZXZ

J=1

< ~y——Tm \/_
- g(me \/—) ¢

+ 4M(T +6)2 + NB% 1212

+ NéueV'D - NT( )uC\/—
B . B
+BM*T? + Y 4,VD +2BMTY a,

i=1

(2MT) ~

=1
B

1
+ BMT a; =
; g(uc\/5+ 2MT) -1

(l‘))l/4 then (B.19) becomes

.(B.19)

If we select T =

ZX"’(t +T) - sz

j=1

< chl/~l + Cg\/B - 63—1—7-131/4\/5
g(csV D)

—os| = —1)DVD

g(2M DY/?)
A 1/4 \/—5
+ CGD = = -
\/E(g(cr\/5+ cgD1/4) — 1)

(B.20)

where ¢y, - -+, cg are constants that depend only on the systerﬁ
parameters. Since lim; .o g(x) = 1, there exists cg > 0 such
that, for D sufficiently large,

1 1
—C3 = —C3 =
oesVD) (9(2MD1/2
Also, there exists a c¢;o such that, for D sufficiently large,
clf)l“ + cz\/E < clo\/E.
Hence, (B.20) becomes
B
ZXz(t +T)-5 X2(t)
I=1

<co \/B—CQDSH-FCsbl“

—Clo\/—+D /3 (C(;

) - 1) < —cg < 0. (B.21)

(B.22)

by
(czV/ D+csD1/4)-1)

D12y

—C .
\/— c-\/_+cle/° 10)

(B.23)

Since limz—co z(g(x) — 1) = oc, we have that for D large
enough, there exists ¢;; > 0 such that

*Vbg(e/D +csD”° 1)

(B.24)

-c10 < —C11.
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From (B.23) and (B.24), we have for large D that

B
fo(f») < Cm\/B - e D33, (B.25)

=1

It is clear from (5.1) that if D is large enough, then the
right side of (B.25) becomes strictly negative, and the lemma
follows. )
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