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ABSTRACT

[nput-output maps with parameters appear naturally as a consequence of
certain scalings. We discuss here the role of these scalings in relation
to the geometry of rationai functions. These geometric questions appear
to be of interest for identification problems. 1In this connection we
pose a problem of setting up densities on the space of models and examine

 some solutions. Our investigations make interesting contact with analy-

tical mechanics.

INTRODUCTION
A theory of scaling for rational functions first introduced in [1] leads

naturally to the notion of i/0 maps with parameters. The first part of

this paper is a collection of results on the geometry of input-output
maps. We then investigate the implications of these results for identi-
fication experiments and propose a Bayesian framework for statistical
inference on systems. In the second part we examine some invariants of
scaling and show how these 1ead to densities on transfer functions.

1. PARAMETRIC MODELS

Dynamical systems with parameters have been studied extensively in con-
nection with questions on qualitative behavior of differential equations
{2]. In the context of input-output systems, transfer functions with
parameters appear as a consequence of an experimenter's choice of op-
timum/convenient conditions. To illustrate, associated with a g{s) e
Rat{n), the set of proper rational functions of McMillan degree n with-
out common factors we have the four-parameter family

_ mg{ast+g ] + +
ﬂ Iﬁﬂlgmwawﬂ s Q.mLNu Emmu Qm.Nu XWN

Here, m and o are magnitude and frequency scalings and k is a feedback
gain. The parameter o effects exponential scaling. We make precise
these ideas by defining G-scaling of a smooth manifold M by a Lie group
G to be a smooth G-action, ¢ : G x M~ M. Points in the same orbit are
then thought of as scaled versions of each other. In the present con-
text we are interested in scalings of Rat{n) carrying a smooth mani-
fold structure [3]. Thus, the four-parameter family F of transfer
functions defined above is a typical orbit of the action of the group
m> generated by the four one-parameter scalings:

(a) s  ~as ; ae R
(b) s +5+4 ; oeR

(c) gls)+mgls) 5 meR
(d) gls)+ __gls) ; kek
1 + ka{s)
It was indicated in [1] (see [4] for proof} that G, {5 isomorphic to the
group of 4 x 4 matrices of the form:

661



L= = S |

mk
0 [
By introducing a fifth scaling, time shift,
. (e} g(s) = c(si-A)"Tp +c(sI-A)7T My
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{or equivalently)
b= w{t) »w(t +1),

and combining this with the scalings (a), (b} and (c) above, we have
another group Gp acting on Rat{n). We recall from [1] that Gy has a

matrix representation.

nmbﬁ

1t £n{m)
0 o o
0 0 1

He are interested in the disposition of the orbits and their structure.
For example, one may ask 1f the orbits are connected and whether all

orbits have the same dimension as integral submanifolds of Rat(n},
First we need a lemma.

rmESm_d"«:m mnmdﬁsw operations (a)-(e), preserve the McMillan degree.
Further, all except (e) leave the number of zeros unchanged.

The proof is easy (see [4]). The requirement that there be no common
factors disconnects the space Rat(n),

One of the main results in [3] was the following.

Thim 1: {Brockett) Rat{n) has {n+1) arcwise connected components. All
members of a particular component have the same Cauchy index which
takes values in the set {-n, -n+2, ..., n-2, n}. .

Denoting as Rat{p,q) the connected component of Rat(p+q) of Cauchy in-
dex (p~q), we see that Lemma 1 implies that orbits of Gy and Gp e en-

tirely within some Rat(p.g). Further, since the groups m> and Gy are

connected Lie groups, each orbit is connected. MNow, for every smooth
action ¢ by a group G on a smooth manifold M we have the following:

To every m £ M, there corresponds a C™ map denoted by m alse of G dnto
M defined by

mig) = gm = ¢(g,m)

Let dm denote the correspanding derivative map from the tangent space

at e (Lie algebra G) of G. Then we have the following Lie algebra
homomorphism,

A: G + U(M) = Lie algebra of C° vector fields on M

X+ X = aX defined by (aX) {m} = dm(X{e))
The orbits of G are integral submanifolds of M of constant dimension {if
dm is kernel-free for all m e M. This follows from the Frobenius
theorem [5]. The condition on dm is the same as saying that G acts
freely on M. This question was first raised in connection with Gy ac-
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tign on Rat{n) in [1] and there a preliminary condition was given. Com-
plete results and proofs are in [4] and will appear elsewhere. We state,
Thimn 2:  The groups Gy and G act freely (hence effectively) on Rat{p.q)

iff |p-q| > 1, in which case Rat(p,q) can be given the structure of a
fiber bundle with mﬁscnﬂcwm.nﬂocu m> ar mm.

he situation ﬂm.noa licated by the fact that the natural map
w"mmﬁﬁw.av + mmwﬁu_pw\m for G = G, or G, need not be a fiber map {6,7]1.

More precisely Rat{p,q) is a (trivial) principal m>:vc=ndm over o>
.m_P W Ammﬂﬁﬁ-nvu ﬁb- Db- mhv
~ Rat(p.,q) = Qp X Gy

where the base space o> is the set of rational functions of the form

- - - £41 £
o " T +o.5™ 2, nsumma 34 .4 GpaqS -+ 18
gi\s) = -

s"+p s Vet Py

with ﬁaz-ﬂ. Qpupr oo acv grthogonal to nuz-_. Pp.ps *+° ﬁou. r.
similar smooth orbit-canonical form for mm exists {see [4] for details).
At the level of realizations also, we can exhibit such structure. De-
noting as R the set of all minimal triples [A, b, c]. We have a trivial
bundle with structure group (fiber) G&{n}),

(R, 1, Rat(n), 6£(n))

R = Rat(n) x 6&(n}

k2

with :
n{{A, b, <l} = c{sI-A) b,

jc sets of i/o maps can be given a precise geometric
Mmswmmcwwwmzmwnmwmwmano:n*ﬁ*czm. Since the scalings of this section are
dependent on an experimenter's free cholce, there appears to be an ele-
ment of ambiguity with regard to the outcome of damsﬁﬁﬁwnmﬁdoz experi-
ments and tests of hypotheses about systems. We examine this and re-
lated questions below.

2. IMPLICATIONS FOR SYSTEM IDENTIFICATION
To focus 1deas, consider the concrete problem of identifying the system,
>xw + c;ﬁ

A4
(*)
Yo T %

Txn
where x, & R%, A e R™", b e Xl coon

m:a.ﬁzﬁw is discrete~time

standard Gaussian white noise. To fdentify the transfer function

-1 8 t function or iden-
= ¢(zI-A})"'b, let I{8, @, y. T) be the suppor :
mmwwnmﬁﬁma nswnmsmoz, i.e. if o represents the true transfer function
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aiid o an mmnﬁamﬁﬂ n:nzzukar 8, ¥, T) is the measure of support for g,
given by a realization y(.) of length T. A commonly used support func-
tion 1s the log-likelihood function. To eliminate ambiguity due to

mnguﬁzum.ozmmmxwﬁo1 invariance in the sense of {13, i.e.

1es 0, 9, T) = 1(g(0), g(6), 9ly), g(T)) wp1

Vogef
where G is a (scaling) Lie group acting on Rat(n).

qrﬂmacmmﬁ*ossmwmxmsﬁzmaA: detail in [1] in relation te (*}, using
the asymptotic expression of Support, ) i

V(o) = 5l a2z’ g

9(z) g(z"!) ?
C
where C is the circle, lz] = 1. Let us denote the transfer function as
1+, 27!

1+p

=M
... tq, 2
g(z) = 0

~1 -n
-1 £t 4 Pg 2
The question of main interest to us is the effect of the geometry of

mmﬁﬁzv on the identification criterion and V is 4 convenient object for
this study.

mﬂﬁmﬂik. V is insensitive to common factors, Secondly, in a variety of
practical problems, it is hard to arrive at a Proper guess of the bide-
gree (n,m) where n = number of poles and m = number of zergs. As a re-
sult, some trial and error or more formally :quH:mwﬁm;ﬁmmﬁmzm is in-
volved. Since an estimate g(z) that achieves the maximum of log-like-
1ihood or equivalently minimum of V is often desirable [8}, 1t is
necessary to understand the geometry of the set of minima of y = ¥{q,p)
as a function of

[T qp 27"

a(z) = mhmy 1 maid : P .
plz) 1+ Pr1 ral N

-

smmrmﬂdm:szmﬂwnmcmuoz some results due to Astrom and mmam1m~1ma faj.
.First some definitions. ‘

DefM: Lat cwmnmzﬁzwav § set of all rational functions without common

factors with McMil1an degree = n and number of zeros = m I n and all
peles and zeros lying in the open unit disk.

Dei"2: et mﬂmnmzﬁzwavuu czwﬁwza:mav be the set obtainad by removing

the restriction on common factors in Definition 1. The following is a
version of the reults in [9],

Thu 3: (Astrom and Soderstrom): Let
-1 -m
1+ IGp1 2+ .0 qp 2

V4p g PR Pg 2"

glz) =

99#0» py#0, nZm, belong to cxwﬁmzazwsv. Consider the map, <"mﬁmﬁm3ﬁmwmu

+ R defined by ‘

664

;
;
]
!

a(2) glz"y Z

B
g(z) ¢.MW¢¢$xMhmp1mwmnnw .y
¢

Then .
Vig,p) 21 and
V{q.p) = 1 iff
(*) q(z) p(z) = q(z) plz),
Further,

(a) Equ (*} has a solution iff aﬁzﬁmus. mlsv z0,
(b) If n=n and m@m or n2n and m=m, then (*} has a unique solution
which is the global minimum of ¥ on uxmﬁmzﬁswsu.
(¢) 1f sﬂzﬁmuz, 9nsv % 0, then the only critical pts. of V are the
solutions of {*)}.
What we notice here is that in searching for a maximum likelihood esti-

— ~a ~

mate in cxmnmzﬁsnsvzdﬁ: n>n and m>m we never find the best approximation
within axmwmzﬁmwav. For this it is necessary to fix (n;m) and ‘et
cwmﬁmzamwmv.vm the manifold on which to search for min(V}). This is also

required since for n<n or aAs. critical points of V need not be minima.
Further, the Fisher-Riemann metric [1] defined by

£ ook

PA - 56P 309 6 =0,

is degenerate at common factors (this is a consequence of the Morse Temma
[10] which requires nondegenerate critical pts. to be isolated) nmcmdzw
unidentifiability. Our solution to the problem is to treat w:mnmzﬁ:ms

or Rat{n) as the parameter space and carry out Bayesian inference as
follows:

Maximize (Posterior Support)

Where Posterior support = Yog {likelihood) + log (p(g)) where p(g) the
prior density satisfies the nondegneracy condition that 1t is nonzero on
Rat{n) and vanishes at commonfactors (7.e. plg} + 0 as resultant (g) - 0),
Any algorithm to search for the maximum of the posterior support will
remain within connected components because of the nondegeneracy no:ad-
tion. One natural candidate for a prior is ﬁ:m.<o_cam element associated
with the Fisher-Riemann metric, <m1mmﬁ&o:m_.uquowm in mm:mﬂma.mn..d_u
belong to this category. Densities that ﬂasdﬂ invariant Bayesian in-
ference are the subject of the rest of this paper.

3. INVARIANTS OF SCALINGS

Let 1 -2
I S 9pp STt s vgy

AMVHAMVH - .
a wﬂWq My Proi -1, ceee FPyS g

Consider the Bezoutian form B{q,p) = q{x)p{y} - q{y)p(x). Since for
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X=y, mﬂa.vv = o. (x«y) divides the above form. Therefore, we have
R(q.p; x.¥) = (g{x) ply) - qly)} p(x})/(x-y)

n n §-1
T ik Cik = ki
Then it can be shown that the resultant of q and p is given by [12].

Res{q,p} = det[c;, ]

Thus g(s) ¢ Rat{n) 1ff the quadratic form [c xu is nondegenerate. Firstly
we view the resultant as a nonvanishing *csnnioz on Rat{n} (a differential
form of degree Q).

Def'3: A differential form w on a manifold M is said to be a relative

J.||.

invariant under the action of a group G on M if there exists a function

e m+m_ mcn:ﬁsmﬂeﬁ@sv %hmv.sﬁau <mmmm=gsnz
absolute invariant if y(g g e 6. Ue have,

Lemma 2: The resultant R is a relative invariant of the scaling group
G satisfying the following transformations:

Further, it is an

2
{a e N+v H w L R

(ceR); R+R
(me &Yy ; R~+m m
{(keR); R =R

{1) s + as
(2) s + 8§ +a
{3) gls) » mg(s)
{4) ofs) » __g(s)
1+ k g{s)
Remark: The resultant is not even a relative d=<mwim=n of the shift
w{ty > w{t + t). To see this consider the example:

g(s) = cF5 s R=a. Under t+t+1, R+e R,

To understand what the other invariants are, consider the infinitesimal

feedback scaling {generates g(s) - __g(s) ).
1-tgls

{+) aad num . .
- 0; 37 "9 i=0, ¥, 2, .., n-1 ‘

This is a Hamiltonian system in mms

n-1
H{q.p} = H 9; %2

with

To describe this in =Wﬁﬂu.av. recall that mmz
Tecttd structure [5],

w=1 an* A abﬁ

carries a canonical symp-

and if f denotes the natural imbedding f : Rat(n) =+ x
is the natural pullback ‘closed 2-férm on mmﬂnv.gu

then we = = ¥,
Denoting by,

Ay = L-gy mmﬂ
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the feedback vectorfield on Rat{p.,q) we see that (4} is a statement of
the invariance,

(Lie derivative zxﬂwmv D =0

w
»m F
This immediately implies,

(++) c»m 2 =0
where @ = ﬁswv>= is the canonicai 2n form. Thus, we see from {++) that

Rat{n) carrfes a canonical smooth invariant (under feedback) measure with
density 2. This definitely does not satisfy the nondegeneracy condition
of Section 3. However the associated 2n form

bi =R-Q

~

is a ym-¢:<m1*m=n volume element (from Lemma 2) and also satisfies the
nondegeneracy condition.

The symplectic structure Op is not the only possible one. Consider,
for example,

n Qm
g(s) = =
.mﬁ._ s + >.-

Ay 7 »u for 1 # J and aj real.

e Rat{n,o0)

Under the shift t +t + ¢

af~AjT
gls) »z —= .
s + »m

The corresponding *sﬁmzmwmmmamw representation
A+v QQ. nwa
lllﬂw.‘mﬁ.tﬂa t 5 wr
1

7 A

-

This is also a Hamiltonian system with H=

-

The associated {real) symplectic structure w_ on Rat(n,o} is

S

g

= I an A ayd and the canonical smooth shift-invariant density is
An
given c« nm {wg)

Remark:
diffeomorphism carrying one to the other.
(2) The flow {+) and the form w_ coincide with Moser's repre-

sentation of the Toda lattice [13] and this suggests natural generaliza-
tions of isospectral deformations,

in this section we have seen two densities @, Q; on Rat(n) associated

with a natural symplectic structure, We also noted that the Fisher-
Riemann metric given rise to a smooth density. In the next section
these ideas are unified in one common setting.

(1) v, and ug are distinct in that there is no symplectic
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. 4, INTEGRAL GEQMETRY ON Rat(n)

The general approach of integral geometry is as foilows: Let M be a
manifold of dimension n.

(a) Find wys oy +a.s wp @ set of independent differential 1-forms

on M, which are invariant wrt a Lie group G acting on M, i.e. if X is an
element belonging to the Lie algebra G of G mapped into an elementX &
U{M) the set of (> vectorfields on M then

a& wy = 0 i=1,2, ..n.

(b} Then,

n .
v} n*>%; is an invariant density,

Unless M is compact such densities are not probability densities. How-

ever, the set function P{Q/R) = fuw / fuw defines a conditional probabi-
R R .

lity structure, where (Q,a) and (R:g) belong to some G-atlas [5] on M.

sm.n:m: have the following natural generalization of a conditional
Poisson process:

(1) P (Q/R) = exp(=ro) « (fu)Yn! n=0,1, 2, ..
. QR OnR .
Where 1=Ao\xv denotes the probability of n Poisson events occuring in
the patch (Q,o} with the conditioning that the probability of an event
occuring outside the patch (R,B) is zero. If a Riemannian structure is

Mﬁmndw@mg on M, then al-parameter family of probability densities on M
is defined by the fundamental solution to the diffusion equation:

@
Where the Laplace-Beltrami opérator,
(3)
bﬁl..._...ulm| mwa_\@ uiw....t
/G axP xd
Where g = | nmﬁAmvnvww mvnmnw = aw. In general i1t is hard to find ﬁmnnv

admitting a specified group (such as m> cﬁ mmvmm a group of isometries.
We consider several cases below.

{a) Probability Density on Rat(n,0): Recall that any g{s} ¢ Rat
(n,0) has a {symmetric] realization LA,B,b'] where A=A' has distinct
{real) eigenualues and [A,b] is a cyclic pair. If [F,9,9'] is another
such then there is an unique M ¢ 0(n) such that F = MAM'; g = Mb. De-
noting as nm the set of such realizations we have on Ry the metric.

(4) ds? = tr(dA?) + <db,db>

invariant under O(n} x {+ 1} x muﬂz+uv\m vepresented by A ~ MAM'; b - Mh:
A+ AR b > b+3R=R', £ ¢ R and M ¢ O{n). Upto scale factor, the
corresponding '
(5) 32 e
7ty

n mm.m

ar
2]

1
&=

RA 1

i

-ty
™o
|
Rl
Y
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The corresponding density is given by

: Y
(A,b} ~ exp{=trA®) exp(- <b,b>)
(6] P 2t i
which induces the following density on poles - _
coes A} mexpl-m EAS). T |agedg

4
_ i d since in Rat{n,o),

t it vanishes at repeated poles as it should (
ﬂMWMmMMM poles are inadmissible. However, the cyclicity of ma,du:dm not
taken into account. The density {7) first arosein Physics in Mamw R
study of statistics of energy levels and is discussed by McKean m i
more natural metric from a system theoretic viewpoint appears in treating
the ganeral case.

(b) Riemannian Structure on Minimal Realizations: rwwzmﬁmm”onm
11 minimal tripies LA,b,cl. L& e transfer
wﬂmvmmﬁnwmmm>v-dw. Further, tet M and ZHUm MMmumoﬂéme*amsm controlla-
il bility matrices, M = [b, Ab, .., H .
NAWAmM.mmm.ovmmw<w>=:_u& Under RM change of basis X +‘wx. P e GE(n3R),
we have A PAP-T; bPb; c »cP 1y M+ PH and N > NPT Consider the
quadratic differential form,

(8) ds? = tr(dAdA') + <M'dc, M'de> + <Ndb, Ndb>

~

Equ. (8) defines a Ge({n) invariant Riemannian metric on R and the as-
sociated volume element i3

(9) dy = /g Hwa>.. ndb, nidc,

34 ._.“__A L

. i Hankel ma-
= ) det(NN') = det (H) where H is the system ]

ﬁﬂmmw am:ﬂgmwwdﬂuvu #Wmmmg,vu, {see [4]}). Hence, the density mwwwnwﬂwma
with (8) satisfies the nondegeneracy condition and this 1s true wﬁ the
solutions of the diffusion equation also. In [4] the projection
corresponding Laplace operator onto Rat{n} is considered.

(¢} Let N be as defined in part
(b) mum<m. Consider the set of 2n differential forms of degres 1, de-
fined by

wptl *C 92n defined by
_ . | an, .
. dpy
. = N .
’ P,y
Yn

ili | and a metric
As a consequence of observability the ﬁsﬁwmcm: o' (Rat{n))

i i am:ﬁsnx>gs.
nmm = wytwy is available. The nc1wmwuo=adsm<0acam mdm R Adag

i dels of
&aw.. The interesting thing is that on the set of all pole mode
it
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the form g(s) = 1 / (s" + Ppat S -ty s Pg)> ds? above is flat.
Further w is a relative invariant under Gpe

5. CONCLUSIONS

We have described here some preliminary results on geometric methods 1in
identification.
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