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Abstract: 1In this paper, we use differential
geometric methods to understand the dynamics and
control of certain multibody systems,
Specifically, we trear rigid spacecraft with
rotors and anncuace z basic stability theorem for
the dual-spin maneuver. We then show how to
decouple the effect of disturbance torques from
spacecraft attitude variables,

Our stability arguments based on Lie~Poisson
structures involve general principles rhat are
applicable to more complex multibody systems than
those considered here, The techniques for
decoupling disturbance torques that we use here
also admit applications to more complex multibody
systems including elastic elements.

1. Introduction

There has been a tremeandous resurgence of
interest in the subject of analytical mechanics
in recent years. this has been partly due to the
systematic infusion of a rich variety of
geometric ideas and techniques into the foun-
dations of the subject. Recent discoveries of
new inegrable classes of systems (both finite and
infinite dimensional), phenomena related to
'chaos' and recent developments in stability and
eritical point theory of mechanical systems have
relied heavily on geometric and algebraic ideas.
Along side these developments, there has been a
steady effort on the part of control theorists to
understand problems of control and estimation of
nonlinear systems using geometric tools.

In this paper, we aim to show certain
gecmetric methods and ideas in action, - in
solving concrete problems related to attitude
control of spacecraft. We focus an the simplest
class of multibedy spacecraft, namely rigid spa-
cecraft carrying symmetric rotors. There is a
Hamiltonian structure underlying this class of
dynamical systems even when the rotors are dri-
ven. A complete understanding of this fact would
necessitate an excursion into the recent develop-
ments in Hamiltonian systems with inputs and out-
puts due to Brockett, Takems, Willems and
Van-der—Schaft (see {1], [16], {19], [17]
Instead we outline a treatment based an
Lie-Poisson structures and announce a basic sta-
bility theorem for dual-spin spacecraft., Details
of the proof are to be found inm [9], [IG].

).

We then proceed to solve the problem of
decoupling a spacecraft with momentum wheels from
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internal disturbance torques. This 1is achieved
by designing appropriate nonlinear feedback laws
for the driving torques on the wheels. To keep
the paper self-contained an exposition of the
abstract disturbance decoupling theory is also
given.

2. Dynamics of Rigld Spacecraft with Rotors

The equations of motion for a rigid spa-
cecraft carrying multiple symmetric rotors may be
obtained by systematic application of Newton's

laws. In the notation of Wittenburg [26], these
are, h
. m o n S
Jw k) ohy Foex [Jw+ Y hy 4+ by
1k [ ill 1 i;mﬂ. o

n
T R
i=m+] *

(2.1a)

r

r = o
uip + (J1 w +hy) =My, i=1,2,...m, (2.1Db)

where, we assume that of a total of (#n) rotors
each indexed by i the first m are subject to knmown

axial torque components M§ and the remaining n
have known angular momenta hy{t) with respect to
the body of the spacecraft, In the scalar
equations (2.1.b), uj denotes a unit vector along
the axis of the ith rotor, and {©) denotes dif—
ferentiation with respect to a spacecraft frame,
J; = moment of inertia of ifP rotor about its spin
axis and J = moment of inertia of spacecraft with
all rotors locked. w is the spacecraft hody angu—
lar velocity and hy is the angular momentum of the
1Eh rotor relative to the spacecraft, M denotes
the resultant of external torques,

Suppose nov that one is interested in
understanding the dual-spin maneuver. Here the
intuition is the following : if the spacecraft
contains a driven rotor spinning at a sufficientl
high constant relative angular veloeity, then in

the presence of a suitable additional damping
mechanism, the spacecraft body angular velocity
eventually converges to an (unique) equilibrium
spin. Although many attempts have beenm made in
analyzing the dual-spin turn, our stability
theorem below apears to be the first rigorous
verification of the above intuition for a model
linear damping mechanism based on rotors.

We assume that the spacecraft has two sets of
three symmetric rotors each; one set free-spinning
with linear damping and one set driven at constant
relative angular velecities, The equations of
motion (2.1.a-b) now take the form,




fiy = 5(3hy) [hy + hg + by] - yhy + &Ry
fig = Yhy - Shg (2.2)
“hy = 0,

where, hy = Jg (g + wg) is the 3-vector of angu-
lar mementa of the damping rotors with respect to

inertial space; hy = ng: is the 3—vector of angu-

lar mementa of the drivem rotors relative to the
spacecraft; hy = Ju, and w, = spacecraft angular

At
velocity vector ; Jz = moment of inmertia of spa-—
cecraft with all rotors locked and
g=3 -y -arl, 5= a2%"1 and o = diagonal
matrix of positive damping coefficients of the
free-spinning wheels. Among the main results in
[9], [10] we mention:

(1) as a+0, the system (2.2) tends to a
Hamiltonian system;

(2) the Hamiltomian structure in (1) is not
canonical but is a Lie—Poisson structure;

(3) 4if «>0, then for by sufficiently large,
we have proved an asymptotic stability
theorem.

The details are to be found in [9]. We enlarge

upon items 1 and 2 zbove.

Let T} be a finite dimensional Lie algebra
with braqcket E-,-]. Let if be the dual space
of 6. The space F( qﬁ) of smooth real-valued
functions on U} carries a Poisson structure
(bracket) as follows:

{+,°} = F(of*) x FOf) > FCD)
(4, 9) > {e0}
5 §
{6, 9} B =<t [ g5, 56 D

Where £ ¢ gj , <+,*> denotes the natural pairing

§ § .
between ia_* and a . and -éft . —‘%denote lie algebra
gradients ([4], [5], [11], [12], {18]). Given H
(a Hamiltonian) in F(g{), the vector field Xy is
defined by setting

Xgle) = {H, ¢} .

If x denotes a global coordinate system on (ﬁ
then the differeatial equation,

dx
T H(x)

is known as the Lie-Polsson equation assoclated
to q;*, H and the chosen basis. The vector
fields Xy leave iavariant the coadjoint orbits im

01* (see [9]).

In [9] we showed that the system (2.2) with
@ = 0 (and heace v = 6 = 0} 1s in Lie-Poisson
form, with

6] = so(3) @ e
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The coadjoint orbits are spheres and are
invariant (& total body angular momentum is
conserved). The Hamiltonian H = T-Q-W, where

T = rotal kinetic energy of spacecraft, Q =
total energy supplied through driven rotors,

W = kinetic energy of drivemn rotors (maintained
constant).

If a»0, we showed ia [9] that for a range of
values of hy (given by the perfectness conditions
of {10]), the system (2.2) is asymptotically
stable in the large (i1.e all trajectories con—
verge to one of the equilibrium points), The
Lyapunov function used to establish this is
V = HE+W. The key observation here 1s that W is
an element in the center the Poisson bracket
algebra F( qf). The addition of such an element
(called a Casimir element) to the Hamfltenian
gives us a Lyapunov function. This is not acci-
dental and is part of a rather general picture

see ([4], [11}).
We have

Theorem: Assume that hy is large enough for
the perfectness conditions of ([9] [10]) to hold.
Then almost all trajectories of (2.2) comnverge to
the unique global minimum of V on the momentum
variety,

Ih + h, +h H2 = uz = constant
' d W

3. Disturbance Decoupling_iB'Spacecraft

Spacecraft control system designers must
design attitude control systems that shield or
decouple the attitude variables from a variety of
disturbance effects, These include,

(a) external forces and torques due to
gravity gradieat, solar pressure on panels,
aercdynamic drag at low altitudes, magnetic
field interactions etc.;

(b) internal forces and torques due to
crew motion, internal reconfiguration (e.g.
space shuttle manipulator motions), fuel
sloshing etc.

When accurate models of such disturbances we

available, it is possible to design specifie com—

pensation schemes. For a recent survey of the

fitirature and an overview of techniques, see
15].

In this paper, we show how to design nonli-
near feedback control laws for momentum wheels
which can decouple a part of the attitude dyna~—
mics (more precisely, a row of the direction
cosine matrix) from internal disturbance torques.
This is a long exercise in Lie bracket calcula-—
tions and solution of first order partial dif-
ferential equaions. The ouly previous affort of
this nature (that we are aware of) is in [14].
Tn that paper the authors treat the {simpler)

problem of decoupling (from external

3
i
i
3




disturbances), rigid body dynamics using reaction
jets.

Eliminating the roter dynamics from (2.1)
and relabeling certain variables we get the
following basic model,

A

S{w)A

© J_IS(m)Ah + g%y

+ g2 u2 + pw

where A = direction cosine matrix, w = body angu-
lar velocity vector, g1 = {(1,0,0)", g2 = {0,1,0)"

and p = (0,0,1); J = J; —J:, h = conserved angu-
lar momentum vector.

The normalized momentum wheel torques are
denoted as uj(t) and up(t) and w(t) is an
(ianternal) disturbance torque.

Our .aim is to design a feedback law, of the
form uy = £1(w,A) and uy = fa(w,A) such that the
last row of the attitude matrix A is unaffected
by the disturbance w(+).

In section 4 below, we outline the general
geometric framework for disturbance decoupling.
The basic ideas appeared in linear system theory
during the period 1969-1975 and a comprehensive
exposition may be found in [22] (see also [21]).
Nonlinear decoupling methods are of recent origin
and the basic results are in [3], [s].

Qur solution to the disturbance decoupling
problem for spacecraft using momentum wheels is
given In secitor 5. Since repeated usze of dif-
ferential geometric notation is made in the
following pages we note here :

(i) given f(x) and g(x),two smooth m—-vector
functions viewed as local coordinate represen—
tation of two vectorfields in RZ, the Lie
bracket [f,g] has the local coordinate represen-
tation

. _ sog _caf

(ii) The lie derivative of a smooth Ffunction

a(x) along a vector field X = & £5 is given by

i=1 Bxi

4, Disturbance Decoupling_(zg.outline):

An analytic nonlinear control system on a
manifold M (= phase space) may be represeated in
local coordinates in the form

% = £(x) + 6{(x)u
i 4.1

y = h(x) ,

It

where G(x) = [gl(x), ves, gm(x)}, f, gy are ana-
lytic vector fields and h is an analytic output
map.
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By a (smooth) distribution A on M we mean a
{smooth) cheice of a subSpace Ay € TMy of the
Langent space at each point xeM.

A distribution A is invariant under the
dynamics Z if
[£, 4] ea

4,2

(g4, Al €4 . 4=1,2,++, m

Have [-,-] denotes Lie bracketting.
The involutive closure & of a distribution A

is the smallest distribution A containing A and
satisfying,

3, 2] e 4.3

Fact: If A is invariant under )} then so is &.

Let A be an involutive (i.e. & = 4),
invariant distribution of constant rank k for the
system ]. We obtain a reduction theorem for T as
follows:

Let (x1, %2) be local coordinates such that
xlaR“_k and xzeRk respectively.

and
Ay = span { ——~—}

axz

In these coordinates the system | becomes

x] = £1{x3, x3) + Gy(x3, %x3du

= fz(xl, XZ) + GZ(XI’ xz)u 4.4

X
&
I

g
I

= h(xl, xz).
But since A is invariant,

3 3
{f,—a-x?}sspan{-a—;;} .

f

This implies LI ¢
sz

BGI
Similarily ke 0
2

Thus f3, G; are functions of %, alone and we
obtain

zp fxp = fi(x) +G(xpu 4,5

a subsystem of z.

For the purposes of disturbance decoupling
we need a modified aotion of invariance,

Let a{x}s {(a; (X}, «uv., op(x)ydencte a
smooth RA-valued funection of x and let B(x) A
[Bi-(x)]mxm denote a smooth mxm mattix valued
{invertible) function of x., We interpret «(x) as
defining a nonlinear feedback and B{x) as
defining a change of coordinates in the input
space which depends nonlinearly on x.




For the purposes of disturbance decoupling
wa need a modified notion of invariance.

Let a(x}d (o1 (X)y +0ny ap(x) ) denote a
smooth Ro-valued functiom of x and let A(x) A
{Bi (x)} denote a smooth mxm matrix valued
(invertible) function of x. We interpret a(x) as
defining a nonlinear feedback and B(x) as
defining a change of coordinates in the input
space which depends nonlinearly on x.

Let (G8)4 denote the ith column of the
matrix G8 and let f+Ga denote the eclosed loop
drift vectorfield.

We say that a distribution A is (£, G)
invariant if there exist a(x) and 8(x) such that

[£ + Ga, A] T A
4.6

[(Gﬂ)i, A] €A

In other words there is a nonlinear feedback law
¢ and a nonlinear change of coordinates £ in
input space such that A is invariant under the
new dynamics

f=f+ G

21

= GB

Often it is diffieult to establish (£,G)
invariance., But there is a related concept:

A distribution A is locally (£f,G) invariant

if

A3(x) & Alx) + span {2

m
£, i(X)}i#I
[gi, A}(x) e A{x) + span {gi(x)}?=1 .

Lemma : {7] Suppose A is locally (f,G)
invariant and & is its involutive closure and the

dimensions of A(x), span {g (x)} -1 and A(x)NSpan

{g; )}
eath xeﬁ %here exists
B{x) satisfying (4.6).

are constant. Then locally around
an «{x) and an iavertible

The concept of (£,G) invariance plays a crucial-
role in the disturbance decoupling problem.

We outline the main ideas behind disturbance

decoupling. Consider a system
5 x = £(x) + 6(x)u + P(x)w
d y = h(x)

Here the vector ue R™ is a control and the vector
we RP is a (time-dependent)} disturbance. One
says that the system Iy is disturbance decoupled

if the output y is independent of the disturbance
w, Now a given system L4z may not have this pro-
perty. So one can try to modify the system using
feedback a(x) and input change of coordinates
8(x) such that the modified systeam is disturbance
decoupled. This is the essential idea. Fow it
is possible te achieve local disturbance
decoupling, by testing the conditions of the
following theorem.
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Thecrem:

For analytic control systems the state
feedback disturbance decoupling problem is
solvable locally (with 8 iamvertible) iff there
exists a distribution & such that

A is (£,G) invariant
image (P(x)) € Ax & Xer(dh(x)) //

This theorem together with the previous
lemma provides a very useful tool for control
synthesis to achieve disturbance decoupling.

The above theorem is due to Hirschorn [3]

and independently Isidori, Kremer, CGori-Georgi
and Monaco [6]. Other variations due to Van der

Schaft & Nijmeler are also known. See ([13]—{14])
5 Disturbance decoupling using momentum
wheels:

Ir this section we show using the general
theory outlined in sectien 4, that it is possible
to design nonlinear feedback laws for 2 momentum
wheels to decouple a part of the spacecraft atti-
tude variable fyom internal disturbance torques.

5.1 Equations in local coordinates

We know from section 3 that the equations of

motion are:
A= S(w)A
(5.1.1)
o = I 1ls(e) & n(oy + T 1z
Denoting the attitude matrix as
T, 8y
A= T, S,
F3  ®3
we can rtewrite (5.1.1) as
El = w3ry — wery
fy = =wary + wir3
E3 = war) - wiry
él = w3s3 T owzs3
59 = =w3sy + w183
83 = wpsy - w1sy
El = w3ty — wpty (5.1.2)

to = —waty + wit3
waby = @it
W] = w3 ﬁé - wy Q% + uy
wy = w) Q% - ujy 9% + up

wzﬂ§-mlﬂ%+d




Where Q7 = &1rp + %289 + 23t9
13 = 21Ty + %953 + L3tz
ﬂ% = 24r3 + L3553 + Lt
9% = far) + 55] + %ty (5.1.3)

Qlj]_’ = L7r] + Lgs] + gt

Q3 = &yrg + 2gsy + Lgtp
ﬂ% = Rjr] + 2283 + L3k
52% = 24T + L3572 + Lpto

Q3 = f7r3 + igs3y + Loty

Here (41, %2, 23) is the normalized vector of
total body angular momentum h{0) {which remains
invariant under inrternal disturbance torques).

5.2 Existence of an (f,6) invariant
distribution
We have:

J_r{T
|

T=ls3isR=e s G=legg ]
k3

where ie]_, «vs, e17] denotes the standard basis
in RIZ,

We are locking for a distributiom A such thar:
P& A & Ker dy = r'? / Span {e3, egs eg}
and A is locally (£f,G) invariant:
[£.4] € & + span {gjgs}
[Ei,a}.} & A + Span {5_]52}

H. Nijmeijer and van der Schaft {13] give an
algorithm for computing the maximal (f,G)
invariant distribution contained in a given
distribution {(Xerdy here); the same algorithm is
given in a dual form by A. Isidori et al, in [6].
This algorithm requires us to solve systems of
PDE's in a 12 x 12 + 12 = 156 dimensional space!
We therefore have to take an alternative
approaci,

Consider the following distribution:

T2
-T}
£\=Span{£=elz=X1,X2= }
s2

-51

t2

_tl

w2

—u]

Clearly p c A and A & Ker dy.

Now let us check that & is locally (£,G)
invariant,

In all the following computations of Lie
brackets, we need to compuate

af

~Zwhich is given by:

ax
rﬂ uy -@2 [1] 2 Q 0 [ ) [+
U3 o uy o 1] 1] s} a [ Ty
wy -y 0 0 ¢ 0 o 8 . -,
a 0 ] Q u3 -uz 0 2] s} 0
0 ¢ aQ —wl o ul o a o 83
o 1] Q wy ! 1+ a 1] 0 =Sy
Q 2 1] a o o 0 ) =y 0
0 0 0 o o ] "“"3 Q l-ul t]
] 0 o o] G [ uy -y a -t,
0 Ly ~Lu, 0 Loy -ty, O by -l 0
-[ﬁm3 a !..,.u -ism3 0 Esml _!5“3 o l&“l ﬂ§
[Fz “Eep 00 Bguy ol 0 Bwy ot 0 -]
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:
H
H
H
{
{
i

A = Span {xl, xz}
[_f;_,.'l] € A + Spaan {il’&Z} {=> E, XI] £ A+
Span {g;, g,}
(5.2.1)

[i, le e A+
Span {E-I’ &2}
(5.2.2)

Therefore ];g, Xl] = —XZ kS (mz - 9;) g
2
@ e g
where & = ep and._%2 =e

Hence |£, El] £ A 4 Span {—5-1 52}

ox
2 3f
Now, (£, x2]=—-—£-a—x—-x2

{5.2.3)

[

e 1 z 4 5 ] 7 3 9 1o 1 12

1'ie 1 o e o 9 0 © 0 0 @ o—|
2 {1 0o o 0 @ ©o 6 06 @ 0 0 O
3 o © o ¢ o 6 o 0o a 0 0 0
4 lo o o ¢ 3 6 0o o o0 0 0 O
s lo o ¢ -1 o a o o ¢ 8 ¢ 0

5. 6§ |¢ 0 a © © 90 0 & O 6 6 @

x

) 7 ] Q a 0 a a g -t ¢ a 0 1]
¢ la o o o o o -1 9 o 0o o ©
s 1o a o o6 a ©0o o o0 4 & o 0
w |0 o o o e o © @ o 0 1 0O
n o o o o o o @& & & - 0 0
13 _D Q 0 i) Q Q 3] 4] 0 [+] a a
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Hence:

_ 2 .2 1_ .1
[f,ij = (w1§23 m3£21 + w3ﬂl 5'23m1) -4 +

1 1 2 2
(0 0y — wafly w0 + waf5) gy
€ A + span {51’ 52} {5.2.4)

Next we have to check that, for each x M,
the statespace, the vectors, [gi, Xl](x),

52, %], (g1, %l (&1, Xg](x) and

, X1 |(x) all belong to space A(x) + span
g1, g2+ This can be verified by direct calcu-
lation that,

[3.1’ 51] = {gzx Xl] =0;
and
(a0 %) = =py s

(g5, %] = ey -

This completes the verification that 4 is
locally (f, G) invariant. It can be further

explicitly verified {2], that.

(a). 4 is involutive and of ramk 2.

(b). dim (span {g:, 52}) = 2 = constant on
TS0{3) the rangent bundle of SO(3) =
attitude = angular velocity space.

(c). dim (A {\ span {_5.1’ 52})
= () = also constant.

Thus the hypothese of the lemma of section 4 are
gatisfied. Hence there exists a feedback law
(%) and a nonlinear change of coordinates in the
input space 8(x) such that & is (£,G) invariaat
i.e.,

[f + G, 8] €A (5.2.5)
[(&®)1, 5] £a
i=1,2 .

This implies, from the theorem of section 4,
that the disturbance decoupling problem is
solvable. In the next section we explicity com~
pute al+) and B(+).

5.3 Construction of decoupling feedback laws

Summarizing what we already have:

A = Span {Xj, X}

(£, X1] = X + (w2 —sz%) g1+ (n% - wy) g2
¢5.3.1)

1
(mlﬂ% - m3§1% -+ w3ﬂ% - fywy) &1

(£, %!

2 .2
+ (wg05 - wind + w3l - Q392) £2
(5.3.2)




[5_1,1{1] = fﬁz,xl] =0 {5.3.3) From (5.3.11) and (5.3.2) we get

(e1%2] =52 (o] -a (5.3.4) 2 1 2 1
w3{R3 - 93} - w3(R] - Qi) + a2 - Xplay) = 0
[x1.%} = 0 (5.3.5)
- (1I1)
ap(x) 9 1 2 1
We want to find alx) = and B(x) = w3(Ry - Q3) — wy(Q3 ~ Q3) + a1 - Xp{az) =0
asz(x)
L (Iv)
- where Xo(a) is given by:
Alx)  ulx)
da D da da
v(x) o{x) Xz(a) =Ty mg—T] +— + 8p) =~ 5] +
N 31‘1 Br2 851 Bsz
such that A is invariaat under the new dynamics:
Ja Ja 153 o
. A S S roi s 2 roniaid S ronl
f-f£+G8a 2 1 2
~ {(5.3.12)
and G=6Gpg .
Therefore we seek to solve the system of PDE's
& = [5_1, 52] = [elO e;_l] (1)~{IV); which can be written as follows:
a) aal 1
S o= [e1g e11] = ajerg + agey] == wy - 9 (1)
an 3
; 3o, 2
Therefere £ +G a = f + ay eyjg + az e1;  (5.3.6) Too T W1t O] (I1)
3
and we -should have
2 1 2 1
[f +op ejptarery, 4] €4, X2(a1) - a2 = w1(R3 - Q3) - w3(Q] - Q1) (1II)
or equivalently 2 1 2 i
olag) - a) = w3(Ry — Q2) - wp(R3 - 23) {(IV}
[£f +a] ezg+ap ey, X1l ea, (5.3.7)
From (5.1.3) we get,
[f +a; ejg+ ez err, X9] & 4 . (5.3.8)

2
3 - Q3 = (%4 — 23)r3 + (&5 - L2)s3 +
(5.3.7) <=> [ + aje10 + @2 211, %] = .

(?.6 - 2.3)t3 (5.3.13)
{f,Xi] - XI(QI)EJ - Xl(az)gz g & (5.3.9)
30:1 Q% - ﬂ% = (L4 = 21)r1 + (L5 = 22)s51 +
Xjlay) = To
3 (1’.6 - 23} (5.3.14)
(5.3.10)
30.2 Similarly
£ {az) =—é*u:; .

Q% - 52% = (24 - 21)r2 + (&5 ~ L2)52 +

Using equations (5.3.1), (5.3.9) and (5.3.10) we

get: (25 — 23)t2 (5.3.13%)
oy 1 2 1
T = w2 - R {I) R - Q3 = (&4 - L1)r3 4+ (L5 - 22)s3 +
3
{Lg - 2303 (5.3.16)
da, 2
-5t =y - 0] (I1) From (5.3.13), (5.3.14) and (III) we get:
3
[ ] ¥play) —as = (24 — 1) ro + (25 — %3) s3 +
(5.3.8) <= [£ + a,g, + ag,, - ]
B Ty K (2g - 23) 17 (5.3.17)
{£,%3] - (a1 + X2(a2)lgp
= {ay - 2(al))g2 € A {11} From (5.3.15), (5.3.16) and (IV) we get:
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Xp(ag) - ap = (24 = 23) 7] + (&5 = L) &1 +
(25 - 23) t1 (5.3.18)
Now, let us make the following change of
variables:
ay = (wg — Ryry = #3872 — %3t2)w3 +
Ay(ry, ra, eeewz) (5.3.19)
ag = {~wy + f4r7 + L38) + LgCpluwy + )
Ao(ry, T3, «o.u02) (5.3.20}
Define the new variables:
gy = L4 = 21 gy = £5 — &2 g3 = kg — 23
(5.3.21)

After further manipulations, we get the following
system:

%3(A1) - Ap = ojuirsy + opwisy + oyeiry (V)

Xo(Ag) + Ap = —oqwyr3 ~ gaugs3y + ozwaty (VI)
One ¢an check that:

(22)

1]

A} = -ojugr3 — Opw2s3 T 03wWyt3

(23)

As 0

is a solution to the system (V), (VI}.

This leads to the following expressions for
ay and ap:

ay = wowy — L3rows — Rpspwy - L3tpwy - d103r3
~ gowpsy — 3wty (5.3.24})
@y = -wjwy + L4T(wy + L5sjwy + fgtiwg  (5.3.25)

Furthermore &) and ap satisfy equations (I) and
(I1):
From (5.3.24) we have

Bal 1
o= w2 T (&1rp + 2289 + L3tg) = w3 = 83

[

From (5.3.25) we have

3&2

oot By (2471 + L5817 + Rgty) = —wp + ﬂ%.

w

Now, let us compute B which satisfies:

[(eg),, 8] €2 , i=1,2, (5.3.26)
Aoop
68 = [e1g e11] - [Aeig + ve1l,
ueyq + veq1]
(5.3.27)
Therefore [re1q + vel1,a] @ a (5.3.28)
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[nezg + oep,A} €4 (5.3.29)
the pairs (A,v) and (p,¢) play a symmetric role
and therefore will satisfy the same system of
partial differential equations.

(5.3.28) => [ielg + veil,X1] £ 4

but [Xepg + vell, X1] = “X1(MNeyp - X1vler]

Hence Xi(A) =0 (5.3.30)
K(v) = 0 (5.3.31)
(5.3.28) => [hejo + ver1,%a] = (v -~ Xa(A)deig ~

(A + Zs(v)deyr e &

Il

g (5.3.32)

Therafore ZXp(X) =V

]

Xp(v) = A =10 (3.3.33)
(u,0) satisfy the same system of equations
(5.2.,30)—(5.3.33). We note that (rj, r3), (s1,
sp) and (ty, tp) are all solutions to the system

of PDE's (5.3.30)-(5.3.33).

Now, we summarize our results in the
following theorem.

Theorem : Consider the momentum wheels attitude
control system of equation 5.1.l.
The feedback law:

uy = (wow3 = Lyrawy — Rpspw3 - L3taw3 = O[WIT3 -

Gowasy = gjwat3) + Tiv) + 8]1v2

ug = {—wjwa + f4rjw3y + 53wy + fgtimy) +
ryv] + s2v3
decouples the last row (r3, s3, t3) of the
attitude matrix from a disturbance acting on
an internal disturbance torgue acting along
the w3 axis.
6. Final Remarks:

We have shown how differential geometric
methods contribute to the solution of two types of
broblems arising in multibedy spacecraft — spin
stabilization and disturbance decoupling. The
tools used here are expected to play an essential
Yole in rigorous analytical investigations of more
complex multibody spacecraft and related control
synthesis questions.
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