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ON THE GEOMETRY OF LINEAR PASSIVE SYSTEMS

P. 5. Krishnaprasad

ABSTRACT, Passive systems are of interest in
many areas of system theory, including network
synthesis, stochastic reaiization and optimal
control. Linear passive systems are externally
characterized by positive real transfer func-
tions. This paper is concerned with the geom-
etry of rational positive real functions,

Extending the work of R. W. Brockett, we
characterize here the homotopic equivalence
classes of rational positive real functions,

We also obtain parametrizations of these equi-.
valence classes in special cases, One of our
main results leads to a geometric interpreta-
tion of Darlington synthesis. Our approach
rests on certain interesting group theoretic
facts about passive systems.

The results of this paper should be viewed
as part of a general program to understand the
gecmetry of families of systems and related
system-theoretic questions. In this connection
we direct attention to the papers {1], [2]., [3].

1. INTRODUCTION, Consider a finite~dimensionat-Tinear dynamic

system {with constant coefficients}:

i

Ax + B
xR {*)
Cx + Du

]

Y

The system {*) is said to be passive (dissipative) if there
exists a positive definite matrix K such that along sclutions
of (*) the following dissipation inequality [5] holds:
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-dﬂt- <x(t),Kx(t)> < <ult),y(t)>. (*)

It is well-known [6] that passivity has a frequency-domain char-
acterization: 1f the system {*) is minimal, then it is passive
iff the transfer function, 6&{s) =D + C(sl —A)'1B is a positive
real function, i.e., G(s) is analytic and G{o+ jw)+6'(o-juw)
is non-negative definite for o > 0. Equivalently,
(i) Re A(A) =0 for X{A) € spectrum (A),
{ii} G(jw) + G'(-jw) = 0 for &1l real w ,
jw & spectrum {A},
(iii} The eigenvalues of A with Re A(A) = 0 are non-
repeated and the residus matrix at those eigenvalues
is Hermitian and non-negative definite,

Anderson [7] has several useful results characterizing
rational positive real matrix valued functions via certain alge-
braic conditions on the realizations of such functions. It is
further well-known that a rational positive real scalar function
can be realized as the impedance/admittance of an electrical net-
work composed of resistors, capacitors, inductors, transformers
and gyrators [8]. An interesting subclass of (*) consists of
lossless systems that satisfy the dissipation inequality (**)
with equality. In the context of the stochastic realization
problem passive systems appear as follows. Consider the Stochas-
tic differential system driven by Gaussian white noise:

dx = Ax'dt + b dw s

¥ = CX .

Suppose the triple [A,b,c] is minimal end Re[a(A)] < O .
Then (1.1) admits a smcoth nondegenerate invariant Gaussian mea-
sure and if we denote the corresponding correlation function,

roylT) = Byl s (1.2)

then, the Laplace transform,

o0

7(s) f ryy(T) e"%Tdr (1.3}
[n]
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is a rational positive real function (a consequence of Bochner's
theorem), The problem of spectral factorization is to pass from

255

r y{-) to the transfer function ¢{s) = c(sl -A)'Tb of equa~

tion (1.1) by solving the equations
o{s) = g(s)a{-s) = Z(s) + Z(-s) .,

where, ¢{jw) Ts the Fourier transform of r y(T). This also

(1.4)

forms the basis of some identification algorithms {c.f. Mehra

[9] for discrete-time version). The underlying “parameter space
in these problems is the set of positive real functions. )

Qur

goal here is to investigate the global properties of this set.

Before we proceed aleng these Tines, we set down in the remain-

der of this section some preliminaries.

In [10], Roger Brockett initiated a program for the study of
the space Rat(n) of rational functions. The analytic manifold

Rat{n} is defined as follows: Consider the set of rational

functions of the form g{s) = q(s)/p(s) where q(s) =
qn_1sn"] + ...t g, and p(s) = s" + pn_1sn']

+ ... 1t Pg are

velatively prime polynomials, as an open subspace of RZD. This

subspace together with the manifold structure from ~R2n

called Rat(n). Now, given any rational function g(s) € Rat(n)

we can define the Cauchy index as a winding number

is

Ifm{g) = (number of jumps of g{s) from -= to +o ) -

(number of jumps of g{s} from += to

=)

as’ s ranges over the reals from -= to +e , The Cauchy
index is tied up in a fundamental way with the topology of

rational functions. In [10] Brockett showed that:

{a) Rat(n) splits; Rat(n} = U Rat{u,v) where on each

utv=n

component Rat{u,v) the Cauchy index is constant and

takes the value {ju-v).
(b) Rat(n,o) = Rat(o,n} =R’

(¢c) Rat(1.n-1) = Rat(n-1,1) «R" x5!,

For some recent results on the geometry of the components see
[41, [11], [12]. It is useful to keep in mind that we have an
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algebraic map,
H: Rat(n) - Hank{n)

9{3) - H(g) = (h1‘+j-2)nxn
where g(s} = 2.h /Sk+]
k=0 k

and H(g) 1is a bilinear form of the Hankel type. That H{g) is
nondegenerate <ff g{s} € Rat{n) 1is a result that goes back to
Cauchy-Hermite. - Further, the Cauchy Index is given by,

17 (g) = o(H(g))
signature of H(g) .

(1.5)

13

This implies that the Cauchy index takes values in the set
{-n,n+2,...,n-2,n},

We say that g(s} € Rat{n) 1is of the stable and minimum-
phase type if the poles and zeros of g{s) 1ie in the open left
half plane. We denote the set of such elements as RatSM(n) <
Rat(n). Further, the subset Rat(u,v) n RatSM(n) will be de-
noted as RatSM(u,v), {u+v=n). Since g(s) is positive real
2ff V/g(s) s [8], a positive real rational function has no
poles or zeros in the right half plane, It is further conven-
ient to treat separately those positive real rational functions
that have some or all poles or zeros on the imaginary axis,
since they may be viewed as 1imit points {they 1ie on the bound-
ary). We thus have the set of strictly positive real functions

denoted by,

Ratpr(n) s {g{s) € Rat{n) : g{s) positive real and
g(jw) + g{-jw} > 0, w €R} (1.6)
We leave it to the reader to verify that RatSM(n) and
Rat r(n) < RatSM(n) are both open submanifolds of Rat({n).
These manifolds will be the primary geomeiric objects of inter-

est to us.
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2. THE DEGREE 2 CASE. To fix ideas we first consider the
case of degree 2 rational positive real functions. Given that
+
g(s) = as*b

52+cs+d

it can be shown that, g{s} is strict positive real (in our
sense) iff,

a>10

b>0 d >0 and (2.1)
b

ESC .

Now, any g(s} € Rat{2) has a representation [10], of the

form

o - L{s +a)cos(8) + sin{6)] (2.2)

o) - (s-+c)2 + v

v # —tan2 8 (& no common factors}, Here o >0, o €R,
8 € [0,2r) and v ETR.
With this representation, the inequalities above reduce to

o > tan{8)
-2 < 8 < 7/2
o + tan{6} > 0

62 +yv >0

(2.3)

Now for Ratpr(1,1) = Ratpr(Z) n Rat{1,1) we have an addi-
tional inequality,
v > ~tan®(e) . (2.4)
Combining these inequalities, we have a parametrization of
Rat(1,1) given by:
¢ s-FeB)cos(e) + 5in{0)]

_ el
%) (s+ef)? + gn(el + e tan’s)




258 P. 5. KRISHNAPRASAD

A
where 8 = —tan'](es) + 2 tan"](eg) e T {0,8,2,1) E'R4 .
T+e

For Ratpr(Z,O) the relevant inequalities are

g > tan(e)

g > -tan(8)

cz +v>0

T epg< X

Z A
v < -tanz(e)

and we have a parametrization,

eu[(sﬂ-eg) « cos{p) +sin(8)]

g (s) =
I (s +e5)2+(-e28+~w§%(e28 —tanz(e)))
1+e
A
8= —tan"q(eB) + 2 tan'1(e8) € T {aB,0,t) € R .
1+e

An alternative parametrization for this region is

o Y
s+e st+e” + e

(uagaY:G) € ]Ra
This depends on the fact that sums of strict positive real func-
tions are also strict positive real and the particular symmetry
of Rat r{2,0) {unrepeated poles in the open 1.h.p with inter-
lacing zero}. There are no positive real functions in Rat(0,2)
{there each element has negative residues). Thus we see that
strict positive real rational functions of degree 2 are of two
types distinguished by their respective Cauchy indices. The
interesting consequence of the parametrizations indicated above
is thit both regions of strict passive systems are diffeomorphic
to R.
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The direct treatment of the degree 2 case does not lend
itself to generalization, since as the McMillan degree increases,
so does the number of inegualities characterizing positive-
realness. In the next section we show how some results on
related classes of rational functions can be transferred to

Ratpr(n).

3. SPECTRAL FACTORIZATION AND THE GECMETRY OF RatSM(n). Our
aim in this section is to determine the number of homotopic equiv-
alence classes of positive real functions. We shall see that the
answer is guite intuitive in a network theoretic sense, since it
has to do with the distinctive types of storage elements in a
circuit. However, the actual proof seems to be best approached
via the spectral factorization theorem and the geometry of the
space of spectral factors, Specifically we begin by examining
the space RatSM(n) of proper rational functions of degree n
with a1l poles and zeros constrained to lie in the open left
half-plane.

The constraint on the disposition of poles and zeros makes the
connectivity properties of RatSM(n) quite different from those
of Rat(n). To understand this consider the following example:

Ju
X
& & 5
X
Fig. 1la
juw
X
0
* a
o :
X
Fig, 1b




260 P. S. KRISHNAPRASAD

Since a pole-zero pattern determires a rational function up
to scale factor, both patterns 1(a) and 1(b) can be thought of
as representing rational functions in RatSM(Z,l). Pattern (a)
can be deformed into pattern (b) continuously omly by sending
one of the zeros to « and bringing it back to the other
extreme, together with an adjacent zero and pairing off into the
complex plane, In doing so, one has to pass through the r.h.p.
thus leaving RatSM(Z,]). Thus we see that (&) cannot be
deformed into (b} continuously within the stable and minimum-
phase subset. It is not very hard to see that any other pole-
zero pattern belonging to RatSM(2,1) can be deformed into
either (a) or (b). Thus RatSM(2,1} has two connected com-
ponents, .

Difficulties arise even when there are no poles on the real
axis. Consider the following example from RatSM(I,l).

(Figure 2)

Jw

]
w
—
w
—
!
™J

Figure 2

The Cauchy index o(g) = 0. Since olg) = -~o{-g} we note that
g{s) and -g{s) both € RatSM(1,1). However g(s) cah be
deformed into -g(s) only be sending the zero to = and bring-
ing it back through the r.h.p., thereby vio]atﬁng the minimum-
phase restriction., Thus RatSM(T,l) has two components dis-
tinguished by the sign of a in

gls) = 5210,
s +¢s +d
A problem such as in the first example {Figure 1} does not

arise when o{g) = + n, Consider the example in Figure 3
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showing a2 gfs) € RatSM(S,D). To have the correct index this is
the standard pattern for RatSM(3’D) and RatSM(3,O) is con-
nected. In general RatSM(n,O) is connected,

Jjw

Figure 3

by an aobvious extension of the above argument, Note that when
a{g) # 0, we need not consider the question of deforming g{s)
into -o{s), since if g(s) € RatSM(p,q), -g{s) € RatSM(q,p)
and Rat(p,q} and Rat{q.,p) are distinct components anyway

(p # 9, iff ofg) # 0).

For the generai case of RatSM(n), problems of the type
posed in the first example arise whenever the index Ties in the
range 1 < |o| 2 (n-2), since only in such cases we can have two
standard patterns of interlacing poles and zeros on the real
axis, which cannot be deformed inte each other. (Note: the
complex poles can be deformed arbitrarily and the complex zeros
can all be sent to =}, The standard patterns are:

a) zero, pole, zerp,..., pole, zaro

ol

o] + 1

# poles

# zeros

b} pole, zero, pole,..., zerg, pole

# poles = o}

# zeros = |o} -1

This depends on the fact that a typical element of Rat(p,q}
has {n-1) zeros and an even number of them are complex. By the
same argument as in the first example, we see that pattern (a)
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cannot be deformed into pattern {b) within the class of stable
and minimum-phase systems, because the zerc closest to the ori-
gin cannot be removed without either viclating the common factor
condition or the minimum-phase condition,--i.e., it s a frapped
zere. Further, if n 1is even then Rat(%, g) has index zero
and by an extension of the argument made in the second example,
it has two path-components. The genera]iiation of example 3
has already been made. Collecting together the above arguments
we have the following theorem (somewhat similar to Theorem 2 of
f10]).

THEOREM 1. RatSM(p,q) has two commected components 1f
[p - q] = (n-2), where n=p+q, and RatSM(n,D) and
RatSM(U,n} are respectively commested. Thus RatSM(n) has
2n  connected components. R

REMARK. In the proof outlined above we have not explicitly
described the homotopies, partly since the arguments using
deformation of pole-zero patterns are direct. This of course
depends on the continuous ¢ependence of zeros of polynomials on
their coefficients (c.f. [13], Thm. 1,4}.

We pass from Theorem T to a result on positive real functions
using spectral factorization. Consider the set of rational

functions with special symmetry,
Ratsd(Zn) a {¢(s) € Rat(2n) : 4(s) = ¢(-s),

0 < ¢(iw) <=, for w€R, and

j- d(iw)dw = a < = }

-0

Any element of Ratsd(Zn) has a certain quadrantal symmetry
of the pole-zero pattern and appears as the spectral density
functicn of a second order stationary stochastic process. With
the conditions in the definition, no poles or zeros are admitted

on the imaginary axis. Further, since

o(e(-s}) = -o(e(s))
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all ¢(s) E_Ratgd(Zn) have Cauchy index zero. In other words,
Ratsd(Zn) c Rat(n,n). We have the standard result [14],

THEOREM 2. (spectrai facotrization): Let ¢(s) € Ratsd(Zn).

Then in terms of poles and zeros, we have the representation,

¢ T (s +a;)(s-a;) T [s +3) 7+ AZ10=s 4117 2]
o(s) = — q I 2,2

I {s+p.){s-p.) I [{s+o.) +ul][({=s+05) +uw’]

j J 5 i i i i

without common factors and

o > 0, qj > 0, Wy > 0, Ai > 0

pj > 0, 51 > 0, w; > 0 .

Hence we have the factovization ¢(s) = g(s)g(-s) where

g{s) € RatSM(n) 1g given by

I
gls) = + /e _ 3 1 i X
O (sap.) T [(s+a.:)? + w]
j iy i i

From the spectral factorization theorem above, any ¢(s) €
Ratsd(Zn) has two valid 1.h.p. factors g(s} € RatSM(p,q) and
-g(s) € RatSM(q,p). If p-q =0, than both g(s) and ~g(s)
have index = 0. However, they lie in distinct components chav-
acterized by the sign of the scale factor %k in

T (s+a) 1 [s+up? + 0]

g(s}=k‘] 1 . o~
I {s+py) T L(s+o)™ + wy]
i i

7o eliminate ambiguity we consider only 1.h.p. factors with
Cauchy index = 0 and when index = 0, only the factor g{s)
with positive scale factor. For the course of the present dis-
cussion, we call such factors canonical factors. We denote the
set of canonical (1.h.p.) factors as Rat;M(n). It has n
connected components. A basic result on the gecmetiry of
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Ratsd(Zn) is the following.

THEQREM 3. Ratsd(2n) has N connected components, Hence

Rat r{n} has n  comnected componenis.

Proof. Consider the map,

+
Uz RatSM(n) - Ratsd(Zn}

g(s) » ¢(s) = g{s) » g(-s)

That ¢ is one-to-one and onto follows from the spectral
factorization theorem and the definition of Ratsd(Zn). Once
again from the continuous dependence of zeros of a polynomial on
its coefficients, it follows that 3 is a homeomorphism. Since
the number of connected components is a topological invariant
and using Thecrem 1, we have the statement about Ratsd(Zn).

Now, any ¢(s) € Ratsd{En) has a unique partial-fraction
decomposition, ¢(s) = {¢(s)]+ + [¢(s)]_ where [q)(s)]+ is a
positive real function (c.f. [8]) and [¢{s)] = [¢(-5)]+.

Since by definition &(s) € Ratsd(Zn) has no peles or zeros on
the imaginary axis, neither does [¢(s)}+. In fact [¢(s)]+ €
Ratpr(n) the set of striet positive real fumctions, Consider

the map:
[ ]+ :Ratsd(Zn) - Ratpr(n)

o(s) » [a{s)],

Using the uniqueness of the partial fraction decomposition and
the definition of Rat  (n) we see that the map [ 1, s
one-to-one and onto. It is biecontinuous for the same reasons
as ¥ is. Once again we have from topological invariance,

pr(n)

# components of Ratsd(2n) = # components of Rath(n). X

# components of Rat

=
i}

I

Denoting as Ratpr(p,q) = Rat r(n) n Rat{p,q) each of the n
connected-components of Ratpr(ng is distinguished by its Cauchy
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index. Since there are (n-+1) possible values of the Cauchy
index it is clear that one of them is disallowed, We see below
which one 1t is. Firstly,

Ratpr(n,O) = RatSM(n,O)

This is a consequence of the fact that RatSM(n,O) has the
global parametrization,

Em‘l eaz ean
g(s) = T, * a et e .
s+e ste + e s+e + e
2n

(05-':0&2:---:Oﬂn,)\-ig)\z,.-.,)\n) cR

where each term on the right is strict positive real (aiso since
21(5) + 22(5) is positive real whenever Z](s) and 22(5)

are). Now if g(s} € RatSM{G,n) is positive real, then -g(s}

€ RatSM(n,O) is not positive real, But we note that RatSM(n,O)
= Ratpr(n,O). Thus, 'RatSM(O,n) n Ratpr(G,n) = the empty set.
But Ratpr(o,n) e« RatSM(O,n) by definition of positive reality.
Hence Ratpr(o,n) = empty set.

Thus there are no proper rational (strict} positive real func-
tions of index {-n). This classification of passive systems can
be viewed as a classification in terms of types of storage ele-
ments, since in the setting of R-L-C networks, the Cauchy index
= # capacitors - # inductors, and the rational function of inter-
est is a network impedance at the driving point [15].

REMARK 1. It is quite intuitive that networks having differ-
ent numbers of capacitors and inductors (but the same total)
should not be continuously deformable into each other. What is
perhaps surprising about Theorem 2 is that there are no addi-
tional obstructions to continucus deformations.

REMARK 2, In practice, the discrete~time setting (functions
positive real with respect to the unit circle) is often appli-
cable and following the methods of this section one would be
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interested in the spaces

DRatSM(n) a {g(2z) € Rat{n) : poles and zeros of y(z)
Tie in the disk {z:|z] <11}

and

1]
-
—

]

DRatSd(Zn) a {6(z) € Rat(2n) : o(z)

0 < q;(ejm) <o for w€ {0,2n],

and 0<jj¢(ejm)dm £ a<ewl}
-

The situation is complicated by the boundedness of the domain
in which the zeros and poles are constrained to 1ie. We do nat
pursue this here further than to state the following result (see
£163 for preoof. Also see Theorem 2 in {10]).

THEOREM 4., DRatSM(n) has n(n=1) connected components.
Rational funetions with distinct numbers of aerocs cannot be

daformed into each other, X

In the following sections we examine more closely the various
properties of rational positive real functions and how these
relate to the geometry of the space Ratpr(n).

4. DARLINGTON SYNTEHSIS AND A COVERING SPACE FOR POSITIVE
REAL FUNCTIONS. At the end of section 3 we determined the con-
nectivity of the space Ratpr(n) of strict positive real func-
tions, Also we had a global parametrization of the degree 2
case in secticen 2. In this section we consider the general
situation, Our aim is to show that the classical result in net-
work synthesis due to Sydney Darlington [17] Teads to a geome-
tric theorem on Rat r(n). It is important to note that a con-
dition of eompactness of two ports plays a crucial role. Here
we state a modern version of Darlington's theorem due to

Brockett [18] (also [22]).
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THEQREM 5. (Dar11ngton-ér0ckett). Let g(s) be a positive
real function. Then Q(s) has a minimal realization of the

following form.

z=(S-pp')z * qu
Yy = <g.Z>
where S = -5' is veal and G,p € Rr". X

REMARK, This is a state-space version of the classical
Dariington synthesis which says that any positive real function
can be realized by terminating a lossless 2-port by a {1 - ohm)
resistor. To see the relationship, consider the two-input, two-
output system {i.e., 2-port) below:

X = Sx + qu + pv
Yy = <Qax> § = 5! (4.2}
Yo = <pyk>

The realization in Theorem 5 corresponds to the feedback
Uy = =¥ followed by the identification y = ¥q- Further {4.2)
is lossless. The transfer function of the 2-port is

zy1(x)  zq,(s) <a,(s1-8) 1> <gu(s1-5)7'p>

Z{s) = =
251(8)  zy,(s) <, (s1-8) g <o, (s1-8)Tp>

The McMillan degree 8[g{s)] = &[Z(s)] = n, d.e., if
[S-pp',g,q"] minimal, then so is [S.{qlp), (%;J]. This 1is
because, [S-pp'.q.q’] minimal = [S-pp*,(qg|p), (%;J] {addi-
tional controls and observations do not Tower McMillan degree).

But S-pp' =5 - (q]p) [8 ?](géd =S - (Q|P)K(g;0. Thus

¥
[s- pp’,(q§p),(gr)] is in the same {output) feedback equivalence
]
class as [S,(q[p),(%TJ] and we know that systems in the same
feedback equivalence class have the same McMillan degree [14],
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We have the following useful characterization of Darlington

realizations.

THEOREM 6. Zet gq(s) be a given positive real funciion and
let Z(s) be as in Theorem 4, such that

g{s) = <q, (sI —S-+pp‘)-]q>; § = 5,

Then I{s) is wniquely determinzd by 9g(s) wupto a factor of

+ 1 4n the coupling parameters Zj, and  Zgye

1 1 3 3
Proof. Let [S] - PyPy ,q},qt} and [52- p2p2,q2,q2} be two
(minimal} Darlington realizations of the same g(s). Hence
S1 = -S{; 52 = -Sé. Then by the state space isomorphism
theorem, there exists a unigue nonsingular matrix P such that

] =

1 - — ]
P(Sy-pypp)P 7 = S5 - poPy
Pq, = 4,
aj P = a}

Claim: P belongs to O{n) the group of nxn orthogonal
matrices i.e., PP' =1,

We give a simple gecmetrical argument for this. The set of
Darlington realizations [S-pp'.g,q'] 1is clearly a manifold
of dimension Diﬂétgl-. The subgroup of G&(n) acting on this
manifold according to the state-space isomorphism theorem acts
freely {by unigueness of P) and hence must be of dimension

ﬂiﬂé;ll so that the dimension of the orbit-space = ﬂ(ng—g).

- n(né-1 = 2n = dimension of the manifold of positive real
functions. Further since the map, [S-pp',q.q'] -~
[P{5-pp")P*,Pg,q'P'] where P € 0(n) carries Darlington
realizations into Darlington realizations, our group of isomor-
phisms must contain O(n). But O(n) 1is itself of dimension
Iﬂl%f—ll— . Hence the group is 0(n) and our claim is verified.
Note that P(S-pp')P' = PSP' - {Pp)(Pp)}' where § = -§'
and P € 0(n) dimplies that PSP' is skew-symmetric. Hence, for
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PP' =1,
' - _ '
P(Sy=pypyIPT = 5, - poby
Paj = a, $1= -8
| S - t
%Pt =9 3, = 7%
= SZ = PS-EPI 3 (PP])(sz)' = Pzpé

Hence p, = # Ppy. Thus if [S-pp'.q9,9'] is a Darlington
realization of a given positive real rational function, then the
2-ports associated with it via Theorem 5 are given by the

triples,
1 T
[PSP', (Pq|+Pp), [—EP—E’T,—.] ]

where P € 0(n), It is easily verified that they have the trans-

fer functicn

z239(s) = <qo(s1-9)7T> 2,51(s) = <p(s1-5)"g>

n
o
w
—_

v
L]
1
%]
—
1
o
N4

= <q,(SI-S)-1p> ; 222(5)

~N
—
nNa
—
w
—
1

Hence, the theorem. H

Before we proceed to interpret this result, several remarks

are in order.
1. z]](s) and 222(5) are lossless 1-ports. Further,

Re[z12(jw) + 221(jw)] =0 for we€ER

2. The poles and zeros of z]](s) and 222{5) are simple
and interlace on the imaginary axis. Further, the resi-
dues at these poles are = 0.

3. Z(s) has the following partial-fraction expansion
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r

(LR

-1
R+f(T R, +——FR)
o = s+j)\k k s-jkk k

if k # %
n odd

Ak # A2

n/2 1 ] _
kZJI (S+j)\.k Rk+s~j}\k R)
- lk 7 AR if kK # 2 n even

where K k

is a residue matrix satisfying,

= 7 =0

SN 11

k- k
o2

I

IV
o

a2

Further, R_ is real symmetric and Rk is Hermitian
(s Pk = Py,
The residue matrices are of rank 1. This follows from
the fact that McMillan degree &[Z{s}] = sum of the ranks
of residue matrices, and we noted in the remark after
Theorem 5 that &[Z(s)] = 8[a(s)] =n, if g(s) does
not have common factors. As a consequence of this rank

condition we have the residue condition,

k k k k _
P19 Top = Typ Tpp = 0, for each k.

2 ports which satisfy this conditicn are known as compact
? ports (see [19]) for an interpretation of compactness
as an external symmetry condition).

In Theorem 5 and Theorem 6,
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_ 22
and g(s) is positive real in the usual sense, When
g(s) is lossless positive real (i.e., p = 0), Theorem 5

associates a unique 2-port,

If g(s) s not lossless, then by Theorem 6 there are
exactly two compaet lossless Z-ports of degree n mapped
into the same positive real function.

6. Even if the McMillan degree of the 2-port Z(s) 1is n,

Z., 2
s . _ 12 21
it is possible for g(s) = T TE I to have

common factors, For example, if g(s) = Zas *h

s” +¢s + d
is positive real then it can be reaiized {by Darlington

synthesis) from a pair of compact Hermitian 2-ports,

as sf + g

Z(S) = 2]

s +d sf-g «cs

where f =+ /ac - b and g =+ /bd. As b2 dag,
the McMillan degree of Z 1is still 2 but g{s) - pole-
zero cancellation. We can still use the properties of
the map ¥ :Z{s) » g(s) as below,

. n

Llet PR(n) = v Ratpr(k). Let KL{n) denote the space of
k=1

all compact Tossless Hermitian 2-parts of McMillan degree n.

The map defined in Theorem 5 is denoted as

] :El(n) - positive real functions
2y5(8) 25,(s)

I(s) » g(s) = Z]}(S) - ”-*rf;—zzgrgj—'
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We denote as KL(n) = KL(n), the inverse image

KL(n) = o™ [PR(M)]
and the restriction leL(n) as Yy. Then, since PR(n) does
not contain any Tossless positive real functions,

Py KL{n} - PR(n}

is a two-to-one map, Using the compactness cendition cne can
show that each residue matrix is of rank 1 with positive diagonal
elements, We thus have a parametrization of KL(n) via residue

matrices,
rllk € (0,)
Fppt € (0,0) 3
'"12k B F21k = o 11 Ta2

6es!

and letting A € {0,), we see that

2n n
RE x(S1)2 ;3 N even
KL{n) e
In+1 n-1J

R ¢« (31) 2 5 n o odd,

Further, from Theorem 6 and the remarks following it we have
seen that for each g{s) € PR{n) (none of which is Tossless)
there are two members of KL{n}, Z(])(s) and 2(2)(5) differ-
ing in the signs of the coupling parameters 219 and 5. It
is easy to see that Z [ {s) and Z 2)(5) correspond to anti-
podal peints on the circles inthe parametrization above, It is
thus possible to treat PR{n) as the guotient space.

KL(n) fes

where the equivalence relation "~" is simply the identification
of antipodal points on a circle, Of course Sva = R?] the
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1-dimensional real projective space ﬂS] and we have,

THEOREM 7. The set of strict positive real functions of

degree <N has the global struscture,

no3n
{81)2 % Elz : n o even
PR{n) =~
n=1 3n+]
{S1) I ; N odd. H

This result can be interpretated as the construction of a
covering space Tor PR(n), Recall [20] that a covering space for
a topological space X 1s a pair (?,ﬂ) consisting of a space
¥ and a (continuous) projection w:¥ = X such that every
point x € X 1is contained in a (small enough) neighborhood U

satisfying:

U x 7w (x)

N A
\\\\\;;;\\\\\\\ﬂ g{//////j:////
<

Further the fiber ﬂ']{x) has to be discrete. If the cardi-
nality of w']{x) is = n, then we say that X s an n-fold
cover of X,

In the present case KL{n} is simply a 2-fold cover of
PR{n). The exclusion of elements of the type

from KL{n) thus guarantees the evenness of the cover.

5. FINAL REMARKS., In this paper we have investigated the
geometry of linear passive systems and related classes of sys-
tems. We expect some of these results to be applicable to prob-
lems of approximate covariance generation. Using some of the
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work of Oono and Yasuura [21] it is possible to generalize the
results of section 4 to muftivariable passive systems,
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