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On the equilibria of rigid spacecraft with rotors
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We determine the structure of the set of equilibrium points
for the dynamics of a rigid spacecraft carrying motor-driven
rotors. in particelar, cur calculations make clear that it s
always possible 1o adjust the constent angular velocities {rela-
tive to the spacecralt) of the driven rolors in such a way that
there are precisely two equiltbrium points. This latter situation
is of interest for the purpose of ensuring satisfactory asymp-
1otic behavior in the case of dual spin auitude acguisition

maneuvers.

Kevwords: Attitude control, Crizical point theory. Asymplotic
stability, Dual-spin spacecralt.

1. Introduction

Consider a rigid spacecraft with three motor-
driven rotors (see Figure 1). By choosing the mo-
tor torques appropriately it is possible to maintain
the wheels spinning at constant angular velocities
relative 1o the spacecraft. From [3] the governing
equations are

ho=S{J R )k R
h,.=0.

(i.1a)
(1.1b)

Here for a vector x = {x,, X5, X;)" in R?, S{x)}
denaotes the matrix

g Xy wle
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Furthermore
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J! is the moment of inertia of the spacecraft
together with wheels locked relative to body frame,
gy = diag( jyL 2 )

is the matrix of rotor moments of inertia, «, is the
spacecraft angular velocity vector, and o) is the
vector of velocities of rotors relative to the
spacecraft. In {3}, it was shown that (1.1} is in
Lie—Poisson form and hence is a Hamiltonian
systern when restricted to the momentum sphere
{i.e. the coadjoint orbit in the dual of so(3) @ RY),

Si={hf A b P =gt g> 0. (12)
The corresponding Hamiltonian is
HM‘:%<}1!“J¢F“ ih!‘>' (13)

We are interested in the following two prob-
lems:

(P1) Determine the siruciure of the set of equi-
Iibrium points of {1.1}.

(P2) Determine conditions on the parameter /1,
such that there are precisely two equilibrium points
(on the momentum sphere}.

Since (1.1} is a Hamiltonian system when re-
stricted to the momentum sphere, the equilibrium
points of (1.1) are precisely the critical points of
the Hamiltonian H,, restricted to the momentum
sphere. Thus we can restate problem (P2) in the
equivalent form: '

(P2y* Determine conditions on k, such that #
is a perfect Morse function on the sphere 52,

We solve these two problems below. '

2. A basic lemma

Let X, , denote the set of equilibrium points of
{1.1). Then,

2, = { Bk, B =
S(x )k, + B, 1=0}
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= (A dHE(h) =0k, + BT =0
(2.1)

in {2.1) H* denotes the restriction of H,, to the
sphere $7 and d HY is the associated 1-form.
Change of coordinates s = h -+ h  implies

SE={h: |l =)

and

S, 0= hc k) =?, dHL(R) =0},
where

Hy=3{(h=h). 7 (h=h,}).

If y € R® then y € (TS}),. the tangent space to
Sf at k, if y L h. Further,

(@A (h)(») =L (h=h.).p)
Thus,
(dA*(R))(y)=0 forallye (TS,
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= (dA (R))(y)=0 forally Lh,
e (JTHh-h),yy=0 foraliy Lh,
e JHh-h,y=Ahh forsomer& R.

We have thus proved:

Lemma 2.1. The set of equilibrium points of (1.1} is
given by h, = h—h,_ where h€ X_, with

R LI
(S =AY =0 "R,

forsome A € R}.

3. Diagonalization

Since J? is symmetric positive definite, let

MM = A = diag(Ay, Ayl As)
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where M € O(3). Let
B,o=Mn_, h=Mh

and denote

B N

h.={g,. 4,45} h = {91~P3~§73}f~
From Lemma 2.1,
S = BB =

(A T —Aljh=4a"h,

i

forsomeAE R

R

Thus, given (¢,. g,. g;) we are led to find p,. p,. p,
such that for some A € R

(Ainl —A)p =Xy, {3.1a)
(AP =A)lp=hs'g,, (3.1b)
(ATT=A)p =2, {3.1c)
pitpitpi=uts p>0. (3.1d}

Solving (3.1} involves distinguishing twe main
Cases;

{i} asymmetric spacecraft, all A, distincy;

(i1} symmetric spacecraft, A, not all distinet.

In the asymmetric case the equilibria are points.
In the symmetric case it is possible to obiain
connected one-dimensional submanifolds of equi-
libriz. In both cases perfectness conditions (for
problem (P2) or (P2)*} exist. We give details of
calculations for the asymmetric case only, and
state the results for the symmetric case.

Remark. We are only mnterested in solving (3.1}
when at least one of the g, is nonzero. Otherwise
the problem reduces to that of finding the equi-
libria of the classical Euler equations which is well
understood (see Abraham and Marsden [1], pp.
360-368).

4. Asymmetric spacecraft (A, distinct)

We have three cases (o consider;
{i} three cases corresponding to only one of
the g, # {0,
(ii) three cases corresponding to only one of
the ¢, =0,
i) ¢, =0, 9,#0, g, # 0.
Since we do not assume any particular ordering
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on the A,, we need only treat one representative
case each from (1) and (i above and we have a
reduction to three cases as below.

Case L. g, =0, g,=0, g, #0.

Case Ja. A& LA, AT A ) Then
pr=0 p=0. py=tp

Case I A =2,"'. Then

py=0,

}‘3_]5?3 - Ay
}\1 - 7“3 )

PTG

- 2_, X145 }2
p} L B A;'—}‘.q, .

Case Je. A= A5 . Then

pi=4,

_ As'g, _ Aqgs
Ayt agt Ay—Ay’

£a

; }\Cf 2
e L 293
22 :’:\//lu (Azw)\3) -

Thus in general there are six real roots. However
the roots in cases 1b and lc will be nonrea! and
have to be discarded, if g, is large enough. We give
the perfectness condition:

(PC1) M ¢, =0, g,=0, g, # 0 then there are pre-
cisely two critical points, p, =p, =0, p; = +p, iff

2 2

41 { ’\1)

(P) K }‘1,
and

Case2. g, =0, 4,0, g,# 0.
Case 2a. A& { A", A7, A7'}. Then

~0, p,= Azlgs py= A5 'gs
PET BT PTG

Since pi + pi + p? = p?,

2 2
a9 ; + 43 5 :pl‘ (4‘1)
(1-A)0 (1-AA,)

159



Yolume 4. Number 3

SYSTEMS & CONTROL LETTERS

Muay 1984

3
Bk}
i
/
P
/
N '/
C‘!«\g}' /
/ :
/ ?
/ |
0 a ?)‘G
: A — =
= omip a1 a1
2= min(i;5, A3%
- -1 -1
| bAmax(kz,ﬁ)
I

Fig. 2.
Consider the graph of the rational function

qb{}\;}m ’ 43 ?+ 43 -
(E=A7 ) (1=AA)

as in Figure 2. It attains its minimum value on the
interval

(min{A; " A7), max(A; T A5 1))
at A, given by

’\3(‘]12}\2)1/3 *Az(‘?;}w)lﬂ

2 1/3 1/3
('?22)\2) +(‘?32}\3)
and
2 222 2 V)
¢<AO)2W%!H%(%§) |
(1“'\0}\3)‘ EER E

Remark. We see that in the present case 2a, there
are 4, 3 or 2 distinct roots depending respectively
on whether ¢{A,) < g, ¢(A,)=p? or ¢{(A,)> p?
Trom the expressions for A, and ¢{A,) it should
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be clear that by choosing g, and ¢, large enough it
is always possible 10 ensure ¢(A,) > p”.
Case 2b. A=A, Then

Aq, — A
Ay —Ay”

" ;[ Mg 2__1 Mgy
S S A A — A,

We can now state the perfectness condition:

p2“)\!‘m}\2‘ P3

(PC2y If g, =0, g, # 0, g+ 0, then there are pre-
cisely two critical points if

pr<a(Ag)

and
2 Ayqy : Ag; :
#<(}\1m}t3)+ W

Case 3.4, #0, ¢, # 0, g; = 0.
Then necessarily A& {A; ), A7, A7)
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PO 0, PTTON BT

and A satisfies

3 Iy
P e (4.2)
Ay
fet
3 {,?!2
s(N) =

-
ST = AA)

Then the graph of the function $(A) s as in
Figure 3, wherg

1

-1
3 J-
'
and b is the remaining element. A0 and A, are
focal minima. {(Their roles may be interchanged
without loss of generality) Figure 3 clearly indi-
cates the change in the number of real roots as the
range of g varies. We have the perfectness condi-
{10n;

a=min{ A " A7 A
LA A

= max{ Ay

{PC3) If g, # 0. g, # 0, g, = 0. then there are pre-
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cisely two critical points iff

@t < min{{Al), (A7),

The values of AJ and A can be determined by
elementary caleculations and are omitted. By argu-
ments similar to those for case 22 it can be verified
that the condition {PC3) can be ensured by mak-
ing ¢,. 4, g, large enough.

8. Symmetric spacecraft

There are essentially two possibilities:

(ay complete symmetry: A, = Ay = A=A

{b} axial symmetry: A,=A, = A, % A, (or iis
two cyclic vartations).

{Case {a} is the simpless. Let

3 fy -1
@{A}t z:ﬂl{A* gr} )
(At =a)

Then the equation ${X)=p’ always has two real
roots A , . The corresponding momenta are
AL
p; WW?:EW%"W", i=1,2, 3.
Ag A,
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Table }

Case Perfeciness condiion T
g, = - fa 0\t [ Aa— A, —

gy =g =04, %0 { & } = ( A:f }

P G314
pt < @Ay} and { = !

gy =g # 0. g * G
w/

where o{ A} = —L; e
{I-AaA,}  {1-
o 2 N fga N Ae— A3
g+ 0y # by =0 ,H-W(AO),(W [f2Z |
23 U Ay
(332 43 e

ES

R 11 N ]
_Ar(fi:”M} {“;\*{fi?}‘i}ﬁ“

IR
(‘ff;\#,} "L{‘?.{A.‘}

Lo oMal+ed)

where J{A)=

(1-2a.Y (=AY

and Ay = — NN
({47 + 420} +{ahs)

Thus perfectness is automatic (as long as one of
the ¢/ 18 nonzero).

For the case of axial symmetry assume A, = A,
=N, A, = AR

We summarize the perfectness conditions in
Table 1.

6. Applications

For a given p (norm of the total angular
momentum of the spacecraft), it is possible to
achieve the perfectness conditions of this paper by
choosing g, large enough in absolute value. This
can always be accomplished by spinning up the
rotors to high enough angular velocities relative to
the spacecraft. This maneuver will not alter g,
since there are no external torques. When the
perfectness conditions hold the resulting equilibria
form a maximum-minimum pair for the Hamilto-
nian, and hence one of these is a stable equi-
librium.

For obtaining satisfactory asymptotic behavior,
it is necessary to introduce damping. This can be
done by providing an additional set of 3 free-spin-
ning rotors with damping. In this case the govern-
ing equations are [3]

h,=8{(J h )k, +h,+h,]—vh, +8h,, (6.1a)
(6.1b)
(6.1c)

iids‘}’ht,_Shdj
h,=0,

162

where
e Fif : 7l . Cow
hy=Fe +«f), k=00,

g JY

£ P 13
A= dw,,

JP is the spacecraft moment of inertia with all
rotors locked,

o s I .
i = diagl ji. 5 i)
is the matrix of damper moments of inertia,

S = diag{ 1", 75 75D

is the matrix of driven rotor moments of inertia, w,
is the vector of spacecraft angular velocities, w} is
the vector of driven rotor angle velocities (relative
to platform), «7 is the vector of damper angular
velocities (relative to platform), y=aJ !, §=
aJ?' and a = diag(e;, a,, a;) is the matrix of
positive damping coefficients. It can be verified
{see [3]) that the equilibrium poinis of (6.1) are
given by (for fixed 4 )

Sl = (Ao ) A=,
b= T, S(L TR (B B,) =0,
o+ Rl = 7). (6.2)

It follows from {6.2) thai the perfectness condi-
tions of this paper are also the conditions for £,
to have just two isolated points only. An applica-
tion of LaSalle’s theorem then guarantees conver-
gence to the stable equilibrium for a dense set of
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trajectories of (6.1). See [3] and its sequel [4] for
details.

Notes, {1} The perfeciness condition {PC1y ap-
pears in the aerospace literature in a shightly dif-
ferent form (see [2]), Our results give a complete
solulion to both the three roiors problems and to
the case of nonprincipal axes. Also our basic lemma
sets up our problem in the correct Hamilionian
framework.

{2} We remark that implicit in cur model (1.1}
is the assumption that each of the rotors is per-
fectly symmetrical with spin axis passing through
the center of mass. In the absence of such symme-
try, the dynamics become much more complex (see
(7).

{3} The reader will find related results in Crouch
i6} {especially pp. 8-12).
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