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In this paper. we invesligate the identification problem of linear sysiem theory from
the viewpeint of nonlinear filtering. Following the work of Brockett and Mitter. one
associales in a natural way a certain {infinite dimensional) Lic algebra of differential
operators known as the estimation algebra of the probiem. For the identification
problem the estimation algebra is a subalgebra of a current aigebra. In this paper we
study questions of representation and integrability of current algebras as they impinge
upon the identification problem. A Wei-Norman type procedure for the associuted
Cauchy problem is developed which reveals & sequence of fumcuonals of the
observations that play the role of joint sufficient statistics for the identfication

problem.

1. INTRCDUCTION

Consider the stochastic differential system:

df=0
ey =A(yx,di—+ bt dw;
dy, = <c(f),x, ydr + dr,. (1
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Herc {w,} and {¢ | and independent. scalar. standard. Wicner
processes and {x,} is an R"-valued process, We assume that # 1akes
values in a smooth manifold ©=R* and the map —-XLi{fy=
(A().b{8), c(0)} is a smooth map taking values in minimal triples.
By the identification problem we mean the nonlinear filtering problem
associated with Eq. (1); i.e. the problem of recursively computing
conditional expectations of the form n,(qb)iE{d'(x,,Q}é%ﬁt} where #,
is the o-algebra generated by the observations {y,:0<s<¢} and ¢ is
a member of a suitable class of real-valued functions on B" x &

It i1s now well-known that the solution 1o nonlinear fillering
problems of the above type involves in an essential way a linear
stochastic partial differential equation in the Ito sense known as the
Duncan-Mortensen-Zakai equation (see the papers of Davis and
Marcus [1] and Mitter [2] for overview and historical remarks). In
the present context, this equation takes the form

dp =" opdr + Bopdy,, (2

where pip(!,x._ 1) 1s the joint unnormalized conditional density of x,
and f given %,. The operators &/, and #, are given by

o o= 3CBB), IExDT — tr{ ALD))
(A X O 0x ) {3

and
Byr={e(b), x> {4}

The Bayes formula, (Kalhanpur [3]) implies that

mdgi=0,(P)a,(1) {5
where
a (@)= [[ d(x,0)plr, x. 0)dx-db). (6)
ez

Further. if we let Qir,#) denote the (unnormalized) posterior density
of & given ¥, then it follows (see [4]} tha.

dO(1.8)=E[{c{0). x> 0.%,] 0. 0)-dy,.
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It is possible to give a pathwise interpretation of equation (2} {see

Mitter {51, Davis [6]) by applying a time-dependent  gauge
transformation of the form,

e x, 0) 2 exp(— {c(). x>y} plt, x. 01 (8)

Then {applying Ito’s rule} p(z, x) satisfies the delerministic partial
differential equation

ép ¥ )
Lol P40+ L2
= ( ot ¥+ A)p (91
where,
B2 _
Fy=ady——" (10

&, and ¥, are given by the commutation rules:
&= —[#o. ] {th
£y =[Bo. [Bo. oo 1]- (12

The pathwise form (9) is most suitable for what foliows and leads
to geometrical investigations. By the estimation algebra of the
identification problem we mean the operator Lie algebra G generated
by (o —#3) and &, For more general nonlinear filtering problems.
estimation algebras analogous to G have been emphasized by
Brockett and Clark [7], Brockett [8-11]. Mitter [12.2.5L
Hazewinke! and Marcus [13] and others (see [14]} as being objects
of central interest. In the papers [24,15]) we give a classification
theorem for identification problems in terms of G. See Theorem 1
below,

Our purpose in this paper is to make explicit the structure of the
Lie algebra G and certain associated representations.  These
representations, especially the nontrivial ones, play an important role
in sensitivity equations for finite dimensional filters. Sensitivity
equations are an essential part of various approximate maximum
likelihood algorithms which are widely used in practice [50.51].
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Following Brockett and Mitter we view the Cauchy problem
associated with Eq. (9) as a problem of integrating a Lie algebra
representation. In the mathematical literature, this approach to
solving p.d.e.’s appears in the work of Steinberg {43}

This leads to @ Wei-Norman type representation for an infimite-
dimensional Lie group associated to the Lic aigebra G.

Finally, our calculations indicate what functionals of the
observations constitute a set of joint sufficient statistics for the
identification problem.

2. THE STRUCTURE OF THE ESTIMATION ALGEBRA G
To understand the structure of the estimation algebra G it is well
worth considering an example.

Example 1 Let
dx,=8dw,;; dfi=0 dy,=xdr+dv,.

Then

A3 07 P
Py A .
2T 2&E 2

and A,=x. The Lic algebra G= .o/~ #7324}, 4 15 spanned by
the set of operators
92 _'.12 ‘_\,2\.
TieT)
n ) (". ¥
102X O and 210
X =1 n =

We then notice that G is simply a Lie subalgebra with two
generators of the infinite dimensional Lie algebra obtained by

fensoring “the polvromial ring R[H7] with~the six dimensional—lie—
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algebra of operators

{:2
st(l)ﬁ{ 30 X

("\
x4 Cx

X x, 1}:6;;}%[03@3{1). =
X

i)

The general situation is very much as in this example. Consider
the vector space (over the reals) of operators spanned by the set

i=12,....n jml,l.._,n} (1

Elemenis of % are assumed to act on #(R") the Schwartz space of
rapidly decreasing functions. This space of operators can be given
the structure of a Lie algebra (of dimension 2n®+3n+1) under
operator commutation (the commutation rules being

where &, denotes the Kronecker symbol). We denote this lie
algebra as st(n). The structure of st(n) can be made quite explicit. as
follows.

Let (V, B) be a symplectic vector space over the reals. Thus 17 is a
vector space of dimension 2n and B: Vx V=R Is a nondegenerate
skew-symmetric bilinear form. The direct sum V@R can be given
the structure of a Lie algebra as follows:

[, JVeR) x(VERI-VER (v & ))~(0. B(r, 1)

We denote by h{n) the above Lie algebra. The choice of a
(symplectic) basis makes the matrix of B take the form

0 I,
- 14)
! (—1. 0) o
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and thus h{n} is nothing but the Heisenberg Lie algebra of dimension
2n+1. The symplectic group Sp(B) acts on (¥, B} as a group of
automorphisms of the symplectic structure B and hence on Atn). This
immediately defines a semidirect sum sp(2nm®,h(n), of sp{2n) the
symplectic Lie algebra (of matrices M with the property MJ+JAf
=0) and h(n).

One can show that (see Kiriliov [16]. Lion and Vergne [17]) that

st(n) =sp(2n)@h(n). {15

The algebra st(n) has the following faithful matrix representation
as a subalgebra of sp{2n+ 2}

{16)

#
<o o

Eestin)—A(E

where A, B.C, are nxn matrices B=F, €= and p.ge?" and
deR. (See appendix 1 for the explicit isomorphism between stin} as
a Lie algebra of differential operators and as a matrix subalgebra of
sp(2n+2).) Since sp(2n) is simple and h(n) is nilpotent. it follows that
Eq. (15) gives the Levi decomposition of st{n).

Suppose for a moment that f is a known constant {equivalently @
is a 1-point manifold). This is then the setuing of linear filtering and
in this case G={o/q—BL/2, By} A st{n) is solvable and the whole
situation is quite well understood (see Brockett [8, 11]. Ocone [18]).

In the setting of the identification problem however. £ should be
treated as a variable and for each 8, («/,— #3'2) and #, take values
in st{n). From the smooth dependence on 6 of the trple
(A6, b(D), c(0)), 1t follows that (o, —B22) and H, are smooth maps
from © into st(n). The following general viewpoint is essential.

Let M be a smooth finite-dimensional manifold and let L be a
finite-dimensional Lie algebra {(over the reals) with the usual
topology. The space Ly = C™(M:L} of smooth maps from M into L
can be given the structure of a Lie algebra in following way: given

¢, Y e L, define
[ Tui Loy Lu—la [0 ] =[dlphvip)]. peM.
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We call L,, with the Lie algrebra structure [.-],, defined above. a
current algebra.

Remark 2.1 Current algebras play a fundamental role in the
physics of quantum fields [19] and in the geometric theory of Yang-
Mills fields [20]. Elsewhere in mathematics they are studied in the
guise of local Lie algebras or Lie algebra bundles [21.22]. The
following 1s immediate.

Prorosimion 2.1 For the identification problem, the estimation
algebra G generated by the operators

B < oy e GUEYS
&g —— =1 {b(8), G e X ) e
o= =3 W 5, <:x,14(9)x 5

By ={c(f), x>,

and

is a solvable subalgebra of the current algebra C™(©; st{n}}. -

If © is a‘_f‘méae set then clearly C*(0; st{m) is finite dimensional
and so is G (this feature has been exploited by Hijab [49]). In
general, when dim © 2 1, the following proposition is of interest.

Proposimion 2.2 Assume that bi8)=0 (no driving noise). and © is a
smooth connected manifold of dimz 1. Then one of the following
situations holds:

a) the map O—A(f) is nonconstant and G is isomorphic to the
“shifi” Lie algebra with basis (X, X, . X,....] and commutation
relations

[Yo. X=X, i=12.. [Xz'~X,‘}=0 ijz1

b} the map 8—-A(8) is constant and G is finite dimensional and
isomorphic te a Lie algebra with basis {Xo. X . ... X and
commmutation relations

[Xo X1

i
11

<
et
)
et
e
[

1
fo]
I

where p, are constanis.
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If (Y20 then G is necessarily infinite-dimensional.

Proof Itis a calculation [sec 13]. -

Remark 2.2 The conclusions of Proposition 2.2 are not affected if
in our stochastic differential eguation model we introduce an
additional, known, deterministic input term with known constant
coefficients.

3. SOBOLEV LIE GROUPS ASSOCIATED 7O &

It has been pointed out elsewhere [8, 2. 18, 23, 24, 43] and
[257 that the Cauchy problem associated with equations of the form
{9) may be viewed as a problem of integrating a Lie algebra
representation. To pursue this further one should be able o
associate Lie groups to G. Since G is infinite-dimensional this
question merits careful study. We carry out such a study for general
current algebras and later specialize to the cases motivated by the
identification problem.

Let M be a compact Riemannian manifold of dimension r with
volume efernent dm. Let L be a Lie algebra {over E) of dimension
n< . We can always view L as a subalgebra of the general linear
Lie algebra gl{m; ®) for some m>n (Ado’s theorem).

Hypothesis (HY Let G={exp(L)]s=glim &) be the smallest Lie
group containing the exponential of elements of L. We assume that
G 1s a closed subset of gl(m: B).

Define the spaces of smooth maps #=C* (M. glm R ¥'=
C?{M:L). =C*(M:G). The space # has the structure of an
infinite-dimensional algebra under pointwise multiplication and

Ko HoA
One can construct Sobolev completions of ¥ and % as follows. Let
HU,.@,) be a finite covering of €™ charis for the manifold M. Let

(x,.....x,) denote the associated local coordinates, For i=({,..... i)
an r-multi-index and [ €A, let

DT @) D=3 ol Nyed . oxl {17
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{an n1 > m matrix of partial derivatives w.r.t. the coordinates x;). One
can now define, for |, foe#

P

k 1
IEs -fz{E*:[S_ dm.mz(§D’((jlmf2)'<,0;"}2} (18)
z =0

@ (L4

ERRa ]

where

=) (19}

(Here k>r/2). We call |-}, the Sobolev k-norm and we let #,. %
and %, respectively denote the (Sobolev) completions of #. % and %
in the norm |||, By our hypothesis (H) and by the condition k>r2.
%, is closed in #,. The condition k>r/2 guarantees that the
definitions of #,, ¥, and %, do not depend on the choice of charts
([26.27,281}). Furthermore by the Sobolev theorem. #, is a Banach
algebra (a matrix Schauder ring) and hence the group operation

REIRE- AAd) (f1.02)- [ 1

where (f,f:){(m}=fi(m) fotm), me M is continuous. Thus %, 15 a
topological group.
Similarly the bracket operation.

[, BFxE =P, (fi. f2=0/s f2]

where [ f,./: Hm)=[ [ {m), [,(m)] is continuous. Now the next step is
to give %, the structure of a Lie group and then identity &, as the
Lie algebra (tangent space at the identity) of the infinite-dimensional
Lie group %,. The basic idea is to use the exponential map. Define.

exp: L~ %, f—expf

(expfimi=expf{m} me M. {203

We can now appea! to the following version of the “w-Lemma™
[27,29,30]. {a basic result in global nonlinear analysis},

w-LEMMa  Let M be a compact manifold of dimension d and ler
H3(M:R™) and H(M:R*) respectively denote the Sobolev spaces of

maps {of order s) from M into R™ and B?. Assume s>d'2. Then for
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any C7 map ¢:R™—=R", the map
@ H (M, R™)— H (M. R")

defined by
(G )im)= ([ (m)

is a C* map of Sobolev spaces. .l

In the present case, since %, « #, we conclude that.
exp: ¥, —%, is a smooth map.

It can be shown further that the differential of exp is the identity
map at the origin. Hence by the inverse function theorem, there is a
sufficiently small neighborhood ¥, (0) of the origin of ¥, which s
mapped diffeomorphically onto a neighborhood of the identity in %,.
Transiating exp(¥,(0)) by right multiplication by elements of %,. we
obtain a covering of %, by C™ charts. We have thus proved.

Prorosition 3.1 The toepological group %, is a Lie group and %' 15

]}

its Lie algebra. o

Remark 3.1 The above result appears in study of Yang-Mills
fields [31, 32, 33] for the restricted case of G {the gauge group) being
a compact Lie group. Here we essentially use the fact that for any
right-invariant Riemannian metric on a Lie group, the exponential
map is global (i.e. the geodesics are extendable for all time). Further.
the w-lemma furnishes the essential step in the construction of the
C* structure on %,.

We emphasize that whereas in the setting of Yang-Mills fields the
gauge group G is compact (Su(n) etc.). for the identification problem
G is not compact. In fact we let,

L= st{n) G = {exp(st{m)}q.
From Kirillov [16, 34] it follows that G=St(n), is the con-

nected component of the identity in the subgroup St(n) of Sp(2n+2)
that leaves fixed a nonzero vector in R?**% Hence it sausfies

the hypoihesis (H) of This section. We may take m=2n+2
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In the notation of this section. let, M =0 the parameter space
{dim®=r) with a fixed Riemannian metric and associated volumc
element df. The methods of this section apply and we oblain a
whoie family of Sobolev Lie groups {%.k>r/2} associated to the
current algebra C™(O;stin))c C*(G;sp(2n+2)). The estimation
algebra G < C*(@;st(n)) can be completed in the Sobolev norm |||,
and we obtain a closed subgroup of %, with Lic algebra=
completion of & in the ||l norm. We denote this Sobolev Lie
group as Gp. Thus it is now possible to associate a family {GP:k
integer. k>r/2} of Sobolev Lie groups to a given identification
problem, — specified by @, the parameterization (A{#), (8} c(6)} and
the Riemannian volume element d48.

Remark 3.2 Diffeomorphisms of © that preserve the volume
element 4 result in isomorphic GP.

Before we close this section we discuss an alternative approach to
current algebras and current groups. Given,

a) A Lie algebra L (over R say) with bracket{ . ]. and dimension=n.

b) A commutative ring F with unit 1; consider the tensor-product
space Lp=L®F. Ly can be given the structure [, }; of a Lie
algebra as follows:

L. JeilexLle—Ly
X @1, X2®L]r=[X . X:1® /. /2
X;el.f,eF.
If F=the ring of C* real-valued functions on a manifold M then L,
can be identiied with the current algebra C™(M:L). The
identification may be given as follows. Choose a basis

{X.X5...,X,} for L. Then any ¢ € C*{M. L) may be represented as

Glpt=¢, (P X, +... +¢,(pX,. peM

for some wunmquely determined ¢,eF. Hence the required
identification is

80 Y X R, 22

i=1

b e ot - e+
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Furthermore if H*(M:[R) are the Sobolev completions of F. then
for k>r/2 we also have the identifications of the Sebelev Lic
algebras ., with the tensor products L® H*(M:#).

This latter approach to current algebras is especially useful in
treating purely algebraic matters, In the next section we discuss
representations of the estimation algebra.

4. REPRESENTATIONS OF THE ESTIMATION ALGEBRA
OF THE IDENTIFICATION PROBLEM

In this section we initiate a study of the representations of the
estimation algebra . Qur idea is to construct representations of the
current algebra C*(@;st(n)) and restrict thesc representations to the
subalgebra &. We focus on two types of representations.

Type () Representations by differential operators  on
C*(®: (") the space of smooth maps from © into the Schwariz
space of B,

Type (II) Representations by vector fields on smooth manifelds.

The motivation for studying representations of Type (I} derives
from the fact that G is to begin with given as the Lie algebra
generated by the differential operators (o/,— &5 '5) and A, and these
in fact act on C* (©:¥{B"}). In more general terms we have the
imaginary spinor representarion. (See Appendix 1).

T \'N,:st(n)eEnd{y(R”)).

Associated to this we have the current algebra representation

-~

T O (@stinh—End(C*(©: ¥ (R")

\

defined by

-

(T, i =T _ (116 (23

where fe C*(0; #(R")}.
The representation T -1 18 NOW restricted to G and we obtain
_ofo— A%, and A, as generators. Now representations of the form
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{23} are trizial in the sense that the operators T__\..‘] ¢ do not
depend on the derivatives of ¢. In what follows we demonstrate that
representations that are nontrivial {in the sense that the operator
associated 10 ¢ does depend on the derivatives of ¢) are of interest.
We then proceed to comstruct such representations. To keep the
notation from getting too messy we focus on the case when @ 1s a
connected compact subset of the real line.

For reasons of Taylor series expansions and approximation, 1 is
important to know how p satisfving Eq. (9) depends on 8. One can
write down the parabolic system

f;f—? ;IMMA[H} LA 7 ;M;;HT
vl E i 1 |
A i & o
£ i A (24
| il i T
R A U1 A
where
A{@}x&"o+y,y;+}_§y’z
and
ALy R if‘ﬂ"z 5)

T Y Ty E

We shall see that Eq. (24} is intimately connected to the above-
mentioned nontrivial representations.

Motivated by earlier work of Gell-Mann and others, Robert
Hermann gave in a series of basic papers the following scheme for
constructing nontrivial representations of current algebras [35,36.37]:

let L be a Lie algebra with basis {4,.....4,] and a faithful
representation

¢ L—End{V} A, —pld)=D,.

Let {Ci,! be the associated structure constants of L. Let F=Cg(=)
~he - the- rin-g---of- -smooth-fupetions--on-- the-real--line-with compact
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support. Then the following map {for any vector space W)

@:LR®F-End(W®F)

A[®f“"D,®f+d,®£:§ f=],2 ,,,,, 4] (26}

is a faithful representation of the current algebra L® F provided that
the following conditions hold:

[d.d]=0 [D.dJ=7Y C&d, ji=12...n (27)
k=1

The ptoof of these conditions follows by a direct calculation
requiring that ¢ be a homomorphism. Clearly the operators |d,,
form an abelian Lie algebra with the operators {D;] acting on the
set !d;} by adjoint representation. Notice furthgr that by introducing
a parameter g in (26}

4,® [=D,® f+pd, &= (260
X

one obtains a family {@,} of nontrivial representations of L& F that
may be viewed as a deformation of the trivial representation @y

For a complete understanding of the above scheme in its full
generality. one needs more sophisticated tools (jet bundles. Lie
algebra cohomology). In this paper we follow the more elementary
methods of Parthasarathy-Schmidt [38].

Given any Lie algebra L one can define its Liebnitz extension L, as
simply the (n+ 1)-fold cartesian product with a new bracket [-.-],
defined as follows:

(X.Y],=2
where X ={X. X ..., X)) Y=(¥, Y...., Yooand Z=(Z, Z,..... Z,]
el,
Zo=[X, Yol

ko [k
Z,= Zo(r)[x"ﬁ‘“’g k=1.2.....1 {28)
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Elements of the form (0,X,,...,X,) in L, form a nilpotent
subalgebra of L,, denoted on LY In case n=1, then L{ is abelian
and is simply the underlying vector space of L with the natural

adjoint action defined on it
Now let CJ(R:L)=L &Cj(R) be the current algebra of
compactly supporied smooth maps of R into L,. Then one has:

Treorem 4.1 {[Parthasarathy-Schmidt] The maep I1,:Co(R, L)—
CX (R, L,) defined by

TLAfy=(L1 0 ™) {29)
is an isomorphism into CF(R; L,) of the current algebra C3{R: L),
Proof The proof follows from the observation,

& Kk
E{;[fg] :rz (r) [ [ gri]

and the definition (28) of the lLeibnitz extension commutation

relations. 0

Now if V is a (possibly infinite-dimensional) vector space and if
yr:L—End(})
is a (faithful} representation, then the map

oL, —=EndiV =¥V x.. . x¥) n+1times

i WX, N
w(XG)\ il\mm_“ n!
\\ ~
~ A
(Xoo X 1yey X )= ~. WX (30

\\ —jTW

~

O \\\

WiX,)

is a (faithful} representation of the Leibnitz extension. The proof is a
calculation and is left to the reader.
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Now take the trivial representation ¥, of Cg(R;L)") and the
composttion ¢, - I1,. 1t follows from Theorem 4.1 that

G T, CE (R L)=»End(Vx...x V)

is a (faithful) representation of the current algebra CJ{RL}
Moreover it is a nontrivial representation since it depends on
derivatives of elements of CJ{F: L). Explicitly. '

B WA wAE ]
@ el St AV ekt
%(A)@,f\ I n'
. N
\\\ \\
g, TL(A® {)= AN NG Cr K
~o 1!
) \\
G .
\\ AVs 1
| WAIS S |

Now Hermann's scheme {26} follows as a special case of the above
construction i we let:

n=1 (first Leibnitz extension)

W=Fxl

Dj:["/’m‘] v } (32
0 (A4

d'{o w(AEJ} (33
0 0

The choices (32} (33). aviomatically satishy Hermann's conditions
(27.

Returning to the identification problem we let L=stim and
yr=T_ __, the imaginary spinor representation. Then restricting
the constructions of this section to G < CZ{F:sun vields a whole
family of ', Tl,th=1...." of nomtririal representations of G. The
family can be further enlarged by introducing deformation parameters
as in {26y} It should now be clear that the parabolic svstem (24)
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precisely corresponds to the member of this family associated with the
first Leibnitz extension.

Example 4.1 Once again consider the identification problem of
Example 2.1,

QZ (-‘,2

:Qfo = *5&. {3’5‘(3 == X,

G=the Lie aigebra of operators generated by .oqe={(022)(77 (x%)
—(x272) and #,. The first Leibnitz extension yields the nonrrivial
representation  of G generated by the pair of operators
on (C@;, ¥(R') x #(R&))

62 £ y? . A2 i
o= a2 oxt
J 0 g M7 x?
i 2 5)(2 2 J
and
| X 0]
°“Tlo x|
Thus

o

i P 1 2 13 >
oo FBoya = 1Y 00 Bply 4l —

We now turn to representations of Type II. The primary
motivation here is what we call the homomorphism principle of
nonlinear filtering theory, an idea due to Brockett [8].

Suppose for a given ¢ there exists a finite-dimensional stochastic
differenuial system fin the to sense} of the form:

dz, = f(z)ydr + g(z,)dy, £34)
A (dy="H{z,). £35)

Such recursive estimators are of obvious practical interest. One
might view the pair of Egs. (34)+35) and the pair of Egs. (2) and (5)
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as defining allernative realizations of the same input-output map
v, —+I1t¢). Brockett argued in [8] that under technical hypothesis
there should be a homomorphism from the Lie algebra G= [/~
#3728, 4 to the Lie algebra of vector fields generated by
(f—Yfgtnig) and g This homomorphism principle has been
verified in several situations (Brockett [X. 9} Ocone {18} Liu-
Marcus [39]. Benes [407]). The question of existence of such
homomorphisms (Type Il representations) is thus of interest in
connection with the existence of optimal finite-dimensional recursive
estimators of the form (34)+33) for nontrivial statistics. Hazewinke!
and Marcus [137 have isolated classes of nonlinear filtering problems
for which the appropriate estimation algebra admits no such Type 11
representation.

One of the results is that the Lie algebra G of the identification
problem admits faithful Tvpe H representations. and further. that the
homomorphism principle s verified.

First let {4,.4,....,4,] bc a basis for a finite-dimensional Lie
algebra L and let @:L—VecttN} be a {faithful} representation of L.
where VectiN) is the Lie algebra of smooth vector fields on a finite-
dimensional manifold N (recall Ado’s theorem}l Let Y =®{4,).
i=1.23....n let P=MxN and n:P-M bc the canonical
projection.

Then the map

(¥ Y

3

& CT(M: Ly—Vect{ P}

H.M:
il M 2

Az@f,—‘_

=] 1
(where m*f, is the puli-back of ;) is a (faithful) representation of the
current algebra C*(M: L) as a Lie algebra of vertical vector fields on
P.

One can choose N to be the connected simply connected Lie
group associated to L and @: L—Vect{N) the natural representation
of L as the Lie algebra of left-invariant vector fields on N.

Specialize the above construction to M=0 the parameter
manifold and Le=st(n) and restrict the representation @. to the
estimation algebra G of the identification problem. In this way. we
obtain Type 11 representations.

In what follows we construct a class of Type H representations
that are intimately related to Kaiman filtering and lead to the
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computation of conditional statistics. First we recall the foliowing
result of Brockett [11]: Once again treat # as a constanl and
consider the linear filtering problem, with the associated Kalman-
Bucy filter equations for state estimation:

o= (A= PecT)z,dt + Pedy, %? = AP+ PAT+hb? — PccTP. 36

For this system of equations, one obtains a pair of vector ficlds (on a
manifold of dimension n(n+1);2+n),

o (A—Pec)z b= | F¢
O AP+ PAT b — PP Y 0

Brockett showed that the Lie algebra of vector fields jag. by 4 18
a homomorphic image of the estimation algebra of the filtering
problem, the homomorphism being specified by

y w2
. in n LoD
o g0 =3h, CEXD = (F/0X AX) — - dg

Bo={C,x) b

The homomorphism has a kernel consisting of the set of operators
of multiplication by a constant. The kernel simply arises due to the
fact that the Duncan-Mortensen-Zakat equation computes the
unnormalized conditional density. To get #id of the kernel one should
then append an equation to (36) for computing the normalization
g,(1). Tt can be verified that {(for Gaussian initial conditions) the
following does the job:

_Le2)?

d
=3

di — <.z rdy, Sg=0 {37

Gily=e %, {38}

Taking Fgs. (36) and (37) together. we now definc a new pair of
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vector fields {on a space of dimension n+n(n+112+1).

Im {4 —Pcchyz | r Pe -
| AP+ PAT 4+ bbT — Pec' P ~
o= | rA R I ! 0 (39
<C’Z>2 i E ——<C .
2 _] [ —8es

Turorem 4.2 The Lie algebra of vector fields generated by 4y, and by
is Isomorphic to the estimation algebra of the linear filiering problem,
the isomorphism being given by,

o Gyl By b, {40
We now use the above result to produce a faithful representation

of Type H for the estimation algebra G of the identification problem.
Treat # now as a variable. Consider the system of embedding

equations.
do=0
d7 = (A8} — Pe(8)cT(8) 5. di + Peithidy,
dP o o I
m&?zA{(a}P+PA?“(m+b{mbf(mMpc(en:fmjp
di = 3c(0), 252 dt — (c#). 5> dy,. (413

The system of Egs. (41) evolves on a manifold which looks locally
like @ x Rrin~11277%3 Agsociate with (41) a pair of vector fields

{first order differential operators).

at = {(Af) = Pet@yc (92,0705

+ (AN P+ PATA) + B(D)BT () — Pe(8) {18 P) .0 TP

+~§<f'{6;.5>2(ff (42)

i
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and

bty

¥ (PelB),&/CT) — (i) 2) /TS {43
{Here @#/6P=[8/¢P,;J=(0/¢P) =nxn symmetric matrix  of
differential operators.) Consider the Lie algebra of vector fields
generated by af and b%. Since a} and b} are vertical vector fields
with respect to the fibering @ x R~ 124071, @, 50 is every vector
field in this Lie algebra. Using Theorem 4.2 and the nonoccurence of
differential operators involving ¢/¢0 we conclude:

Cororeary 4.2 The map
@y G- Vect(@ x BP0,

defined by
Hgg—ral Hog—hi

is a faithful representation of the Lie algebra of the identification
problem as a Lie algebra of vertical vector fields on a finite
dimensional manifold fibered over ©.

Remark 4.1 Detailed proof of Theorem 4.2 involve tedious Lie
bracket calculations. These are only slight modifications of
Brockett’s calculations in [11] to take into account the
normalization Egs. (37) or (41) and hence are omitted. See also

Hazewinkel [52].

Example 4.2 Consider again the model
dx,=tdw: d8=0 dyv,=xdr+dr,

with
(}2 r’:.‘i .\'2
Hoo= 3 EE TS and A= x.

The estimation algebra G={.%/yo. %', ». The embedding Egs. (41)
take the form

di=0 " dp=(F=FYdi T @F=pEdi+pdy, di= 27 Jdr—2diy
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Then.

. A
yFH(—=plh
op :

2

Pyldyo)=af =(0°~p

The embedding Egs. (41) have the following statistical interpretation.
Assume that the initial conditions for the conditional density 1ake

the form

polv. i=02ndet (i) " 7 exp j—(,\" —ufn’

{

PRI ,
X Mﬁ)ﬁ(.\‘w;}({)lj}'QO{U} (343

where G—(p{fh), L{6), Q. () i3 a smooth map. Z(H) is a positive
definite » x n matrix for every #e©@ and @,{#)>0. Suppose that the
systern of Eqs. {41) 15 mitialized at

(90. X. PQ. 50}=(90. ﬁ(&o}. 2(80}. - En Qofg(})} {45]

Append to the system (41) the output equation

Q,=e 146}
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Now if Eq. (41) Is solved with the initial condition (43} onc cun
show by differentiating @, that @, satisfies Eq. {7). In other words.
the system {41)-446) 15 a finite-dimensional recursive estimator for
the unnormalized posterior density @, =Q{1.8} evaluated ar 6, Wc
have thus verified the homomerphism principle of Brockett: that
finite dimensional recursive estimators for conditional statistics must
involve Lie algebras of vector fields that are homomorphic images of
the Lie algebra of operators associated with the unnormalized
conditional density equation. Notice that, although Qi1 ¢,) can be
computed by a finite dimensional filter for every 6. the computation
of the entire posterior density function Q(r..) appears {¢ admit noe
finite-dimensional filters in general (unless @ the parameter set is
finite).

The Type II representations above for the estimation algebra G
once again have the feature that the vector field associated 1o an
element ¢eG does not depend on the derivatives of ¢. In other
words, the representation of Corollary 4.2 is a trivial representation
of the estimation algebra G. One can construct nontrivial
representations of Type I by taking the same approach as we did
with Type I representations-—use Leibnitz extensions. This amounts
to taking the f-sensitivity equations associated to (41). Sensitivity
equations are used in practical implementations of maximum
likelthood identification algorithms [50.51]. For dim ©=1. we
obtain,

dd=0
Z=(A18)— Pol Tty 2dt + Pelydy,
4z =(A(0)— Pe(ByeT(0) 3 dr

4 _7 .’f );
+(F{3 P(«‘Q(c({:‘}c (9))/ e

— P, .c(0)cT(B)z.dr + P c(@rdy, + P.%a‘)',
.

T | - e
ET&A(E))P-&PATUJHhum‘]b”’w;vP('(H%CT(U)P
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dP; AT
8P, +—
= A(0) ,+ﬁBP+PA 9

+ E%(b(e}bf(ﬁ))w Pc(BycT(6)P

{c(B)cT(0)) P

%i'ﬁ)

—Pe(cT(8)P, }3

§=4{c(6),2>%dt ~ (e(6), ) dy,

ds, =<c(6), 25 {(c(ﬁ), I ydt+ <.gé f> d{}
— Cel) 2 0dy, — <~€5> dy,. (41.6)
8

In Eq. (41.6) z, and P, are to be interpreted as /68 and ¢P ¢4
respectively.
To the system {41.6} we associate a pair of vector fields,
a%, = {A(f)— Pc(f)cT(8))2,8/¢5)
—(P,c(®)cT (82,8162,

<{A{9 —Pc{#)c7(0))F,

™~

:

£

+tr{{AB) P+ PAT(Gy+ b(O)T(6)

-+ (”ﬂ -_ P——(c fc {9)))5
cé

— BelB)cT(OYPYE/ 0P

+tr<(A{6)P + BP“*"P AT +

+ & EAMBPTEN — P c(B)c (A P
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Y

— Pe(f)cTi9)P, - P;%({'(Q}{‘T(G}} }3) (";{‘}3)

+5clB). 55 E/FF

+(elf).5 { Cell)5+ <i-‘- >} £ies,
{ &

by = < Pe(0).¢ FEy + (P el £ 02>

+ <f’(—( SI0E, S Lell). 2 485

The vectorfields af, and b%, may be viewed as partial
prolongations of the vector fields af and b¥.
Using essentially the same arguments as those following Theorem

4.1 we can show;

TueoreM 4.3 The map
O} G Vect (R 15004102y @)y

defined by
Wop—af, Ho—bY,

extends 1o an isomorphism of Lie algebras. i

Higher order Leibnitz extensions ®, may be constructed in a
simiar manner.

""" ' B - In the next section we use Lie algebraic techniques for solving the

basic initial-value problems arising in the identification problem.



90 P.S. KRISHNAPRASAD. S§. 1. MARCUS AND M. HAZEWINKEL
5. ON INTEGRATING THE ESTIMATION ALGEEBRA G

The primary Cauchy problem of interest in this paper 1s the one
associated to Egs. (9

25 2N
i =(.¥"0+}',£zﬂ +32’—g’2)ﬁ

(47)
A0, x,8) = polx, B).

for a suitable class of prior joint probability densities p.. The
operators ¥, £, and %, all lie in the estimation algebra G. By the
integration problem for G, we mean the problem of constructing &
fundamental solution to Cauchy problems of the type {47} above. In
the situation where @ is a 1-point manifold. (the linear filtering
problem), Brockett observed that this is equivalent to the problem of
constructing canonical coordinates of the second kind 1 a
neighborhood of the identity in G, the finite dimensional. connected.
simply connected Lie group associated to G. Hence it is natural to
look for a (Wei-Norman) representation,

plt.y=explg, (D7) .. explg (1)) py

where .o/'......o/" span G.

This approach to initial-value problems appears explicitly in the
work of Wei and Norman {41, 42] and in the more recent paper of
Steinberg [43]. In fact Steinberg's paper is very reievant to our
problems since he devotes most attention to the Lie algebra stim of
this paper. Brockett's paper [11] contains a nice exposition of this
circle of ideas and applications to filtering. Also relevant is the thesis
of Ocone [23] and the papers [18, 44].

We note first that solving (47) is equivalent to constructing the
fundamental solution of,

¢ e
_(ff’_ = (A g~ B2} p+ T Bop
(49
p{@ X)= po(x_)
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due to the relationship (gauge transformation) given by Eg. (8)
Henceforth we treat only Cauchy problems of the type (49}, Further.
the coefficients g,{-) in the Wei-Norman representation (48} are
given by a system of ordinary differential equations obtained by
substituiion of the formula (48) in (49) and taking into account the
relations (of Baker—Campbell-Hausdorff-Zassenhaus).

P N . : )
e"“’.d’:( ¥ ——i(ad(;y’i}”‘;aﬂ)e’“f. {50)
m!

m=10

To iliustrate,

Example 5.1 (Ocone [18,23]) Let ©®={1}. Then a solution to the

Cauchy problem,
cp (1 & x|
&~ \aae g o

pl0.x)=polx} poe Ll (F)
takes the form,

plt ) =exp(g, (1), exp(g.(t) /%) pg

where,

tn
[

=1, {

3\"2
Ty ﬂ2=x J&"Bz
2

;’l ™3

and the g’s satisfy the Wei-Norman equations:
g,=1 g.=coshig,)y £3=—sinh(g,)¥ Ea=ga8a (51

and g, (0}=0,i=1,2.3,4

The system (52) may be solved by quadrature and [g..g.,
constitutes the joini-sufficient statistics for this linear filtering probleni.
in particular, the inequality g,(1}=720 for 120 is compatible with
the fact that &' only generates a semigroup. In fact using the
Mehler formula (see e.g. Davies [45], Ocone [18]) one can writc
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down the expression:

< 1

pLX)= |

- 2,21:0!3’1(12*‘22]!91: sinhir)

R N RO E-T {33

In order to ensure the validity of the basic formula (50) one needs
a common, dense (in L,{R)}, invariant, set of analytic vectors for the
Lie algebra spanned by &', &% /% and &/* Such a set is
consiructed as the linear span of eigenvectors of the operator .o/
{see Ocone [ 18]). ]

The approach of We:-Norman-Steinberg is originally set up for
finite dimensional Lie algebras. However, it is now possible to extend
it to infinite dimensional current algebras and their subalgebras. In
the present context {.o/7, /% ..., /") would be a basis for st(n} and
the g.’s would be functions of time 1 as well as the coordinate ¢ on
the underiying parameter manifold ©. The functions g; play the role
of canonical coordinates of the second kind in a neighborhood of the
identity on C*(E;St._(n)} or one of the associated Sobolev Lie
groups. To iltustrate, consider our favorite exampie.

Example 3.2 Let
g2 97 x* s

=t LR e
P A x

’\Jl ~,

and &%= 8""

Then. for the Cauchy problem,

-~

L 457

PO x By =po = polx. 0). {54

since the associated estimation algebra is spanned by the set of
operators

g* 2 ¢ i
{‘:}‘: _W Oera-'! ‘{‘)Zn*Z}; an‘I.l,..}.
2 0x X
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we seek a representation of the form.

=4

pli.x, 8y =exp(g, (1, . ){:Xp( > gﬁ(r)(}“,c/i’)
k

'exp( 3 gg(!)Ql"uaff‘)-exp( Y gi(z;fi”\;f‘)po. {56)
k=0 k=0 /
Equivalently, we look for a representation of the form

plt.x, B)=explg,(1,0).o/ ') explg,i1, 6).4/7)

A
-~

explgdn 0).o/ 7 explg (1. 8) . ) pe. {

In Eq. (57) the g;’s are to determined by substitution mto (54}. This
step vields a system of first order partial differential equations.

Eir0)=1
&t
%{n ) =cosh{g, M7,

ga ! .
R . ks
E {r.6) gsmh(glf)_w,

583
et

‘g
— (1 0)=—22(1.0)g,(1.6),

and g.(0.6)=0"for i=1. 2 3.4 and 6@ Now suppose that O is a
bounded set and Oéclosure (©). Then using (58) our Cauchy
problem may be explicitly solved and using a scaled version of the
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Mchier formula, we have a representation,
]

p( 1, X, { ) = B e
-jr 2rsinhd %”i”

“o 2
exp| —3coth? Nf-+"” ”("\
oo™ T2 ) 40
o)
(/|8isinht[8]1)

-explg (1. 0107 ) explg,(1.8)- 18 0)

‘polgall. ())(}:\"f(};:. #)d:

where.

oy

Po€® x L(O xR). -

Our purpose in following through this exercise is to illustrate that
in the identification problem, even though the estimation algebra 1s
infinite dimensional it is possible to solve the integration problem
a manner that is a natural generatization of the Wei-Norman-
Steinberg technique. This happens precisely because the estimation
algebra is a current algebra and the construction of canonical
coordinates of the second kind is rigorousty justified by the results of
section 3.

Obtaining explicit formulas analogous to (59) for general lnear
system identification problems with many state variables is another
matter. The essential complexity is in obtaining analogues of the
Mehler formula and constructing anaiytic vectors. The details are
extremely tedious. but the calculations of Steinberg [43]. (see pages
418-423 of his paper especially Theorem 7.5} using Lie-transforms
show the main steps.

8. ON SUFFICIENT STATISTICS FOR THE
IDENTIFICATION PROBLEM

In his paper [46], Giorgio Picci investigated the relationships
between the problem of identifiability of a linear system driven by
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determimstic mmputs with white-noise corrupted measurements. In
particular, he also isolated the maximaliy-identifiahle parameters and
minimal sufficient staristics associated with this problem. The former
are precisely the Markov parameters {o(8)&*()b(0Lk=0.1,2... .
2n-11 and the latter are simply a sequence of input dependent
functionals of the observations that completely determine the
likelihood-ratio [47. 48].

Our setting of the identification problem as a nonlinear-fiitering
problem differs from Pice’s in three essential ways:

a) we treat here the joint state and parameter identification

problem

b) the fundamental solution associated to the Cauchy problem
(49) and not the likelihood ratio contains the full information;

¢) the input is white noise and not a known deterministic function
of time.

Constder the functions g, and g, of Example 5.2 determined by
the differential Eqs. (58). Expand the solutions to these equations:

23«:

1,8} = Z sz”[(_)“;h

k=0

! 3 g2kf1 {60}

LO)=— Y 0* [T i s
&(t.9) k;() a(2k+1}!" d

It {ollows that all the information contained in the observations
Iv,:0=0=<1t} concerning the joint unnormalized conditional density
plt. x,8) 1s contained in the sequence,

A ‘Uk. . b 1
T2 [Tidok=0.12.. .. (1)

Hence the sequence T is a joint sufficient statistic for the
identification problem (Example 5.2) viewed as a nonlinear-filtering
problem.

There is some evidence to believe that the sequence T (or some
varigtion-of 41} is universal-in- the sense that-it does-net depend-on
the underlying parameterization or state space dimension of the
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problem. This 15 borne out in the driving-noise free case by our
results {15]. Making this precise would entail elaborate calculations
of the type mentioned at the end of section 5.

Gur calculations show the difficulty in explicitly computing the
conditional density. The statistics themselves are generated by an
infinite dimensional bilinear system.

7. CONCLUSIONS

In this paper, we have examined the structure of the estimation Lie
algebra G of the identification problem. This Lie algebra and its
representations arise in the computation of the conditional density
and in the study of finite dimensional recursive filters for this
problem. It is shown that G is a solvable, infinite dimensional
subalgebra of the current algebra C*{©;st(n)). Although G is infinite
dimensional we are able to associate with it a family of Sobolev Lie
groups {GP}. The conditional density is computed by solving the
Cauchy problem (47) or {49) for G2, which is related to finding
canonical coordinates of the second kind in a neighborhood of the
identity. We indicate how this is done.

Motivated by the search for finite dimensional recursive filters. we
have constructed representations of the current algebra C™(©:st(n))
and restricted these to the subalgebra §. Since the Kalman-Bucy
filter solves the filtering problem for known 4, it is reasonable to
attempt a Taylor expansion of the unnormalized conditional density
plt,x.8) about a known f, or a current estimate #,750].52]: the
equations for computing § and &5/06 yield a realization of nontrivial
Type 1 representation of G. On the other hand, a realization of a
Type 11 representation of G is given by the finite dimensional filter
that computes the unnormalized a posterior density Q(1.#) evaluated
at a point. Further nontrivial Type I} representations are realized by
augmenting these filters with the derivatives with respect to ¢ of the
states of these filters; these may also be useful in approximations and
in other computations [50]. Finally, the inherent difficulty and
structure of the joint state and parameter estimation problem has
been emphasized by providing an infinite set of finite dimensionally
computable sufficient statistics for the conditional density.

Given the structure of the identification problem developed in this
paper, the key remaining question is that of translating some of the
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structural properties into actual approximation methods for the
identification problem. For example, Taylor serics expansions of the
unnormalized conditional density and some type of truncation of the
sufficient statistics of section 6 should be pursued.
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Appendix 1

Consider the algebra A,(H®) with unit 1 over the reals generated by
the elements p,....,p,. q,.....q, and governed by the relations.

DiP;=p;Pigid; =4;4;
(A}

pig;—q,p =481

The algebra A4,(%) is known as the Weyl algebra. By defining the
bracket of any two elements x, y in the Weyl algebra to be

[x.3f=xy—1x,

one introduces the structure of an infinite-dimensiona!l Lie algebra
over A, (X). The set of polynomials of total degree =2 in the
variables py.. . p,. g,..... g, 15 a Lie subalgebra of A4,(R) This
subalgebra is isomorphic to st(n) {sec section 2). For example. with
n=1 this 1somorphism is given by,

0 0 0;
a b O s ,
< 4alpg+gp) +bg* —cp?] (A2
| ¢ =-a 0
00 00
and
i(} Xy :f
H
000 2xp+yg) 1 A3}
s 2 x g)+:z- 1.
00 0 — (xp+1q)+ (A3
0 0.0 0

Now as mentioned in section 2, st(n)=sp{2n}@ h{n} where h(n) is
the Heisenberg algebra and sp{2n) is the symplectic algebra. Let Hin)
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denote the connected simply connected Lie group associated to hfn).
The group H{n} admits a series of irreducible unitary representations
U, 2eRB—[0} acting on L,(R") which is given infinitesimaliy by the
assignments
¢
P2

C.Xj

AN (Ad)

IH\--’f_——;}..
We can extend the representation (A.4) of h(n) to a representation of
st{n) by the additional assignments

! &2

S 1200

PPy
N

¢

QkaH'YJEXk (A.5)

i/ — 120,

The represemation of st(n) given by (A4) and (A.5) integrates (by
Nelson's criterion) to give a unitary representation 7; of Stin} the
connected simply connected Lie group associated to st(in). We call
this the spinor representation. The representation T. -y of the Lie
algebra st(nm of section 2 is the amalvtic continuation of the
representation 7. Of course it does not integrate to give a group
representation since ¢¢/Cx* generates only a semigroup. {See the
work of Kirtllov [16. 34] for more details.)




