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INT. J. CONTROL, 1983‘, VOL. 38, No. 5,.1055-1079

On families of systems and deformations

nm,p ' Manifold of minimal systems <%

P. S. KRISHNAPRASADY§ and C. F. MARTING|

Parameter variations are present in most physical systems. In some cases, such
variations can be safely ignored, and one might, for instance, design control loops for
some average parameoter values. However, in many interesting cases, the variations
have to be taken into account in order to design good, or oven adequate, control
algorithms. Furthermore, the concerns of system reliability demand predictions of
possible conséquences of large deviations in parameters. Although some of the work
in adaptive control is in this spirit, until recontly there has not been any systematic
effort towards a theory of systems with parameter variations. We afgue here that the
concept of families of systems is basic to such an effort. Whereas the necessary tools
for the study of individual linear systems with fixed parameters are containod in ‘the
theory of differeritial equations and linear algebra, the techniques of ‘Lie theory,
differential geometry and algebraic geometry play an essential role in the study of
families of systems. The core of this paper is concerned with the geometric charac-
terizations of certain families of systems that appear in control and identification
problems. ' We alsé isolate some of the ways in which families of systems degenerate
as parameter variations become large. For the purposes of exposition, we work
mostly with the so-called ‘ topological case ’ (over R) .as opposed to, the algebraic
geometric case (over C). ’ U

Nomenclature

R real line: . - R, positive half line
C complex numbers : 7' integers .
Spmp ‘manifold of linear systems (triples [4, B, C] ~ Rr*+nomtp))
n,m,p -
X, » manifold of compl"etely controllable pairs [4, B] < Rr*+»m
A parameter space for a family

Gl(n) group of invertible n x n matrices (over R unless specified)

L(n; m) m xn matrices

Z - feedback group .

rat (n) 2n dimensional analytic manifold of strictly proper rational

functions of degree n (see Brockett 1976)

rat (u, lv)A connected com_ponent of rat (n) of rational fractions of index

A=)

@, stabilizer subgroup at meM of a group @ acting on a rﬁani-
fold M ‘ '

0, orbit through m

|
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1056 P. 8. Krishnaprasad and C. F. Martin

~ ' symbol for diffeomorphism'

o=(0y, ..., 0,) flag partition associated with a system
p=(p1s -5 Pu) Kronecker partition associated with a system
- -+ {fl(0) flag manifold defined by the partition

0 4 p orbit of {4, B] under the feedback group
F 4 stabilizer of [4, B] in &#
. 2 45 orbit of [4, B] under Gl ( n) action
¥ 4p flag-filtration associated with pair [4, B] =

1, Introductlon

Systems with variable parameters are not s1mply mathematical structures.
Tunable electronic circuits constitute a pervasive example of such systems. In
the selection of fluid machinery, one takes into account the variation of opera-
ting characteristics with the Reynolds number among other factors. Faced
with specific design problems (such as broadband matching or flow regulation),
the engineer usually approaches these problems with tools familiar in the study
of individual systems. This leaves open the question of developing systematic
approaches to such problems in different contexts. The concept of a ‘ family
of systems ’ appears to be central to any investigation of systems with para-
meters. Before we formalize this intuitive notion, we cons1der several instances
in which families of systems arise.

Desoer (1977) models the occurrence of ‘stray ’ elements (such as stray
capacitances and lead inductances) in. electronic circuits as small parametric
effects. In particular, these effects together with the presence of sluggish ele-
ments such as chokes, may be represented by models of thef orm (0’Malley 1978)

=[x, y, 2, u, 1)
=9, Y, 2 U, t)

1
i=-hx,y, 2 u,t)
7

Here, a small € represents the stray elements and a large p is associated with the
‘sluggish elements. A perturbation analysis (singular in ¢ and regular 1/u) is
necessary to coirectly take into account these parametric effects. The point is
that one can say quite a bit about such a two- parameter family of systems from
‘the point of view of asymptotics. = Closely related in a formal sense are the
cheap control problems of linear system theory. :

In a quite different setting, we see parametric families of systems arising
from scaling operations (Krishnaprasad 1977, Brockett and Krishnaprasad

1980). Let g(s) =g¢(s)/p(s) denote a proper rational function of degree n, where
9(8)=Qp 8"+ Gpo8" T H o o

and :
P)=8"+Ppas" +pls+po

are fixed. Cons1der now the associated family o .

. 7o mg(«s + o)
97 1 +mkg(as + o)

Lo, meR+; Ic,'oeR}

4 On families of syst

F, has the interpretation as a
obtained by performing various scalin;
(), magnitude scaling (m), éxponent
Families of this type are important in
reasons. For instance, if two expe
statistical hypotheses:about scaled ve:
might ask if the identification procedu
scalings. Problems of bayesian inferer
families such as ¥, A difficult que:
parametrization of a family. We wi
questions are . investigated in KI’IS
Krishnaprasad (1980).

Perhaps the best known example of
feedback family.. It is obtained as f
with constant coefficients

: : Z=4
with m inputs and n states. The trar

(a) [4, B]-[PAP, PB], PeGl

(b) [4, Bl-[4, P@], -Qel

and '

(¢) [4, B]-»[A—-BK, B], Kel{
generate the feedback group. The co
way from the given pair [ 4, B] defines
an input- system in trying to predict
useful to ‘ embed’ the problem in a f

singular) systems are candidates for
following coarse classification is useful

(i) The system remains controlls
generic systems (for example, K

(ii) The system suffers a loss of
~ autonomous part.and a contro
(iii) The system parameters enter a
time scales—a slow subsystem
order (for example, high gain

Using basic algebro—geometric tech
the structure of the failed system eve
about the failure mode. In particula
certain families of systems obtained
Meyer and Cicolani (1975) developed a f
with strong non-linearities, that includ

B(t, \)= A(X)a(t
| y(t, \)=C(e(t
with feedback law : u(t, A)=K(t, Na(t
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F, has the interpretation as 2 collection of systems (transfer functions)
obtained by performing various scaling operations, including frequency scaling
(«), magnitude scaling (m), exponential scaling (o) and output feedback (k).
Families of this type are important in identification problems for a number of
reasons. For instancée, if two experimenters attempt to identify or test
statistical hypotheses:about scaled versions of the same system g(s), then one
might ask if the identification procedure used is equivariant. with respect to the
scalings.  Problems of bayesian inference lead naturally to integral geometry on
families such as F, A difficult question in general is that of the complete
parametrization of a family. We will return to this later. Some of these
questions are investigated in Krishnaprasad. (1977) and Brockett and
Krishnaprasad (1980). - : ooy ‘

Perhaps the best known example of a family of systems in the literature is a
feedback family. Tt is obtained as follows. Consider a linear input-system
with constant coefficients ‘

Z=Ax+ Bu

with m inputs and » ét.‘fmtes. The trénsformg,tions
(@) [4, B]»[PAP-, PBY; PeQi(n) ;
(6) [4, Bl>[4, PQ1], = QeGlm);
and
{c) [4, B]—[4 - BK, B}, KeL(m,n).

generate the feedback group. The collection of pairs [4, B] obtained:in this
way from the given pair [ 4, B] defines a family of input-systems. Given such
an input-system, in trying to predict the effects of component failure, it is
useful to ‘ embed ° the problem in a family and examine what ‘ limiting * (or
singular) systems are candidates for failed models (Martin 1979 a). The
following coarse classification is useful. '

(i) The system remains controllable but actuator failures lead to non-
~ generic systems (for example, Kronecker invariants become ‘ singular *).

(ii) The system suffers a loss of controllability and breaks up into an
autonomous part.and a controllable part. 3

(iii) The system parameﬁers enter a range where there is a clear separation of
time scales—a slow subsystem of low order, and a fast subsystem of low
order (for example, high gain feedback effects (Young et al. 1977))

Using basic algebro—geometric techniques, we show how one might ¢ predict ’
the structure of the failed system even in the absence of explicit information
about the failure mode. In particular, this range -of ideas is of relevance to
certain families of systems obtained by linearization of non-linear systems.
Meyer and Cicolani (1 975) developed a formal structure for tlight control systems
with strong non-linearities, that includes a perturbation controller, of the form

E(t, A)= A(Nx(t, A)+ B(ANu(t, A).

y{t, A)=C(Nx(t, A)
with feedback law : w(t, N =K(t, Nz, ).
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The parameter A of course depends on the -flight regime or nominal
trajectory. Our previous remarks on the feedback family apply to the design
of a robust controller as A varies over the flight envelope. Similar considera-
. tions also hold in problems of aircraft englne control (see, for example DeHoff

~and Hall (1977)).

Other examples that lie within the framework of families of systems include
the discrete families of the theory of jump processes (Brockett and Blankenship
1977) and systems with commensurate pure = delays (Duncan 1979).
Hazewinkel (1979 b) considers ideas on ring models which are yet another
example of families of systems. A recurring problem in control applications is
to approximate a complex model by simpler (finite-dimensional) models, which
are constrained to lie in a family of models (specified for example by McMillan
degree, Cauchy index, stability, etc.). Certain information-theoretic measures
of approximation lead to variational problems on families of systems (Evans
1980, Evans and Krisnaprasad 1979).

In the next section we present a general framework for understanding
families of systems. - Some of these ideas have appeared in preliminary form
in the conference papers (Martin 1979). Most of the differential geometric
concepts and results we need may be found in Brockett and Krlshnaprasad
(1980) and Hermann and Krener. (1977).

2 Families of systems : generalities
 Consider linear systems w1th constant real coefficients of the form

(2.1)

Y]

Z=Ax+ Bu
y=Cx ~

where xeR", ucR™, ycR?. A, B and C are matrices of compatible dimensions.
The collection %, ,, ., of all such systems (or triples [4, B, C’]) has the structure
of the analytic manifold Rr*+nm+»),

Definition

A family of systems is a pair (A, $) where A is a topological space and
¢: A>X, ., . is a continuous map. Further, if A is an analytic (resp. )
manifold and ¢ is an analytic (resp. C*) map, then we have an analytlc (resp.
C*) family.

We shall often refer to either the map ¢ or the 1mage'1m (¢) itself as a family.
This should be clear from the context. Let X, , n°cX . denote the
analytic manifold of completely reachable and completely observable systems
(triples). We say that (A, ¢)is a ‘ regular family * if im (¢) =X, ,, ,»% Other-
wise we have a ‘ family with singularities>. Completely analogous definitions
hold when we are concerned with systems over the complex field C.

If the family defined by A—¢(A)=[A4(A), B(A), C(A)] leaves C(A)=
constant =C,, then we can identify. im (¢) with a subset of input-systems (or
simply pairs [4, B]). Further, if the family is regular, then we can identify
im (¢) with a subset of the analytic manifold %, " of all controllable pairs. In
other Words the map ¢: A-X, "0 induces a map ¢: A—ZE, . such

On families of s

i

that the followingr diagram commut

The projection = simply ‘ forgets * ¢

For our purposes, the most imj
that arise from the natural group a
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b Gx.
(g,
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that the following diagram commutes

b

) . . r,o -
SN
n,mSP

m ' T (2.2)

The projection = simply ‘ forgets ’ (.

For our purposes, the most important families of systems will be families
that arise from the natural group actions of system theory (¢ group families *).
More general, but equally important, are the foliated families. Recall

(Herman 1978) that an action of a Lie group G on a differentiable manifold M
is a smooth map ‘ ' ‘

b Ox MM

(g, m)—gm = (g, m)
satisfying the following three points.
" (@) For any ge@, the maps b, M—M and m——>gm are diffeomorphisms.

(0) For each meM, g,, g2€0, the relation (9192)m = g,(gsm) holds.
(c) For each meM, the relation em —=m holds where ¢ is the identity of @.

Associated with each point meM is an orbit map ’
™ G—M
g—gm=4(g, m)

The image of ¢™ is known as the ‘ orbit ’ through m and is denoted O, The

structure of an orbit @, is determined by the ‘stabilizer > of m which is the
closed subgroup @, = @ defined by ‘

Grn=1{9eG : gm=m)}
(

Now each orbit @, has the structure of a homogeneous space, G/(,,. Suppose
G ={e} for each meM. We then say that the action of @ is ‘ free ’, in which
case the manifold M is * partitioned * into orbits ¢,, each of which looks like a
e is no canonical association of a point of

On families of systems.and deformations 1059
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0,, with the identity e¢ of . Generalizing this concept of a decomposition of a
- manifold, we are lead to the notion of a ‘ foliation * (Lawson 1974) : ..

A smooth codimension-q foliation of an-n-dimensional manifold M is a
decomposition of M into a union of disjoint connected subsets {Z,: acd}
called ‘leaves’ of the foliation with the property that every point meM
has a nbhd- U and a system of local coordinates = (2!, ..., a"): U—-R"
such that for each leaf £, the components of UN.Z, are described by the
equations

a4+l = constant, ..., " = constant

each leaf is then an  immersed submanifold ’ of M. "The following dlagra,m
is helpful.

We now see how this circle of ideas leads to families of systelri's. Let G be
a Lie group acting (on the left) smoothly on =

Ji GxZ,
Then the orbit map, $M5Cl1 associated with a point [4, B, C] <, m
defines a family of systems
$[4, B,C]: G-Z, .,
g—g[4, B,Cl=y(g, 4, B, C)

Here the group G itself serves as the parameter space A. From this point of
view, a family is obtained by ° deformation’ of a given triple [4, B, C] into
its orbit 014 5 ). Similar considerations apply when @ is restricted to act on
Zmptor X" Families derived from foliations of Z,;,, , are identified by
defining the image of the parameter set to be a collection of leaves. We will

n, My P

M, P

On famili@ of 83

see later that together with a notion’
necessary machinery to deal with |
with families of systems.

We consider some examples.

~

Example 1 _
) ¢ A=R"5Z,,,

A= (Do> P1: 90> _%)“’(

is the assignment of the standard co
ties (pole-zero cancellations) (Brock

171 (2,1, %) ~rab (2) =

Example 2 7
$, 1 A=R3x81—(comp
o o ) eks
A .( } " ’0 7 1 .
( ’ IJ’, ’V, );_-»82_*_6,\
e -

That this map ¢, is onto may be se

* Example 3
’ Fix [4, B] a controllable pair e
b=y F
(P, K, Q)—

Here % is the feedback group (se
PeGl(n), QeGl(m), KeL(n ; m) is ar
family attached to the pair {4, B]

Example 4

Here we view the family ¢, as tal
maps (transfer functions) instead of
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see later that together with a-notion of  foliation with singularities * we have

necessary machinery to deal with most system-theoretic problems connec
with families of systems. o
We consider some examples.

Example 1
' ¢ A= Ri-Z, 11
0 . 1 0
A=(Do> P> 40, 01)—{ | - ; > 190 1]
~Po =P 1
is the assignment of the standard controllable form. This f

ties (pole-zero cancellations) (Brockett and Krishnaprasad 1980)

P12y 1,170 ~ratb (2) =rational functions of degree 2

. . N
Example 2

¢ A=R3x 8'—(com act, lossless, two- ort nefworks)
2 : : pac P

els e (M;—'Y) [s cos f+eAf2 gipn ]

+y

e [s cos 0—er2sin 0]  erg|. .

That this map ¢, is onto may be seen from Krishnaprasad (1979 a).

Example 3 N ‘ L S
Fix [4, B] a controllable pair €%, 7. Consider the map

953 = l/'[A’B] o fﬁzn,mr
(P, K, Q)—[P(4 ~ BKP)P-1, PBQ]

Here % is the feedba,ck'groilp'(semidirect product of .Gl(n) and Gl(m)) and
PeGln), QeGl(m), KeL(n; m)isanm xn maftrix.

14 Bl defines the feedback
family attached to the pair [4, B]. : ' o

Example 4
¢4t Slorat (2) -

LS €08 (A) +sin (A)
T3 B

Here we view the family ¢,

as taking values in a collection of input-output
maps (transfer functions) instead of in a collection of triples. - However, one can

061

the
ted

amily has singulari-
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always find- &, (a  lift ’) to fill in the commutative diagram-

(2.3)

7 is the projection assigning transfer functions to triples. We might set ¢*
equal to the standard controilable form. We will-say more about thls example
later.

It is now posmble to 1dent1fy a list of basic problems associated with
families of systems. : :

(4) Complete parametrization problem ‘

Given a family (A, ¢), determine the geometry of im (¢) completely.
Further specify a set of coordinate charts for im (¢). This problem has its
roots in fundamental investigations of the identification problem (Brockett
1976, Hazewinkel 1977, Byrnes and Hurt 1978, Brockett and Krishnaprasad
1980). In particular, the solution of the complete parametrization problem
depends on knowing what the various topological and algebraic invariants of
families are. '

(B) The canonical-form problem
As we saw in Examples 2 and 4, one might specify families taking values in

- transfer functions instead of in triples. = Typically, the canonical form question

takes the following form :. does there exist a (continuous) lifting (or canonical

form) § such that the following diagram commutes ?
\ .

r,0 .
anl

%y

A : > Rat (n)
¢

The answer is yes in this case. However, if we replace rat (n) by some
subset of multivariable transfer functions and X, ; ,»° by X, ,, ;" then this
answer is in general no! It depends on how ‘ twisted ’ the map = is over the
image of ¢! . Even in the single-input-single-output case, if.we replace Z, ; ,"°

"by the restricted set of signature-symmetric triples satisfying 7’4 = AT and

i
On families of

Tb=c', where T is a signature r
(recall : every rational function :
1970)), then in general a lifting

$: A
does not exist. , '
In fact, in Example 4 the map ¢

collection of signature-symmetric

functions in im (¢,) has the structi
there is no lifting !  (See Byrnes (

(C) Closure problem

In general, im (¢) is not closed
The points in the boundary 0i
sequences of systems in the family
identification of systems with incr
adaptive control problems. The
degenerate systems obtained as a
family, in which case one would li
invariants, McMillan degree, etc.
this context the coarse classificati

In connection with the feedl
im (¢g) =014, p)- In pafticu]ar [1
is far from belng an ‘ immersion ’
This preimage is simply the stab
with any group-family we have t

(D) Investigate the stabilizer
" This is very important, since
family (orbit).

Remark 1

The rest of this paper will be
programme represented by our
interesting and fairly general fami

_ parameters can appear in surpri

gramme to lead to some organizi
the complete parametrization pr
1979) and the significance of the t
is only now being appreciated.
problem in connection with aj
functions). More generally, we b

(¢) attach geometric (‘ invaria

(b) examine how these obje
(singularities, limits, ‘etc.)
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Tb=c', where T is a signature matrix with 1s and — 1s along the diagonal

(recall : every rational function admits such a minimal realization (Brockett
1970)), then in general a lifting

$ D A—>E, 170 (sym)

does not exist.
In fact, in Example 4 the map ¢, is an embedding and one can verify that the
1

. 0 .
collection of signature-symmetric triples { with 7=| = -1 with transfer

0
functions in im (4,) has the structure of the * Mobius bundle * over §* and hence
there is no lifting ! (See Byrnes (1978) for this and many interesting remarks.)

(0) Closure problem . : !

In general, im () is not closed, and the problem is to determine its closure.
The points in the boundary 9im (¢) have the interpretation as limits of
sequences of systems in the family. Indeed, such sequences appear in recursive
identification of systems with increasing sets of input-output data, as well as in
adaptive control problems. The limiting systems may also be viewed as
degenerate systems obtained as a consequence of failure-of a given system in a
family, in which case one would like to predict what characteristics (Kronecker
invariants, McMillan degree, etc.) that the limiting systems might have. In
this context the coarse classification mentioned in the Introduction is relevant.

In connection Wlth the feedback family (see Example 3) we note that

im (¢3)=0r, Bl In partlcular [A B] itself belongs to im (¢;). In general, ¢ -

is far from belng an ‘ immersion ’, and one would like to determine $,7([4, B)).
This preimage is simply the sta,blhzer Z 14.p1- More generally, in connection
with any group- famlly we have the problem. ‘

(D) Im;est@gate the stabilizer

This is very important, since the stabilizer determines the structure of the

family (orbit). “

Remark 1

The rest of this paper will be concerned with explicitly carrying out the
programme represented by our list of problems with reference to certain
interesting and fairly general families of systems. Since system-dependence on
parameters can appear in surprisingly diverse ways, we expect such a pro-
gramme to lead to some organizing principles. It should be pointed out that
the complete parametrization problem is in general very difficult (see Segal
1979) and the significance of the problem to identification and adaptive control
is only now being appreciated. Hazewinkel (1979) considered the closure
problem in connection with approximating input-output maps (transfer
functions). More generally, we have the following scheme : '

(@) attach geometric (‘ invariant ’) objects to each member of a family’; and

(b) examine -how these objects deform as we approach speclal points
(singularities, limits, ete.) of a family.,
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The relevant objects will be clear from the context. Before we close this
section, we point out some basic facts about the space X, ,, "9 of completely
reachable and completely observable triples [4, B, C]. The group Gi(n) acts

. on thxs manifold

1 Gl(n) x En,m,p”o—’zn,ﬁ,pr’o-
‘ ‘ ' (2.5)

(P, A, B, C)>[PAP-1, PB, CP-1]

As a consequence of -controllability (or observability) the action is. ‘ free .
Since points of X, ,, ;¢ that are not on the same orbit*have distinct transfer

functions, the quotiant M =X,  "/Gl(n) is of interest. It has been shown

(Hazewinkel and Kalman 1976, Byrnes and Hurt 1978) that £ . 70 can be

n,Mm, P

covered by (locally trivial) neighbourhoods of the form V, ~Gl(n) x U, where
U, are neighbourhoods of the quotient. The Kronecker theory of canonical
forms for systems played a significant role here. A previous result (1977) was
that (X, , "% @, M) is a °‘principal fibre bundle’ (see Brockett and

" Krishnaprasad (1980), Hermann (1978) for an elaboration of this notion) ; this

implies that the natural map = : X, ,, »%— M, has fibres (preimages of points)
that are diffeomorphic to GI(r). Further, the local triviality property (see
Diagram (2.6)) holds. ’

~

(2.6)

‘What we would like to emphasize is that this result can be proved without
resorting .to canonical forms. This depends on the existence of a Gi(n)-
invariant riemannian metrlc on %, .. ."»% Let N* ah‘d NO be the n x nm and
np x n matrices, '

N*=[B, AB, A*B, ..., A~1B] )
NO=[C,CA, ..., CAn]

Then a riemannian, metric can be defined on X
dlfferentlal form

70 ' 1 ic
nomp 0. 88 .8 quadratic

i

dst=tr (N° dANN""dA'NY) + tr (dON*N* dC") +_11,r (@B'N"N°dB)  (2.8)

2.7)

‘On families o]

We omit verification that ds? is
bility and observability), and is
that each orbit 0, p (¢ is closed
hoods with respect to eqn. (2.8), 0
quotient topology. In order tc
modify the metric into a ‘ com;
theorem due to Nomizu—Ozeki in
will appear elsewhere.) The poin
Xm0 carries interesting "str
structures. For historical rem
Delchamps (1980). S

" In the next two sections wi
specific families.

¥

3. Families of input systems
Here we address the specific ¢
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We omit verification that ds? is non-degenerate (a consequence of controlla-
bility and observability), and is Gl(n)-invariant. A simple calculation shows
that each orbit @ p ¢ is closed in %, . .»% Now using:geodesic neighbour-
hoods with respect to eqn. (2.8), one can establish the Hausdorff property. of the
‘quotient topology. In order to finish the proof, we need to conformally
modify the metric into a ‘ complete metric’. (For this procedure, see the
theorem due to Nomizu—Ozeki in Hermann (1978, p. 288). Details of the proof
will appear elsewhere.) The point of this digression is to indicate.that the space
X mpr? carries, intqrés‘oing structures such as GIl(n)-invariant\riemannian
structures. For historical remarks concerning this moduli pfq\blem, see
Delchamps (1980). - :

" In the next two sections we take up the geometric characterization of
specific families. - ' ‘
3. Families of input systems

Here we address the specific question : what does the family of 'coni;rollable
systems of the form - _ S -

&= Ax+ Bu, ucR™, axcR» ) (3.1)

where A4 is fixed, look like ? A related problem is to undersfand how un-
controllable systems appear via degenerating a family of controllable systems.
We show how both these questions (of parametrization and closure) can be
answered via the study of certain foliations with singularities. The single
input case yields very explicit results. In this case, the geometry of cyclic
vectors associated with 4 has to be understood and commuting vector fields in
R play an important part. ’ ' : '

3.1. Commuting vector fields in R '
Let M™ be a C* (analytic) manifold of dimension n. Let (M) denote the
set of O (analytic) vector fields together with the Lie algebra structure.
Recall (Hermann 1978) that for a local coordinate system, x =(x,, ..., x,) and
associated basis vector fields, o/ox;, ¢=1,2, ..., n, the Lie bracket of two
vector fields X = )’ f; (8/0x,) and Y = Y g, (9/ox;) is given by :

’ 0 0 0 ‘
[X, ‘Y] = 12} (ﬂ a_xl gj‘—gi @ f;) ';E | ‘ (3-2)

Given any subset {X,} < wUMm), we denote the Lie algebra generated by this
subset as .£. It simply consists of finite linear combinations of elements of the

form [Xei[Xe ... [Xo-1, X]...]]. At any point, xe M, the elements of £span - -

a subspace of the tangent space TM,».. We denote this subspace as F{X*},.
Now a connected submanifold N < M™ is said to be an  integral submanifold ’
of M™ if at each xeN, the tangent space to N at xeTN, <« F{X*},. Nisa
‘maximal integral submanifold > of M™ if it is not properly contained in any
other integral submanifold of #. The existence of maximal integral submani-
folds is guaranteed in two cases (Hermann and Krener 1977, Hermann 1962,
Nagano 1966). -

\
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Theorem (Frobenius) . :
If the dimensién of F {X}, =k for every xeM™, then there exists a partltlon

of M into maximal integral submamfolds of &£, all of dimension & (a foliation of

- codlmenswn n—=k).

Theorem (Hermann—Nagano)

" If the distribution % is analytic, then there exists a partltlon of M into
maximal integral submanifolds of % of varying dimensions. The dimension

of F{X%}, is 1tself constant on each submanifold of the partltlon and is equal to .

¢ the dimension of that submanifold. - The partition defines a foliation with
singularities. 7
In this paper, we are solely concerned with the analytlc case. Let Mn=Rr,
Consider a fixed ‘ cyclic matrix > 4. We will show that a pair {4, ] may be
viewed as a controllable pair or as a system obtained by degenerating a family
of controllable systems
- Let{X° X1, ..., X»1} be the set. of analytic vector fields in R" defined by

0

Xk= EZZzlkxa ' (3.3)
Here A% is the (¢, j)th element of the matrix powei' Ak. The vector fields X*
and X7 commute (i.e: [X¥, X/]=0)forallk, j {0, 1, 2, —1}. Hence the Lie

algebra & generated by {X°, ..., X"} is fmlte d1mens10nal Suppose we
denote as F, the subspaceé of the tangent space of T M " ~R" spanned by the
elements of & at zeR®. Then F,=span {z, dz,..., A~ lx} Since 4 is cyclic,
dim F =7 on a dense open subset of R denoted as C,. Thus C = U N

where each N " is a maxunal 1ntegra,1 manifold of dimension.» and. is thus a
connected component of C,. There are several steps involved in détermining
the geometry of the manifold ', of cyclic vectors of A.

First, note that each X* is a complete vector fleld since integral curves of
X’c are of the form

- . . 4 {éxp (Akt)x“: teR}
Let zeC, and N(x) denote the maximal integral submanifold of % passing
through x equal ‘the connected components of C, containing x.. Then the

exponential Lie group generated by the vector fields X°, X1, ..., X7~! defines
" an abelian action. .
s

‘ . n-—1
((t0$ tl, ’ tn—1)> Z)—f(}Xp ( kz() tkAk> Zé‘p(t: Z).

-

* Now for 2eN(z), define the orbit map’

P71 RP—N(x)
S (e, 2)
The jacobian - o o , o -
‘ o dyA(t) : R—R" - Ty

] h—(y Ay ... A" y)h

On families of

./ n—=1
where y=exp ( Y tkAk> 2eCy,
RN =t |
morphism. Repeated applicatior
o
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the present case, the integer k is
connected component N(z), and w

Theorem 1
Each connected component A

~ T* denotes the k-torus.

Remark 2 . .

The integer k depends only o:
conjugate pairs of eigenvalues of .
verification of this remark.
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where y=exp < niI tkAk> zeC y, is clearly onto. Thus 4[;2 is.av local diffec;~
morphiém. | Repfz;t?ed appiication of the ihmplicit func.tion t};e()‘rerﬁ yields
\ Cim ) =@ S
The stabilizer of the abelian action is the subgrqup of R™ defined by
H,= {_(tQ’ by ooy bpy) =teR" : x?b(t, z)=z2}

It is-an immediate consequence of the * local freeness ’ of the action (di, onto),
that the stabilizer subgroup is ‘ discrete . It is a well-known result in the
theory of topological groups that any discrete subgroup of R” is isomorphic to
Z* and equal to the.product of several copies of the integers (Arnold 1978). In
the present case, the integer k is locally constant and hence constant on the
connected component N(z), and we have proved the following theorem.

Theorem 1 :

Each connected component N(z) of C, is diffeomorphic T* x R**, where
T* denotes the k-torus. . -
Remark 2

The integer k depends only on 4 and is »equdlvto the number of complex

conjugate pairs of eigenvalues of 4. It is thus constant on O 4. We omit the
verification of this remark. :

Remark 3

The proof of the theorem is along the lines of the invariant-tori theorem of
classical mechanics (Arnold 1963, 1978). In fact, we were led to the theorem
by way of earlier investigation in symplectic mechanics (Krishnaprasad 1979).
We will return to this towards the end of this section.. - o

Remark 4

We see that R is partitioned -into leaves of a foliation with singularities,
The manifold C' is the union of a maximal dimension leaves (integral submani-
folds). In the next subsection, we count the number of such leaves. The
leaves of lower dimension (singularities) correspond to uncontrollable systems.

3.2. The conne,ctiﬁty of C A\

In this subsection, we explore further the ‘group-theoretic a:spects of our

foliation. Recall that C', £ {an|2, Az, ..., An 1y span R"} is open dense in R”.
In general if y C,, then there exists P ¢ Gl(n) such that
B P,AP =4 - )
A (3.4)
’ Py=e,

where A is the companion form (unique rational éanonical form) associated
with 4 and ¢, = (0,0, ..., 1)’ a standard basis vector in R». Now, if zeC 4, then
PP, AP P) =4 '
and o ’ : (3.5)
PP, y=z
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Thus I'=P'PeH,. ‘the subgroup of Gl( ) Wthh stablhzes A under
similarity. = We see that H , acts on C 4
y: HyxC—Cy
o (3.6)
(T, y)—>Ty == '

It can be verified that H , acts freely (a consequence of controllability).
Thus O, carries a group structure—exactly the same as that associated with the
representation of C, as a union of maximal dimension leaves (Theorem 1).
Recall that since 4 is eyclic, H , is the abelian group of units in the ring of
polynomials in A generated by 1,4, 42, ..., A» ! (see Gantmakher 1959,
P. 223) Formally ' ‘ ‘

n—1 | X
. Hy=P= Y «A'|aeR and P invertible (3.7)
: =0 _ . .

Since. C,is diffeomorphie to H 1> we have the equaiity

#(conneeted components of C )= #(conneeted components of H ,)

_F'A
. .on=1 . -1 . ‘
If we denote P,= ) «;A* and Py= Z B,A* two distinct points of H ,
B = R i=o
then a continuous curve in R® joining o= (otg, ..., &y,_1) ) and B=(B,, Bis ooy Bul)

fails to be a deformatlon of P, into P, if and only if it contains an mtermedlate
pomt Y= (For oo er Ve ) such uhat P, is singular. Now by the spectral mapping
_ theorem the spectrum of P,1is the set . .

{'y(Al): ey y()‘n)} R
where {)\1, ..oy Ay} is the spectrum of A and y(s)=y,+yS+ ... +yp"
Thus P, is non- -singular if and only if y(};) # 0 for A,espectrum (4). But thisis
the same as. saymg that y(s) and p(s) are eha,raeterlsme polynomials of 4 but
do not have any common factors. We have “thus established a one-to-one
correspondence between H , and the subspace of rat (n), defined by

Qo+ i8S+ L. A"

Mp=: :0(8)

q(s) ‘and p(e) ’ reletiveiy prime

Here p(s) is fixed. To determine the connectivity of M, (which is equal to the
connectivity of H ), we now use an idea first introduced in Brockett (1976),
namely deformation of pole zero patterns. A pole-zero pattern determines a
rational function g(s)/p(s) up to scale-factor. The difference here is that the
poles are flxed The following remarks apply . ’ &

(@) Complex poles and zeros do not create obstructions to deformations.

(b) A rational function with complex zeros or real Zeros of even multiplicity
- can be continuously deformed into one where these zeros appear at co.

On families of

(¢) One.can verify that if p(s)
(s)/p(s) can be deformed
form :

where at most one zero ap
poles. There are exactly
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(d) Now if r # 0, then in-order t
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point. This requires tha
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Hence in this case M, is ¢

In summary, we have the foll

Theorem 2 _
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Combining this result with the
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Theorem 3

The family of controllable pai
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(¢) One.can verify that if p(s) has r real zeros (ignoring multiplicities) then
s)/p(s) can be deformed continuously into a pole-zero pattern of the

form
I .
m
X
{
3 O R ’
X% % o % e
1 2 3 4

where at most one zero appears in the cell defined by a pair of adjacent
poles. There are exactly 27~ such standard patterns. The zeros in any
given pattern are trapped zeros, i.e. a zero cannot be moved from one
cell to another without passing through a pole-zero cancellation. Thus
each of the standard patterns represents a distinct homotopy class of
pole-zero patterns. :

(d) Now if  # 0, then in-order to change the sign of the scale factor one has to
allow the coefficient of the highest power of s in ¢(s) to vanish at some

point. This requires that a trapped zero be moved to infinity and

hence cannot be accomplished without pole-zero cancellation. Hence,
when 7> 1 rational functions with scale factors of different signs cannot
be deformed into each other. When =0, there is no obstruction to the
deformation of zeros arising from the relative primeness conditions.
Hence in this case M, is connected.

In summary, we have the following theorem.

Theorem 2

The space M, of rational functions of degree n and fixed denominator
polynomial p(s) has 27 connected components where r is the number of real
distinet poles. : ‘ ' s

Combining this result with the prev1ous remarks about the geometry of H ,
and the correspondence between H , and M, we have another theorem.

Theorem 3

The famlly of controllable palrs (4, b] for fixed A is dlffeomorphlc to the’
disjoint union.

where 7 =number of real distinet eigenvalues of 4 and each leaf L; is diffeo-
morphlc to. the product T"x"*’“ where k is the number of complex elgenvalues
pairs of 4.




1070 ‘P. 8. Krishnaprasad and C. F. Martin

© 3.3. Closures and limiting systems

‘Tt is clear that the lower dimensional (singular) leaves of the foliation with
singularities defined by eqn. (3.3), correspond to uncontrollable systems. To
obtain these as limits of controllable systems, one notices that any yeR® has a

representation
' n—1

y= 3 oA . .(3.8)
i=0 B

-where x is a cyclic vector of A. Hence

n-1
y= ( Y ociAi) x
. i=0
n—1
Here, P= Z a;A%h 4, the set of matrices that commute with 4. Further y

is a cyclic vector if and only if P is non-singular (which holds if and only if a(s)
and p(s) do not have common factors) Thus given a pair [4, x], we can
generate a sequence of controllable pairs degenerating to an uncontrollable pair
T4, y] in the following way. . ’

. (i) Find the (unique) «; in eqn. (3.8) and define o(s)/p(s) ) of degree <n.

(11) Cons‘oruct a sequence of rational functions of degree n of the form

a(k)( )
p(s)

-

“where @ (s) =1 and such that .
a®)(s)—a(s) as k— oo

It can easily be verified that this can always be done. This implies that the
sequence of controllable systems, [4, y®] defined by

. y(o)zx

. ‘ : n—1 -
y(k)z( Y a.<k>Ai) x

=0

and

has the property “that [A y®N-[4,y). . ,

Khadr and Martin (1980) established closure results for Gl(n) families which
yield uncontrollable systems in the limit. Our own calculations can be refined
much further to determine the invariants of uncontrollable systems.

Remark 5 ‘
~ Theorem 3 has several consequences for families of systems. Consider the
group action (by the additive abelian group R")

b RO, o5,

((tyy t1s --r tyq), [4, 0])— |:A, exp ( .go t'LAi) b:l

3

From ‘:ourvprevious remarks, the action is locally -free (discrete stabilizer
everywhere on X, "), and hence defines a. foliation of X, ,". Theorem 3

On families of
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describes the structure of the leaves. One consequence of this structure is that
the leaves are parameterized by °theta-functions’ (Hancock 1958). - The
complete parameterization problem is in this sense solved for each ‘(regular)
family defined by this R*-action.

Remark 6

We were led to these ideas by investigations in analytical mechanics
(Krishnaprasad 1979). The invariant-tori theorem says that if a hamiltonian
system has a full set of » integrals of motion satisfying certain regularity
conditions, then the phase space (of dim = 2n) is partitioned into level manifolds
by setting the integrals to various constant values. The level manifolds are
products of tori and lines. The properties of certain dynamical systems were
investigated previously .(Brockett and Krishnaprasad 1980). Those _were
indeed the generators of families such as F, in the Introduction. More
completely we may state the next theorem.

Theorem 4

The analytic manifold rat (n), of proper rational functions of degree n has
(n+1) connected components distinguished by the Cauchy index. Each
connected component rat (p, q) admits a foliation whose leaves are diffeo-
morphie to 7™ x R*~™ where m is constant on an open set. KEach leaf is a
connected component of the ‘level manifold ’ obtained by setting p, =
constant=c;, 4=0,1,2, ..., n—1 in P(S)=8"+p, 18" T+ ... +p8+p,.
Further, on rat (n, 0), m =0 and the foliation is a fibration., ,

Remark 7

The statement about the connectivity of rat (n) was given in Brockett
(1976).  The foliation. was presented in Brockett and Krishnaprasad (1980).

So far in this section, we have used abelian actions to great advantage.
This is possible as the stabilizer H 4 of a matrix for the action of G(n) via
similarity is abelian and is of dimension%. More generally, one is led to solvable
groups and the families have more intricate structure.

12

4. Feedback families

We have already seen how a deeper study of the stabilizer H , leads to a
wealth of information about families. This is even more true of feedback
families. Consider the group & of non-singular matrices of the form

“fP 0 : -
; PeGln), QeGl(m),. KeL(n; m)
K @ i

‘

We call # the feedback group and it is a closed subgroup of Gl(n+m) of
dimension n2+nm +m?  From Example 3 of § 2, we have the action

g1 FxZ, o3
P o

r
n,m

: ,[4, BI-[P-1AP +P-BK, P-'BQ]
i . 'K ) ) . _ )
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We call every orbit of the action, a feedback family and define this by the orbit
map . : '

d P o ‘ _
—[P-*AP+ P1BK, P-1BQ]
K @

Associated with each [A, B] pair one has the following ordered set of subspaces.

By B < ... <B4 ' (4.2)

where we have the recursive definition

%0=ifn (B) = column space of. B
‘ ’ (4.3)
Bi1=%B;+AH;; 1=0,1,2,...,n—-2
Since #,_, is simply the column space of the matrix
NrA[B, AB, ..., A»B] (4.4)

it follows from the standard criterion of controllability that whenever [4, B]
is a controllable pair, #,_,=R®. We then say that (4.2) defines a * filtration ’
of R and the ordered n-tuple, (By, By, ..., #,_,) is called the * flag * associated
with the pair [4, B]. We denote this as ¥", ;. Brunovsky (1970) noticed
that transformations of the types, (i) [4, B]—-[4 + BK, B] and (ii) [4, B]—
[4, BQ) leave the flag ¥7(, ) invariant. Further, under Gi(n) action,
[4, B]-[PAP™, PB] A

" (B, By, ..., Byy)—\PBy, PRy, ..., PRB,_))

or more compactly
"//[RAP‘l, PB]=Pyi4,p o (4.5)

Equation (4.5) is very basic since it shows the assignment of a flag to a pair
[4, B] is well behaved with respect to the feedback group action. Let

l,=dim (%4,), +=0,1, —1. Associate with the sequence, [y<l;< ... €
ln 1=n, the integers, 01> 05> ... >0, defined by ‘

oy =l | _

oy =l -l 5 1=2,...,n < (4.6)
Clearly, ¢, + o5+ ... +0,=n and the integers, (o, ..., 0,,) determine a partition

of the integer n. Clearly [, and hence o, are invariant under the feedback group.
That the partition ¢ =(oy, 03, ..., 0,,) is'a “ complete invariant * is the content of
Brunovsky’s (1970) main theorem in the language of canonical forms.

© Theorem (Brunovsky)

Given |4, B], a controllable pair, associate a partition o of n as above. To

. this partition associate its dual (in the sense of Young diagrams) partition,

p=1(p1s :--s ps,) Where the Kronecker invariants p; are ordered p; > p, > ... >py,.

On fmm'lie;s of ¢

Then, on each orbit' ¢, ; of the fe
form

and each E, is a p, x m matrix wit
equal to unity.

Corollary - .
#feedback orbits

The association of dual partitior
standard (see, for example, Kalma
algebraic flavour of Brunovsky
geometry of the orbit O, ) in
represent each orbit as a homogen
group. Specifically ‘

014,
where %[, 5 is the stabilizer of
belong to the same orbit, then the s
of #) to F335. In particular, it
associated with the Brunovsky car

that &, p,) consists of matrices

[ Py, Py
. P={ Py Py .
P
K
- Py= | g
B v".“ij_

B Pi]‘-='0' if pi>pi -
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Then, on each orbit' Or, . of the feedback group there is'a canonical pair of the
form ' , :

[J,, 0. o7 [ E, ]
AP= O Jpz: ..... 0 3 B = E"2
0 i 0 J, ] R
0 1 0..07

Jp=]| : o is a & x & matrix

O ol

and each &, is a p, x m matrix with all elements zero except (£,),, , which is
equal to unity. ’

Corollary - L ‘ ,

#feedback orbits = #partitions of n = finite
The association of dual partitions to a given partitioh Via,‘Young‘ diagrams 1s
standard (see, for example, Kalman (1971)). Tt is interesting to compare the
algebraic flavour of Brunovsky (1970) and the first investigation of the
geometry of the orbit O, 4,51 In Brockett (1977). Brockett’s idéa was to
represent each orbit as a homogeneous space (Hermann 1970) of the feedback
group.  Specifically , o ' )
- @[A,B]=3Z/'g’.u,3] (4.7)

where F, 5 is the stabilizer of [A4, B]. Note that, if [4, B] and [4, B]
belong to the same orbit, then the stabilizer 4, 5118 conjugate (as a subgroup
of F) to F ;5. In particular, it is easior to.compute the stabilizer # 1, |
associated with the Brunovsky: canonical form of an orbit. ‘Brockett showed

0
of the form.
o)

. . pr
that 7 (, B, consists of matrices [ K

. (Pu Py .. Py,.
P=| Py  Py..Py, |, Pyapxp; matrix
‘ | Py, P,
P,= . if \
ij o"t:i 1 P'L"P] :
. N ]
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~and
[ oy /3«;7'.; Bijeriaterenenes 0
P«w’; 0 % KRN 0 PL<Pj

| O 0 ... ay Bﬁ Sij-

. K=BH(P4,- 45K |
. ol . .
where # denotes the generalized inverse and K =|:K*] with K* being

(m —o,) x w and arbitrary, and 'finaliy

. ' 1o % e %gy W
_ 12
, ¥
P T %o yoy
- o
L. X .

the elements marked Wlth an asterlsk are arbitrary and those having a double
asterisk are arbltrary and invertible. Tt is now a stralght.forward calculatlon
to show that 7
v dim F 4, g,1=(n+m)(m—o;) + X (p+1- P;) ' (4.8)

=Py

: Example 5

_In the smgle input case, m=o0;= 1 and p,=mn. Thus dim & 4 p1=1 and

the stabilizing matrices are of the: form al, ; a#0. '

- Tt is now standard (Hermann 1978) that the d1mens1on of the orbit F 4,5)
as a homogeneous space is given by

dim O, py=dim F —dim 37[11 B ‘
=nd+nm+m?—dim F 4 p) (4.9)

and one -can use formula (4.8). :

" Now, notice that from the point of view of deformation of systems it is
important to know whether a pair [4, B] may be continuously deformed into a
pair [A B] using the operations of the feedback group. Brunovsky’s (1970)
theorem is not sufficient to answer this question because the feedback group is
not a connected Lie group. In fact & can be seen ‘to have four components
(Brockett 1977). In this sense, it is more natural to work with the connected

component of the identity in & determined by the determinantal restriction
det (P) >0, det (Q)>0. We call this group #*. One now determines the
number of connected components of the stabilizer # (5 using the explicit
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representation above. The number of components of the orbit equals #, the ‘
number of .components of #. divided by the number of components of % that
the stabilizer intersects non-trivially. We now have the following theorem.

" Theorem (Brockett 1977)

Oy, p1is connected unless the n; are all of the same parity (i.e. all even or all
odd) in which case it consists of two connected components. :

Brockett (1977) used these calculations to refine Brunovsky’s (1970) normal
form to determine when two pairs [4, B] and [4, B] are on the same orbit of
F+. His result uses Hermann’s (1978) lemma in an interesting way. k

In our.discussions so far we have seen two partitions : the Kronecker
partition (py, py, ..:, p,,) of 7, and the flag partition (04, 0y, ..., 0,) of m, which
are dual to each othér. We have seen the role played by the Kronecker parti-
tion in determining the dimension, connectivity, etc., of the O, ). If the
elements of the Kronecker partition are as equal as possible, the corresponding
orbit has the largest dimension among all feedback families in 2, »" and as such
is considered to be the generic family. Now we proceed to investigate the role
of the flag partition.

Given any partition o= (oy, ..., 0,), 01202 ... 20, of the integer n, we
can define Fl(cy, ..., 0,) to be the set of all n-tuples (Ly, Ly, ..., L,) where

Liclye ... cL,=R*, dim(L,)=g,
and '

dim (L;) = o; + dim (L,_,)

Given two flags (L, ..., L,) and (L, L, .. L) belonging to- Fl(oy, ..., o),
there is an element 7'eGl(n) such that .
Li=TL, i=1,2,..n :

(choose a basis for L,, extend this to a basis for L, and so forth. Do the same
for the L,’s. Then map basis to basis. This defines the non-singular linear
transformation T completely). Thus we see that Gl(n) acts transitively on
Fl(oy, ..., 0,). (Smoothness of the action is easy to verify.) Thus Fl(oy, ..., 0,)
has the structure of a homogeneous space of Gl(n) and hence has a nice manifold
topology. Moreover, by just working with orthonormal bases, we could have
shown that it is also a homogeneous space of 0(n) the orthogonal group. Since
0(n) is compact it follows that Fi(oy, ..., 0,) is compact. In either case, to
obtain an explicit representation of the homogeneous space, one has to
compute the stabilizer of a flag. For the GI(n) action, it is an easy exercise to
verify that the stabilizer consists of invertible matrices of the block upper-
triangular form (in a suitable basis) ‘

Ay Ay A

‘In
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0y

Example 6 S : ‘ ’ \

n=2; o,=1, 0,=1; we are dealing with the collection of lines through'the

origin in R%.  Stabilizer = : invertible 2 x 2 upper triangular matrices.
The flag manifold FI(1, 1)=8" the circle ! s ‘
We already saw how to assign a flag (#y, %y, ..., Bp_1)t0 2 controllable pair
[4, B]. The question is can we go backwards, i.e. given a flag can we write
down a system whose flag it is by the canonical association, ((4 2), (4.3)) ¢ The
answer-is-yes. We proceed in four steps : : »

(a) Given (n,m) and 0=(0y, Ty ++vs Tps O1 05> ... o,), fix the standard
basis in R™, denoted as {y, €5, coes €opreens emﬂ,z, vees €t : '
(b) Let A (L1°, . L .9 be the standard flag defined by

'L°=span {e,, ..., &,}"
L,?=span {e1, -oos €gys oo Co o)
; :
0o_
Lo=Re

(c) Consider the pair [4,, B,] defined by

[0 0 e, 07 [ 1,07
. . 0 i0
y: (| T 0 Do
Ao'= ,“B0.=4
0 4, 0 :
1o o 4,, of . L o io0]

where A;is a cr@ 1 X o; matrix of the form U, 0] and each I, r is the

kxk 1dent1ty matrix.

Then the canonica,l ﬂag of the palr [4,, B ] i§ premsely (L1 , L2°, ey
L 0). Thus .
o V[Aq,Ba ,V S ‘ (4711)

‘ f(d) Now given ‘any other flag V (930, By By 1)eFl(al, ..., G,), by the
" homogeneity of the flag manifold, there’exists a PeGl(n) such that

pyo—y (4.12)

But, from (4.5) the intertwining property
‘ P“I/O—P"//[Aa B,

= %[PA.,P ;PBg]

Thus V Y pa Pt PR, The. pair [PA, P, PB;) is the. desired pair.
The pair [A(,, B,]isa canonical form for the feedback group: (Martin 1979).
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Theorem 6

The map
WF : Zn,mr(a) EE71,,77(vr-->'F'l(0-)

(4, Bl—(%y, #,, ..., B,_,)
is a surjection. '

Actually the map =, is very well behaved and is of use in further unravelling
the structure of Z,,m'(0). Notice that GI(n) acts on 2, m'(o) via

[4, B]-[PAP-1, PB]

and the action is free (because of controllability). So if one restricts the map
mp to an orbit @ 4,51 0f Gl(n) (which looks like a copy of Gl(n)) then the inverse
image of 7, =my|0, 4,51 18 diffeomorphic to the stabilizer of the flag ¥, 4, B
More precisely we may state the following theorem.

Theorem 7 K

The triple (@, 4, é], 7g, Fl(o)) defines a fibr&tion of 7, 4,51 With fibres diffeo-
morphic to the stabilizer of the tlag ¥"(4 5.

Caveat

It does not necessarily hold that if the systems have the same flag, they are
Gl(n) equivalent (i.e. they are on the same orbit g, 4,81 This is because the
same fibre of 7, can intersect many Gl(n) orbits.

Recall from the beginning of this section that the feedback group % itself
may be viewed as acting on Fl(o). Since by definition :

Fa, 14, B]={[4, B]} . (4.13)

y[A,B]'ViA,B]={"/-/[A,B]}» : ) (4-14)

If we denote the stabilizer of ¥"(, 5)in & as A i4, 51, then

FlunSHh i ‘ - (4.15)
is a closed subgroup and the fibre TN L, 5) 2K 1y, 51 F 4,81 @ homogeneous
Theorem 8

The triple (01, ), 75, Fl(o)) is a fibre bundle with fibre X 45 F 14,1 @
homogeneous space. : '

If [4, B]=[4,, B,] is actually in canonical form, then we have already

48 computed the group A4, .1 is a group of block upper triangular form, eqn.

(410). A similar calculation has o be done for & (4.,B,]1 Whereas Brockett’s
(19—) formu!ae correspond to the Brunovsky.(1970) normal form [(4,, B,].
See Martin' (1979) for details. - . : o :
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Example 7 - :
Single-input case: m=1; o=(oy,...,0,)=(1,1,...,1). Let [4,,b,] be
in the canonical form

. [0 0. 0] 1
. 1 0 0 0
A= t b=
0 1
0 0.1 0] L0
Then Fl(o) n)/D, where D is a discrete subgroup. " The stabilizer for the

feedback actlen on [,AU, b,] is the single dimensional group
Fragpa={ady: a#0}
The stabilizer of the feedback action on ¥",_,_ ;is
‘ K = R®, Pir (0)

where R™ is the additive abelian group, Ptr (») denotes the projective upper
triangular group of (n x n) matrices and ®, denotes semidirect product. One
can now use Theorem 8 to obtain the set of all controllable single-input systems
as a fibre bundle over 0(n)/D.

. We hope to have demonstrated in this section that, by a deeper study of the
stabilizer and the flag manifold, etc., associated with a given orbit, the rich
structure of the orbit stands revealed The intrinsic power of the geometric
viewpoint for the study of families of systems becomes apparent in the new
results that we are led to that would have remained inaccessible 0therw1se
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