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SYMPLECTIC MECHANICS AND RATIONAL FUNCTIONS

P. 8, KRISHNAPRASAD

Abstract. Certain dynamical systems of many particles have boen the subject
of intense investigation in Hamiltonian mechanics in recent years, A calculation
due to J. Moser [1] has attracted the attention of system theorists since, among
other things, it involves 2 flow on a family of rational functions. Qur aim in
this paper is to cxamine the connections between these problems and the geometry
of the space of rational functions.

1. Introduction.

Although the exponential-lattice equations [2] describing the
evolution of a systemn of many particles on a line moving under an expo-
nential potential had been known to be completely integrable for some
time, it was not until Flaschka [3] discovered a Lax-pair [L; A] for
this system that this case became a finite-dimensional analog of the
Korteweg-de-Vries equation -~ the invariants were  identified with
eigenvalues of the operator L. This involved a change of coordinates
and taking into account’ a basic symmetry of the system, namely
translation invariance,

More recently, J. Moser [1] devised vet another change of coordi-
nates for the exponential Iattice under special boundary conditions, which
involved passing from the pair [L; A] to the rational function
{es, (A—L)'e,). That this was possible had a good deal to do with
complete integrability as we shall see below.

In what follows, we describe the mechanical systems and their
representations bricfly and indicate Moser’s caleulations. We then show
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how these relate 1o our work with Roger Brockett en the geometry of
the space of rational functions. In particular, we will cstablish what is
in some sense, the simplest possible representation of the cxponential
lattice.

Using the idca of complete integrability (symmelry) we show that
Rat (p, g) admits an n-dimensicnal foliation whose leaves are products
of tori and lines. The leaves are level-manifolds in the sense of
classical mechanics. It should be possible to apply Kirillov’s classification
theory [4} to this foliation.

It may be well worth pointing out why system-theorists are inte-
rested in flows on rational functions in the first place. The input-output
behavior of a linear system of the type

J;zAx—f—bu
y={e, x)

is characterized by the rational transfer function g ()={(c, (1 —A)"'b).
The problem of ‘identifying’ g (1) from input-output experiments is best
formulated as a problem of minimizing a distance function (measuring
the quality of fit) on a family of rational functions. It is in this
connection that the gradient flow generated by this distance function is
of interest and the geometry of the family of raticnal functions is very
relevant to the study of such flows. Other flows appear in dealing with
deformations of rational functions, the best-known example being
output-feedback.

2. Exponential Lattices: Toda, Flaschka, Moser,

Consider a system of » particles on a line with coordinates
o xp < X1 <o Xn moving freely according to the Hamiltonian,
N

n 1
2z .v.6+*zl e TN (2.n
=H =

H =

#\J!\-—A

where the v¢'s are the velocitics. We have the system of 21 canonical
cquations
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The MHomiftoman is invariant under translation x — x k5 and we
have the (lincar momentum) conservation

3 y.=0.
E I
: Taking this into account, we pass to system in a (2r— 1)-dimensicnal
space with coordinates (& ... @i, & ... b)) where
i
r a4r= ! g “h T i E=1,2,..,n-1

2
and
bk:—yk/.? k=1,2,...,h‘..

If we now arrange these variables in a Jacobi matrix L given by

Th o i
] b)_ (451 !
j

L:! .

i R S

| L
: |

{ay bu

then the system in (@, b)-space is given by the equations

T T '
% =[A, L}=AL—-LA (2.3)

where A is the skew-symmetric matrix associated with L,

0 ay
—ay 0 @
l = — . . S

— O i
Fquation (2.3} is of the Fuler-Arnold-Lax form (for the rigid body, perfect
Nuids amd Kdel cquation among other svstems), The discovery of the
Fax pair { L] due o Flaschka led ao the Tollowinge, 1F 7 () denotes
the F-paramuter subgroup of () gencrated by A then the flow on the
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space of Jocobt matrices is simply the action of U {f) via similarity,
i. e (2.3) is equivalent to the flow

LIOy—= U@ LOU (=L (2.4)

It foliows immediately that the spectrum of L {#) is invariant under the
flow (2.3). In particular, the first integral H is given by

nw—1 n

H=4 X a’42 Z b/

f=1 fr=1

=24 (L)=2 2}

=]

where A, are the eigenvalues of L. To understand the role of the
(invariant) eigenvalues it is useful to recall some properties of L: Since
L is Jacobi with ¢;>0, e. is a cyclic vector for L (so is e;). This implies
that L has distinct eigenvalues and the rationsl function g(i)=
={ey (i—L)1e,) is of McMillan degree n. (From elementary reali-
zation theory) we have a partial fraction expansion

n e“i
g = 5 3
o ('l) o 2‘ —)u;' (2 3)

where A; are (real} eigenvalues of L and a;eR, the reals.
" As' L evolves according to (2.3), the poles of g (1) remain fixed
and the residues evolve leaving

n
X eﬂi:{em en):l-

F=}
Moser's. main :idéa in [1], was 1o recognize that the map
L—s{e.(i—=L)'e)

is invertible (following the classical moment preblem, e, g Akhiczer
(3] and thus pass from ihe (e b)) coordinates of Flaschka to the
(4. @) coordinates where A, are invariants, This is very reminiscent
of finding action-angle vartubles [6]. However, 1o get a complete picture,
weocarty oul some calewlations using familiar facts from realizaton

theory.
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Note that g (A) has a Laurent expansion,
gy= 2 by AR
k=0

where

On the other hand
h;m——{e,,,L" en}.

Therefore

(547

(fﬂ) he=len [A, L*] ed=2 (M be—tis)  k=0,1,2,..  (2.6)

We have an infinite system of ordinary differential equations which
leaves invariant the set Ae=1. This much was known to Moser. What
we shall see now is that this observation together with what is known
as scaling in system theory [7] leads us to a particularly simple repre-
sentation of the Toda lattice. First, note that when L is Jacobi, the
rational function g (A)={e., (1—L)"'e,) has Cauchy index n, where
we define the Cauchy index to be the winding number,

1% (@)= (number of jumps of g from —oeo t0 + o} — (number
of jumps of g from +eo to — o)

25 A ranges over the reals from —oo to 4 oo,
The Cauchy-index appears in a fundamental way in describing
the topology of rational functions. In the next section we summarize

the main facts about rational functions.

3. Raticnal! Functions.

In [8]. Roeer Brockett initiated a program for the study of Rat (#)
with the identilication problem in mind. The analytic manifold Rat (i)
is defined as follows, Consider the set of rational functions of the
formt g (A} = ¢/ p Ay, where gtd) = g A7 TH L FqaFge and
P pe A e m Ao pe are relatively-prime polynominls, as
an open subspace of R™ as the coellivients (g, p) vary over the reals.
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This subspace together with the analytic manifold structure {rom R¥

is called Rat (n). In [8], Brockett showed that:

{a) Rat(nm) splits-Rat(n)= Rat (p, ¢)

=

where on each connected component Rat (p, ¢) the Cauchy index is

constant and takes the value (p-—-q).

(b) Rat (n, 0)= Rat (0, n) = R

{¢) Rat(l,n—1)= Rat(n—1, 1)~ R¥~'x§"

Although the geometry of the components is not explicitly under-

stood, seme partial results are known. In all this it is good to keep

in mind that we have an algebraic map

H: Rat (1) — Hank (n)
g () H":{hiﬂ-z)nxn

where g (1) =

iftvg

J A
That H* is non

Cauchy-Hermite. The Cauchy index is then given by,
M (@)= (H?)
= signature of H-.
Now any g (Z)€Rat () has a realization,
gM=(e, Gi=A)"b)
where ¢, beR" and A€l (R", R"). The minimality condition

spec (AY= poles (»)

ts cquivalent 10 saving that » and ¢ are eyelic ve

hi/2*! and H* is a bilinear form of the Hankel type.

degenerate iff g (A)eRat () is a result that goes back to

ctors respectively for

band A% H we now denote as O the collection of all triples [A, b, ¢]

which salisly this cyclicity condition, then, delining
sfA b eP={c. i) ! by

[N =z Rat 0] is o principal GL R bundle where Gl (R)

acts on




SAD

maniflold structure from R
that;

Rat(p, ¢)

- (pg) the Cauchy index is

RZf:- ;XSI.

ients is not explicitly under-
all this it is good to keep

A{n)

LR

ar form of the Hankel type.

s a result that goes back to
given by,

ity condition

e vegtors respectively for
ton of all triples [A, &, ¢]
clining

t I!])

< where GLARY acts on

SYMPLECTIC MECIIANICS AND RATIONAL T UNCTIONS 3

12 according to the map:
[A b, ¢1—> [P AP, P b, P* c].

This is the geometric content of the well-known state-space iso-
morphism theorem in system theory, However, more is true, The bundle
is trivial as it admits a global section,

y: Rat () » R

g (A}

( ») zg (;L) g [AF; Crs Cq]

-

-

where
Ap= unique companion form corresponding to p (1)

Cg= (Q'D, (7} PREYTO Qn—l)’
e, =(0,0,..,0,1).

Already we see that there is a role for Gl (R) as an internal symmetry
group for linear systems. In a scries of papers [7,9, 10], Brockett and
[ have worked out a theory of external symmetries for rational functions
via certain scalings with physical interpretation, These are:

() gld)—>glad); a>0
{frequency scaling)

(2} g(Ay—=g{i+0); oe(—o0, =)

{shift of axis}

3y gMr—>mg(d)y; m>0

(magnitude scaling)
(output feedback)
() g=(c. A=A b) = (. (A=A ¢¥ bY; T6(— oo, o)

(time shift).

These scalings act naturally on Rat (7} as one-parameter groups, in the
sense that they leave the MeMillan degree and Cauchy-index invariant.




[RE P S, KRISHNAPRASAD

Further the scalings 1-3 do not have any fixed points on Rat (1), The
idea in {7] was (o pick two subsets of scalings generating finite dimen-
sivnal Lic groups Gs Gp and examine conditions for these to have nice
orbit structures in Ral (p, g). The following gencral sgtup is heipful.

Suppose we have a smooth action ¢: G XM - M, by a group G on
a differentiable manifold M. For every point meM, there is a map
also denoted as m: G— M

m(gy=¢ (g, m).

Let dm denote the corresponding derivative map from the tangent-space

at the idennty e, {Lie algebra G) of G. Then, if dix is of constant rank
we have a Lie algebra homomorphism,

;5: G—U (M}= Lie algebra of smooth vector fields on M.
X — aX

defined by (5X){rn)=dm (X (e)).

We can now treat the scalings above as l-parameter groups acting
(freely) on Rat {p, g} and the infinitesimal representations of the scalings
are in terms of the vector fields X., X, X, Xz and X.:

n—I1
(1 Xy=— % (n_;)[q. 2l

it dq: T dpii
n-2 . a' ne2o g &)
(2) X:-—izu i+1 qmé?j:' +|_=X" ("*'l)p"“é;‘, +n8p,,._1
n—1 a
(-)} X».-—‘=E qf 3:7:
x n—1 g
4) x———lf q"a_;;,-
a—1 p=—1
= o A% : g
(3) ‘\.—-"‘ ;EU -;i (1]1 )!< Lis b Afj apl .

Here o, is the unique companion form matrix associated with the
poivnomial p () and we are working with local coordinates -defined in
terms ol the coeflicients of p (A and ¢ (1). Suppose we focus on X..
First note that using realization theory we can pass From the coordinales
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Cr gt 1 Py P 1) 10 the coordinates (f, Fyyeobtn 1y Pay PiseessPn 1)
Cre e By wre Uie livst s coeflicients of the Laurent expansion. The
cdining fs ave of course given by the recursion formula known to
P fermite

n--1

T j= = Z pih; i=0,1,2,..

="
in (%, p) coordinates,

y 2 a )1:1 \ a
A= g-_z—-'.: fii-t é—,r,_ - (ié:) s h ’] é‘}?’kl

Under the shift the Laurent coefficients eveive according to the system

dh; .
* ~ =1+ — e
{*) 7 Aisy, i=0,1,2,

n—1
The flow (*) leaves Rat (p,q) invariant. The poles of g{d)= Z hi/A™!

are fixed. What is the relationship of (*) to the Toda-Moser systern (2.6)7
To understand this first recognize that (*) is invariant under the scaling
B, > mh, m>0. {This is eguivalent to [ X, X.]=0}. Now in Rat (n, 0),
we have a representation

g{M)= ;.' ﬁ;— A ai:€R

i=1 A— A

s:==2; if i It follows that Ay= X €% >0 in Rat (n, 0).

t==i

Now introduce an equivalence relation “~’ in Rat (s, O}
gh~g ) iff Im>0 st- g=mg.

The quotient Rat (11,0)/ ~ exists, is a differentiable manifold and
is diffeomorphic to, '

ato Ot ey= = 7 L F e =1l
Ratu . O=} g()= % 7 & Tev =14,

Parther the teiple [Rat (1, 0), .. Rat, (2.7 is a trivial line bundle
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where

defined by
’j‘z :]'I,'/ho.

The vector field X, (or the system ¥} projects down to )?,, in Rat, (n, 0)
(recall [X., X.,1==0). The defining equations for X. are:

dhi 1 db b oan, 1 b B~ o~
’{E‘m EE[T_‘ nL_IQTZ_C-Z{_ H“‘E' i+ ho I};""-(/'1'!4.-1“";21 hl)'

A time reversal followed by a change of time scale by a factor of
2 brings this to the form (2.6)! Thus Moser’s equations for the Toda
lattice live naturally on Rat,., (17, 0) as z projection of the shift.

One lzst piece of informaticn remains to be recovered. In passing
Irom the (v, y) coordinates to the ‘configuration space” coordinates
(ar, &) we have switched to g (moving) coordinate system attached

to the center of mass, To recover the center of mass X xk:_"}, first
Py
note that,
_ n R
Y= 2 y=-2 % h
|53

A=|

=—=2tr(L)

n
=-—2 F )= constant,

=}

On the other hand under the shift flow on Rat (7. ),

" oy 5 Fup fdrd
€% em R
. - + .
i=rd—A; I A— 7,
and
H' ” n
XYoo= X
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Thus we zlso know how.to lift an orbit of Moser’s cquations in
Ran. (1, 0) 10 an orbit of the shift in Rat (1, 0). Use the scction of the
sine hundle (Rat (1, 0), m, Raty, (17, 0)) defined by,

vigy—ergd) !

We have thus completed the diagram,

{(x, V€ R ——mm—> Rat (n, ()

|
{Flaschka) & [ T l } v

Le ——————5 Rat,, (12,0)

H
(Moser)

where ¢ is the projection (x, y) = Le W, the space of Jacobi matrices.
i (L) = ( Cas (l —L)_l en)

6 (x, )= (€n, (A= L) €4} exp ().

¢ and g are diffeomorphisms, and z~* is nothing but the Cauer-realization
of network theory. ¢ takes orbits of the Toda lattice into orbits of the
shift. It is further clear from the equations of the shift,

-y _0H
w=li= g,

; ol
Ai=0=— o

n
where H= L ¥ 2/ that we have a global lincarization of the exponential
&oi=1
lattice. This explains to some extent the negative results of the Fermi-
Pasta-Ulam experiments [ 18], At the heart of the matter is the complete
integrability of the cxponential lattice. This symmetry property is
intimately tied up with the gcometry of the phase-space. It is both a
conceptual and computational advantage to pass from the local-coordinate
deseriptions of Hamiltonian systems to the symplectic manifold-viewpoint
and work with the caleilus of differentinl forms. We proveed 'to do

so in 1he nest section.
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4. Scaling and Mcchanics.

The geometric formulation of classical mechanics has reached a
level where the study of mechanical systems for the large part is the
study of the geometry of symplectic manifolds {11]. Symplectic mani-
folds are the correct generalization of the classical phase-space.

A symplectic manifold is a pair (M, w) where

{@) M is a smooth manifold
(b} @ is a real, closed, nondegenerate 2-form.

From ‘the nondegeneracy requirement, it follows that dim (M)=
= even =2n say. We say that w defines a symplectic structure on M.
A vector-field Xe¥ (M) is said to preserve the symplectic structure
if the Lie derivative,

DX &):Q.
Recall that, in general for we@* (M) a k-form,

Dy o= lim P LX) w—w
[

where exp,t X s the local 1-parameter group generated by X and
{exp. t X)® w is the puli-back form of w. For the purposes of calculations

the following equality is useful:
Dy w=X} dw+d (X| w)

where ‘d” denctes the exierior differentiation operator and the contraction
operator

X 025 (M) - 241 (A
w=>X e

is defined by
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In the present sctup, dm=0 and
Dyon=0e&d ()ﬁ w) =0
or the tform X[ w is closed.

Now the map
w TM—T"M

o, 5y = (x, 02 (£1)

i+ a vector-bundle isomorphism and induces a pairing of sections (vector-
“oids) of TAI with sections (1orms) of 7% M. We denote this pairing

450 as

w: U (M) — 02 (M)
X = w (X)=X] w.

IF 8e' (M) is closed we sce that D,y , w=0 and we call the
vectorfield w (8} a locally Hamiltonian vectorfield.

If §=dH is an exact 1-form where H is a smooth function on M
then we say that Xy=w ' (dH) is a globally Hamiltonian vectorfield
and H is known as the generating function or Hamiltonian of Xy With
this setup, a Hamiltonian system is simply a triple (M, w, X) where
(M, w} is a symplectic manifold and Xe% (M) such that Dy w=0.
Ii M is connected, simply connected then every such X has a generating
function H. The standard example is

M=R* with coordinates

(§1, G20 -+ s Gu, Pt oo, pu) and the canonical symplectic structure

/)
w=I dp; Adq:
=}

and every Hamiitonian vector field is of the form

n ol a oH 0
o= Y i
Xn= g:1 ((‘)If); Bq,- aé',’i aﬂ’: )

where =11 {g, p) is a smooth function on R
Many ef the Hamiltonian systems we deal with will have generating
functions. ha that case, it is immediate that
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Dy, H=diT (X»)=0

i c. the function I is constant along orbils of X. We cull H a conserved
Guantity or first integral. The question of whether thore are other
conscrved quantitics “(conservation laws) turns out 1o be one of the
most important in mechanics and is a question about the symmetries
of a system. Our aim in what follows is to answer this question in
refation to the Toda lattice and other such systems.

First note that there are several Lie algebras at hand.

(@) o (M)= Lie algebra of locally Hamiltonian vector fields.

(6) o (M)= Lie algebra of globa]ly' Hamiltonian vector fields
gl (MY oo (M) and further it is an easy exercise to verify that

[olo (M), Ao (M)]=oA (M) !

(see e, g. Simms [12]).

(¢} Thc space C~ (M) of smooth functions on M can be given
the structure of a Lic algebra in the following way. Consider the map

P C™(M)—> of (M)
¢ = Xo=w" (dy)
Define thc.Poisson bracket of functions as
{o.4}=Dx d=X,¢
=2 {X,, X2

This bracket satisfies the Jacobi identity (a consequence of dw=0!) and
with this structure C¥ (M) is 2 Lie algebra of functions on M. The
map P is a'Lie algebra homomorphism.

Given a Hamiltonian system (M. e, X) we sav that a vector [icld
Yest (M) is an infinitesimal svmnrerry of the system if

[V.X]=0.

Wo say that ¢eC (3D is an integral of the svstem il Py,
1 snmmelry o) the svstem. Fuether, two sich integrals o and . are
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in frvelution if {a), g =0, In particutar f X=X; has a gencrating
canction £, we will be interested in symmetrics Y el (M) for which

I H=YH=0.

Let us examine the Toda lattice/shift {rom this point of view.
Consider Rat (r, 0) with local coordinates (mi, 4) where g(i)=

= Zn ;;fi;“. The 2-form = 2 dw:Adi: defines a symplectic structure
i=1 " 4L =1

on Rat (n, 0) and the shift vectorfield,

n R a
Xe= ifi & aa;

which implies that X, is globally Hamiltonian on (Rat (n, 0}, w) and has
n 2

the Hamiltonian H= % 5 The functions 4, i=1,2,...,n are constant

i=!

on orbits of X. and define symmetries of H by the map

).,' e Xﬁ.‘-:};i E?E:
It follows that [X,-_‘.,X)_j 1=0, so the integrals A;, i=1,2,..,n are in
involution.

Now given any globally Hamiltonian system (M, w, Xu) we say
that a system of integrals Hy, Hy, ..., Hy of H is essentially independent
[13], if the set (of singularities)

S={xeM ! rank (Hu . , dHi) <k}

has no interior poinis. Further we measure the degree of symmetry of
the Hamiltonian H by the numiber

 {HY= max (k)

stich that there is an essentially independent svstem of integrals in

involution.
Since /7 is alwavs a candidate for such a svstem and cach of the
veetor fields Xy, is tangential to the level set.

P={xeM 1L (x)Y=v., i=1,2,.. .k}

we hive the bounds 125 UDHSn
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in the case of the ¢hilt the wet S of singularitics is ecmpty and the
syster Zs, 22,0, A is @ complete system of symmetrics/integrals for
{5 (4 =n). By the implicit Tunction theorem each

g

P={gM= 3 .° eRat(n0)|hi=e, i=1,2,..,n)

Cdml A —

is a smooth submanifold. The vectorficlds X, are complete and if none
of the ¢;=0, they act fransitively on the level manifold P.. The action
may be viewed as an action of R"

RrxpP,— P,

n e™ \ nopaptept
((t;, 2, ey ta), ifi }L——c,-)’ *——)'_51 T

This action is free (i. e. without fixed points) and thus we see that
as the ¢; vary we obtain a fibration of Rat (», 0) by level manifolds =~ R",
Notice that if one of the ¢;=0, the corresponding a: remains constant
and we pass to a (2r—2) dimension/symplectic manifold to which w
restricts. This reduction of phase-space does not appear to follow directly
from the Moser-Flaschka calculations, and should admit physical inter-
pretaticn. The diffcomorphism ¢~% in the commutative diagram of
Section 3 carries the intcgrals and level manifolds of the shift to the
imegrals and level manifolds of the Toda lattice. Finally the level
manifolds P. are all Lagrangian, i. e. the restriction w/P.=0. This
is a conscquence of the fact that the tangent space to P, is spanned
by commuting vectors at cach point of P..

One of the features missing from our discussions is the case of
compact level manifolds which plavs an important role (quasi-periodic
motions etc.} in classical mochanics. However a version of this shows
up in the periodic Toda latiice (sce Flaschka [14], Byrnes [15]).

The question now arises as to how one might extend these ideas
to other .connected components Rat (p, g). To start with one might
consider the shift” acting on rational functions g ()€ Rat (p, g} of the
form

v lel‘" n l,ﬂl‘
N
gty=x Sy
i=1 A—4A; i-r-{-[)t—/._-

where v=p—g>0, A-ZA<L Al are alt real and the a, are real
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Unee again the shift is Hamiltonian,

nod
XT: if; Ai ao:,

with = L 3 7.2 However it is not clear what the symplectic structure
should be sin;é the possibility of repzf:ated. poles for g(};)le Rt?t (;iq:,
p—qg==n, suggests that (4;, ;) 4o not give rise 0 2 s.ympiectm a ;ss thé
. a covering of coordinates in which .the symplectic structure ha
implest form. This is somewhat unsa?sfactf)ry.

On the other hand, consider the inclusion

i: Rat (n) = R™

g {(2)
p (4)

> (qﬂ: g1y eee 5 Qn—-la pO: e pﬂ-1)~

-

The canonical symplectic. structute w= 2

=

Idp[—/\a'qi pulls-back to i* w,

vince d (% @y=i* (dwy=0

and nondegeneracy is preserved, Thus i* @ {and —i* w) defines ha syn;z-
plectic structure. Denote —i* w=452. Consider .(Rat {p,q), ) where
is restricted to a component and the Hamiltonian vectorfield

~ p—l .- . oriant and
where H= % Z gfeC (Rat {p, ). X ;7 leaves Rat{p, ¢) invariant an

“ q=0

it integrates to give the flow

g () g
p{d)  p{Ay+igls)

which is simply output-feedback! :
The Hamiltonian M is completely symmetric as the system o
H i ssentially
i functions Hi=gq;, i=0,1,2,....n—1, form an uss
cocllivient Tunctions Hi=qi, 1 L2, - . sseniia
independent system of integrals of H in involution. Howeve
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o

- 4
associated vectorficlds X, =g, ap arc not complete — they eventually
(.

enter sets where there s pole-zero canceilation.

The main power of complete symmetry lies in the information it
provides on the local geometry of the phase-space/symplectic manifold.
This depends cn the existence of Abelian actions and as such does not
require restriction to symplectic manifolds. We use this point of view
to show that Rat{p, ¢) is fibered via products of circles and lines.

Consider the system of vector fields on Rat (p. q) defined as,

n—1 n -1

e ~ 8
Xi= X Z (LA™ (1) ]Pissjmr %‘-CF v k=0,1,2,...,n—1

=

L3

7

where A% ('5) Is the adjoint of the unique companion form matrix
associated with the polynomial p (1) = A" Pt A by A o,
This system has interesting properties:

Note that X* and X! are respectively the magnitude scaling and shift
vectorfields. Fach X' leaves the poles fixed. X* generates a flow,

(@, P) = (exp ( (A% G P)
where
a‘: (Q‘g, sea g qn—l)’e}a'l

~

P=(Po ., pu1) €RN

It is ribt very hard to show that
@, D)e Rat (P @Y= (exp (£ (A)Y) :}’,H}e Rat (p, ¢).

(Use the fact [hat"(} is a cvelic vector for A® iff exp (1 (A*)")’::} is a
cyelic vector for A% Tor all #). Thus each X* is a complete vectorfield on
Rat (p, ¢). Further, since the matrix

Ig. A* P g AP ) g]
is of rank » (Obscrvability!y on Rat (pog). the tangent  vectors
NN span an a-dimensional subspace of the tangent space o

Ral ¢p. o) atany point. Finally the vectorficlds are in involution i. ¢.

[NovI=0 i=00.2 . u.
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-, f'c:O,.l,Z,...,n—]

‘nique companion form matrix
CE AP A7 Ly A,
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.::)k) C"T[\: E;)
ER”

‘e R
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") gl
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T the veetorfields X are analogous to a complete system of symmetrics
ood define an Abcelian action on Rat {p, g} as follows.

th: R Rat (p, ¢) — Rat (p, ¢
(U, By eee s By (G, P = (0P (B T B A% ok £ (AN g, 1)

and AT =A% (p).
Suppose we denote the ‘level manifold’,

)4 f:; € Rat (p, 9): p D=L+ pos 4 ot pr Lt o
pis

W here };:(po,pl,...,p,,vl)’ is fixed! as M (}’;). Further let %(31‘7‘5

denote the reachable set U (s, ((7, :5)).

te R™ .
Then from the properties of the vectorfields X; noted above it is

clear that X 06, 3) i=0,1,2,...,n—1 act transitively on the reachable
set K {?}, 7). Further 92 (5, ,33-: connected component of M (:5). However

V(p) is in general not connected. It has a finite number of connected

components, (see Remark 6 below).
We have,

THEOREM 1. K (?f, P is diffeomorphic to a manifold of the form

Tm x Ru—m zsl >< S} X X Sl X Rn—m

Tan times

where T™ Is the m forus.

Proor: The proof of this theorem is essentially the same as the
invariant-tori theorem of mechanics (see Arnold [6], Abraham-Marsden
[11], Vinogradov-Kupershmidt [ 13]). We sketch it below.

Let

Kerd; ;, ={1eR" | ¢ ¢, (q. M=(q, P}

Rer g < is the isotropy subgroup of the Abelian action (. The principal

steps in the proof are
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(@) 1o show that Ker (jr,;;_ 5, 15 a discrete subgroup of RY

{6) there exist m independent vectors f, in R” (O<im=n), such
that cach

nr

Kerdhp = ={(t, .., 0 (o t)= Z mi b, meZ}.
iny

§qe

Thus Ker ¢ - is the product of m copies of the infinite cyclic group Z.

Since in the diagram

3

R \95‘

pr R® (g, };}
\A’

R*/Ker i 5.

¢ is onto (transitivity!), g_b_ is a diffeomorphism and we have
R (g, py=R*/Ker ¢, ;.

~RZXZX..XZ

HE Tintes

= TI‘R >< RH—”! <

REMARK 1: m=m (g, E) is a integer function of (71, 3}. However

it is constant on the reachable set 97 (q. }5). It is actually constant on an
open subset of Rat (p, ¢). There are two extreme cases possible, m=0
and in=1. The case m=0 uniformly, was encountered in the analysis
of Ratgr, 0y as the phase-space of the shift/Toda lattice. The case
mr=n never oceurs on Rat (p. ) because then the level manifold
(reachable sc) =~ 7 would be compact which is impossible,

An example is helpful.

g A+ qo

4 .l
PE € Rat (1, D

(@ gl)=




"ASADL
discrete subgroup of g

clors b, in R” (0=m-=n), such

w

)= % mhi, neZ).
[

of the infinite eyclic group 2,

o
=2

hism and we have

‘unction of (g, p). However

it is actually constant on an
‘reme cases possible, m=0
encountered in the analysis
hift/Toda lattice. The case
2 then the level manifold
ich is impossible,
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(f’;_((,'r {#2) /%_-_‘|_‘_f[r» {£:)}
A1

(E (f2) | ____(cos () — sin Uz)) ( o
.q} ([2)) sin (f) cos {{z) ‘!l)

Clearly the level manifold 92 (g (A))=S8' % R.

I']L ((!h !2)) g (l)):

where

by gld)= g%ﬂﬁe Rat (1, 1)
Hearc
f1— - ¢
& (0, 1), g ()= 4 Uziz'Hq" )
where

(@)= (%)
g1 {t2) L 1
Here the level manifoid 9% (g (A)~R%

REMARK 2: The vectorfields X% X', ..., X* ! define an integrable
(o [N, X'1=0) n-plane distribution and therefore we have proved,

TueoreM 2. Each connected component Rat (p, @) admits an n-
dimensionsl  foliation whose leaves are diffeomorphic to T™x R"™
where m is constant on an open set. Further on Rat (n,0), m=0 and
the foliation is actually @ (irivial) fibration.

Renmark 3: Theorem 2 appears to be the correct local version of
a long-standing conjecture due to Brockett,

Reaark 4: hrois actually possible to obtain an estimate of the
maximum ratue of mroon Rat(p, ¢). If o=p-—g, then
1

n— g
max ()= -———l-—-—

we leave the proof as an excreise to the reader, Further, the number m
satislivs @ semicontinuity property illustrated by a slight modification
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ol the previous cxample, Consider

_g,, f&):?‘-’;f‘f"‘* € Rat (1, 1)

';LE

Ze<a. Now the level manifold 97 (g: (1)) =S X R" for ce(0, &) an:
we dencte m (g)=1, £€(0, &), But R (g (2))=~R? and m(0)=1. Thu
iim m ()= m (0},

-

£

Finally one would like to understand how output feedback behave:
with respect to this foliation. In general, if we are given an integrabl:
r-plane distribution 7 generating a foliation F of a manifold M, then
the normal bundle v (F)=7*(F) of the foliation is the sub-bundle of
cotangent bundie 7* M defined by the cotangent vectors which vanish
on z. If a Riemannian metric js given on M, then v can be identified
with the field of {k —r)-planes perpendicular to = where k= dim (M),

On Rat (p, q), if we adopt the Riemannian metric defined by

n—1

ds'= I (dp)*+ {dg.y
. ={

then the normal-planes to the foliation of Theorem 2 are spamied by the

vectorsé% »1=0,1,2,..,n—1. In particular, output-feedback defined

i

by

acts on the normal bundle!

REMARK 5: The normal bundlz is extremely important in the study
of foliations as it leads 1o deep topological results [16]1, [17]. We intend
0 go ino some of these questions in a future paper.

@’

Renars 6: The connectivity g of a level manifold M G;)
determined in the author's paper [23]. There it is shown that

1 (M (P = 2%

where A ()= the number of distinet real roors of the palynomial p sy
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5. Co-adjoint Orbit Theory.

The appearance of symplectic. structures in areas of mathematics
nol quite directly related 1o mzchanics is now better understood as a
consequence of Kirillov's.work in representation theory [4]. Let G be

a Lic group and G it's Li¢ algcbra and G¥ the dual of G as a vector

space. Thus [€G* is a linear functional on G. Now G acts on G* by
the well-known co-adjoint acticn gencrated by its infinitesimal version

Gx G — G*
(f B l) b=y adg {
when
(ad; Iy =1 ([£, 7)) for £ nel.
Suppose we denote an orbit of the co-adjoint action as O Then
O; has the structure of a homogeneous space of G. It is a striking fact

that the tangent space T;(O;) carries a nondegenerate, skew-symmetric
bilinear form

&L =&, ED

where T, (C)) is isomorphic to G/Z,, Z;«-—-{Eeév: ad: 1=0} and &, &,

are represeatatives € G of the equivalence classes (tangent vectors) £, &z
By translation £2; defines the (Kirillov) symplectic structure on O; [4].
There ave several implications of this construction.

{) All orbits O.:C(A}J* are even-dimensional.

(b) The natural transitive action of G on each O; leaves the
Kirillov syraplectic structure £2 invariant.

() The vectorfields generating the action of G on (O, 21 are
leently Hamiitonian,

Thus each (0.2} is a homogeneous symplectic manifold with
G 26 the group of symmetries for any Hamiltonian system on (G £2).
Az an example. consider the group of real invertible mX#n matrices
GLAaRY acting via similavity  translormations  on its Lic  algebra
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g1 (R)=all n:xn matriccs. This is also the co-adjoint action since g/,

can be identificd with g L,* using the traceform,
gl gla— R

(X, V) tr (X" 7).

The (Jordan) orbits are all homogeneous (wrf Gl,) symplectic manifolds

t
of dimension =n*— ¥ (2k-~1} n;. where mZzm=..2n, are the degrees

hi=i

of the nontrivial invariant factors associated with an orbit,

We have a slightly stronger notion [12] of homogeneity: a sym-

piectic manifold (M, w) is called a. Hamiltonian G-space for a Lie group
G if we have a Lie algebra homomorphism

u: G Ca~ (M)
§ ¢

from the Lie algebra of G to the Poisson bracket algebra of (M, w),
satisfying

(@) each- Hamiltonian vectorfield P(@)=X,, is complete

{0 any two points mr,m:eM can be joined by an integral

curve of P (¢;) for some £eG.
Every Hamiltonian G-space is a homogeneous symplectic G-manifold.
Further the significance of Kirillov's construction follows from the
fact that everv Hamiltonian G-space is a covering space of an orbit

O: in G*. The covering map is
m: (M, ) — (G, )

”161‘1 — Ime (j!
where

I (Y=o (),

The result is due to Kostant (see [11].
e this connection, we have two open guestions.,
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n 1
I Is Rat (p, g) with the feedback symplectic structure 2= 2 dg. Adp;
a Hamiltonian G-space?

2. If so, what is the associated co-adjeint orbit?

6. Continuum Limits,

In his classic paper [18], Toda has considered the problem of
ve fimit of the exponential lattice as the number of particles N — oo,
ihe Gel fand-Levitan cguation plays an important role. Here I would
lile to indicate briefly how one might attack this problem from the point
of view of realization theory.

The weighting pattern w (x) of the linear system

2 _ s 700+buw
dx
(6.1)
y(x)={c, Z (x))
is given by,

wxy={c, e¥ b).

Here AeL (R", R™, beR", ceR™ and b and ¢ are respectively cyclic
vectors for A and A*® (minimality). First note that w (x) satisfies the
differential equation

P (;f;)w'io - (6.2)
where
pAY=2"4pes A+ A+

is the characteristic polvnomial of A. From minimality « satisfles no
such equation of lower order. The shift acts on the n-dimensional mani-
fold of solutions to (6.2} as the l-parameter group action,

wx)—=wxt+) tek.

Denoting e {+2x) as w (. x¥) we have the first order partial differential

sguation,

dew __ dw

8t — oy
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If we denote as g{t, ) the Laplace transform

==l

g /‘L)é[ e o (1, x) dx

Y

then the poles of g(1, 1) are invariant under the shift. Since the
Korteweg-de-Vries (KdeV) equation has an infinite number of conservation
laws cne might ask if there is any connection between this and shift
acting on families of weighting patterns of systems that are infinite-
dimensional versions of (%),

For example if @ (x) is an entire function of the exponential type
then it is known [19] that we have always a (bounded) realization

w (x}=(c,e™ b)

where b, cely (Z*) the Hilbert space of square summable sequences
and A: L(Z*)—> 1L (Z*) is a bounded operator, This family does rule
out many interesting transfer functions. In what follows, we use Lax’s
method [20] to establish a connection with the KdeV equation,

Let

L=L{
82
—-Eﬁ—a w (f, x)
denote the Schrodinger operator with potential. Here a is a constant
to be determined, Let Ay= 8%
Then, A
dl e O d
é—l_m [Ao, L] iff gw—é: &,

In this case we say that A, is a Lax-pair for the shift. It follows imme-
diately that,
UYL (DU (=L (0)

where U (1) is the I-parameter group of unitary operators generated by
o, satislying, :

d o ,
(,]f' L N= 4 1L
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have poles it is not clcar how one might work out a realization theory
for them. In any case they do not admit hounded realizations.

7. Final Remiarks.

In this paper we have constructed a symplectic equivalence of
the Toda lattice and the shift on Rat (n, 0) the space of rational func-
tions of index n. In our efforts to understand the complete-symmetry
property of various mechanical systems on Rat (p, g) we have shown
that Rat(p,q) admits an n-dimensional foliation whose leaves are
products of tori and lines. This is very close to the invariant Tosi
theorem of classical mechanics. The infinite dimensional analog of
the shift leads to elliptic functions.

I would like to acknowledge the original inspiration given by
Robert Hermann, David Kazhdan and- Roger Brockett in my efforts to
understand the connections between system theory and problems in
analytical mechanics, In particular, the ideas in [21] and [22] are
related to my work here. Professor Brockett deserves special thanks
for his encouragement during the preparation of this paper,
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