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Summary. We consider an approach for coordinating the activity of a large array of
microactuators via diffusive (i.e., nearest-neighbor) coupling combined with reactive
growth and decay, implemented via interconnection templates which have been artifi-
cially engineered into the system (for example, in collocated microelectronic circuitry,
or through the formulation of active material layers). Such coupled systems can support
interesting spatiotemporal patterns, which in turn determine the actuation patterns. Gen-
erating such spatiotemporal patterns typically involves stressing the interconnections
by raising or lowering ‘a parameter resulting in the crossing of stability thresholds. The
possibility of making such parametric adjustments via feedback on a slower timescale
offers a solution to the problem of communicating effectively within a large array: The
communication is achieved through the interconnection template. The mathematics be-
hind this idea leads us into the rich domain of nonlinear partial differential equations
(PDEs) with spatiotemporal pattern solutions. We present a global nonlinear stability
analysis that applies to certain model pattern-forming systems. The nonlinear stability
analysis could serve as a starting point for control system design for systems containing
large microactuator arrays.

Key words. Nonlmear stability analysis, Lyapunov function, pattern-forming systems,
activator-inhibitor equation, actuator arrays

1. Introduction

Recent technological advances in fabrication at the micro- and meso-scale suggest new
ways to control physical fields (including flow, electrical, magnetic, and optical fields),
thereby leading to new-control problems involving the coordination of large arrays of
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say, 10* to 10% microactuators, possibly also incorporating information from large arrays
of collocated sensors. The microactuator arrays could be based on microelectromechan-
ical systems (MEMS) technology; or materials which are electrically, magnetically, or
optically active; or devices incorporating such materials, as in liquid-crystal light valves.
The sensor arrays could also be based on MEMS or active materials, and if (coherent)
light is used (either as the physical field to be controlled or as a measurement probe),
a camera could serve as a sensor array. A common feature in these types of control
problems is that, while there are very large numbers of actuators (and sensors), each
one of these actuators/sensors is relatively simple. Further, control algorithms based on
centralized processing of data become impractical on the scales under discussion.

To simplify the mathematical description of such actuator/sensor systems, it is natural
to pass to the continuum limit (i.e., to consider partial differential equation models instead
of high-order ordinary differential equation models) and to consider parallel, distributed
control schemes. It is also essential that control system design and actuator array design
be performed together, particularly when nonlinearity will play an essential role. There
are two reasons that nonlinearity can appear in these control problems: either nonlinearity
is present for fundamental physical reasons related to the application (such as in coherent
optics when optical phase is being controlled, but intensity is being measured), or else
the nonlinearity is incorporated explicitly to achieve richer behaviors in the system than
can be obtained from a linear system. In many cases, both sources of nonlinearity would
be present. : '

We are thus led to consider control of nonlinear PDE systems. Even before consid-
ering control, however, we are faced with the challenge of analyzing (and concurrently
designing) such systems. In some cases, the control problem is clearly posed: for exam-
ple, for adaptive optic phase distortion suppression, the actuator array is a spatial light
modulator (SLM), and the control objective is to drive the SLM so as to compensate for
(i.e., cancel) the phase distortion present in the coherent optical input beam. However,
one can envision other types of microactuator array applications for which the selection
of desired system trajectories is part of the design process, and these systems are the ones
for which this work is potentially most relevant. Such actuator arrays could serve to ma-
nipulate meso-scale particles, pump/meter/mix fluids, interact with coherent structures
in fluids, modulate acoustic radiation or optical fields, etc. [1]-[8].

The approach we consider for coordinating the activity of a large microactuator ar-
ray involves diffusive (i.e., nearest-neighbor) coupling combined with reactive growth
and decay, implemented via interconnection templates which have been artificially engi-
neered into the system (for example, in collocated microelectronic circuitry, or through
the formulation of active material layers). Such systems can support interesting spa-
tiotemporal patterns, which in turn determine the actuation patterns. Generating such
spatiotemporal patterns typically involves stressing the interconnections by raising or
lowering a parameter resulting in the crossing of stability thresholds. The possibility of
making such parametric adjustments via feedback on a slower timescale offers a solution
to the problem of communicating effectively with a large array: The communication is
achieved through the interconnection template.

The mathematics behind the above idea leads us into the rich domain of nonlinear par- -
tial differential equations with spatiotemporal pattern solutions. Pattern-forming systems
are used to model diverse phenomena from biology, chemistry, and physics, and there
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is an extensive body of both theoretical and experimental work on these systems. Bio-
logical examples include models for describing population dynamics, animal coloration
patterns, various aspects of nervous systems, human visual hallucination patterns, and
cardiac fibrillation [8], [9], [10], [11]. Examples from chemistry include certain catalyzed
reactions, as in the catalytic converters used to convert carbon monoxide to carbon diox-
ide [8], [12]-[14]. Examples from physics include patterns observed in shaken collections
of small spherical particles, gas discharge tubes, semiconductor electron-hole plasmas,
Josephson-junction arrays, fluid convection, and optics [7], [8], [15]-[22]. Despite the
diversity of underlying phenomena, all such pattern-forming systems share certain basic
mathematical features, as reflected in the similarities among the observed patterns. All
of the above are in the category of analytical approaches. In contrast, in recent work
of Zhu and Mumford [23], a synthetic approach is taken (to discover reaction-diffusion
equations) to solve the problems of computer vision, image processing, and graphics,
suggesting role for nonlinear PDEs of the reaction-diffusion type in pattern synthesis,
denoising, image enhancement, and clutter removal.

The philosophy underlying the study of pattern formation is that while each of the
various physical systems has its own unique characteristics, certain basic features of
the pattern-forming behavior are universal; i.e., independent of the details of the model.
However, given some physical model that is known to exhibit patterns, it is not generally
clear how to extract the part responsible for the pattern-forming behavior. Therefore,
the standard approach to studying patterns is to write down simplified model equations,
which do not necessarily have a specific physical origin, but which can be shown ana-
Iytically to give rise to the patterns under study.

For the interconnection templates used to control actuator arrays, in the continuum
limit, we first consider a certain activator-inhibitor system which also happens to serve
as amodel equation for a variety of pattern phenomena. This system has the property that -
as a bifurcation (or control) parameter passes through a critical value, a stable spatially
uniform solution gives way to a stable pattern solution (having spatial variation, time
variation, or both). Besides the spatially uniform solution and various pattern solutions,
other interesting solutions can also be excited in these systems, such as spatially localized
(finite-amplitude) spike states [24], [25].

This paper contributes an approach to global nonlinear stability analysis for certain
model pattern-forming systems including the activator-inhibitor equations mentioned
above. This nonlinear stability analysis could serve as a starting point for control system
design. The message, perhaps somewhat surprising, is that a global nonlinear stability
analysis is possible for certain nonlinear PDE systems with interesting pattern solu-
tions.

Although the pattern-forming-system approach for controlling actuator arrays in-
volves PDEs, it differs fundamentally from the usual approaches for control of PDEs,
e.g., as expressed by Lions [26]. In conventional PDE control problems, the PDE has a
physical origin (e.g, the Navier-Stokes equation), and it is only physically meaningful
to consider boundary control, or control at limited parts of the interior of the domain.
By contrast, the PDE modeling an actuator array and its control circuitry describes an
engineered system, and control throughout the domain (e.g., from collocated sensors) is
not only possible, but is very much of interest. Adaptive optics presents a prime example
of this [27], [28].
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Fig. 1. The intersection of the curves n(8) = 6° — 6 and
n(8) = —6 + C determines the spatially uniform equilibrium
of equation 1.

We begin (in Section 2) by introducing the activator-inhibitor model and discussing
its qualitative behavior. We also discuss a discrete analog network realization of this
model. Then we present the mathematical analysis in Sections 3 and 4, leading to a class
of Lyapunov functions inspired by classical lumped electrical network analysis, as in
the work of Robert Brayton and Jiirgen Moser [31]. In Section 5 we discuss some other
systems which are related mathematically to the basic model and sketch how our analysis
extends to these systems. Finally, in Section 6, we use coherent optics as an example for
illustrating the concurrent design and analysis approach for achieving global nonlinear
stability in systems with large arrays of actuators and sensors.

2. Activator-Inhibitor Equations and Their Solutions

The systems we consider here are related to the cubic nonlinearity activator-inhibitor
system,

96 |
1'9—8? = 12A9—93+9+n,

3
r,,a—': = L*An—-n—6+C, Q)

where 6 (x, t) is the activator, (X, ¢) is the inhibitor, /, L, 79, and T, are positive constants,
C is the control (or bifurcation) parameter, and A represents the Laplacian operator.
The ratio of time constants, & = Tp/1,, and the ratio of lengthscales, 8 = I/L, are
the parameters primarily responsible for the pattern-forming properties of system (1).
Although the mathematical results we discuss hold for x € R” for any n, for the potential
applications we have inmind, » = 2,and A = 3%/3x2+3%/3y>. The system has a spatially
uniform equilibrium solution given by the intersection of the curve 7(8) = 63 — 8 with
the line n(6) = —6 + C, as shown in Figure 1.

We are primarily interested in 8 < 1, in which case the spatially uniform equilibrium

solution is stable for |C| > % When the spatially uniform equilibrium solution is
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Fig. 2. Stable equilibria of equation (1) for n = 1: (a) narrow spike equilibrium, (b) wide spike
equilibrium, (c) pattern equilibrium. In (a) and (b), C = — ;—ﬁ, and in (c), C = 0. The boundary
conditions are periodic.

unstable, a pattern solution is stable. When o <« 1, there is an ideal pattern solution which
is periodic in both space and time. However, for the case we are primarily interested in,
« > 1, the ideal pattern solutions are spatially periodic equilibria. Furthermore, when
B « 1 and a > 1, other equilibria may also be stable. Various equilibria for n = 1 are
shown in Figure 2; those for n = 2 are shown in Figure 3. i

Actual patterns observed in pattern-forming systems generally differ from the ideal
patterns, unless at least one of several special conditions is met:

o the system is highly homogeneous and is uniformly maintained very close to the
bifurcation point where stability of the spatially uniform equilibrium has just given
way to stability of the pattern solution;

o the system is excited into the pattern state in a carefully controlled way so that the
ideal pattern is obtained; or

o there is long-range coupling present so that an ideal pattern is energetically favorable
as compared with a more disordered pattern.

Uniess one of these special conditions is met, the actual pattern observed looks locally
like the ideal pattern, but exhibits disorder over long ranges, as illustrated in Figure 3b.

The factors that influence actual patterns are initial conditions, boundary conditions,
inhomogeneities, and symmetry breaking. Initial conditions, boundary conditions, and
inhomogeneities might be used for pattern control. (During symmetry breaking, tiny
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Fig. 3. Stable equilibria of equation (1) forn = 2 and C = 0: (a) a radially symmetric pattern, and
(b) an irregular pattern. In (a), the radial symmetry of the pattern breaks down toward the edges of
the domain due to the periodic boundary conditions. Spike solutions and wall solutions, analogous
to Figures 2a and 2b, and an ideal pattern consisting of parallel rolls, analogous to Figure 2c, are
also possible (but not shown).

perturbations beyond our control select the position and orientation of the pattern.)
Although ideal patterns have been the focus of much of the theoretical and experimental
work with pattern-forming systems, the fact that actual patterns have the flexibility to
deviate from ideal patterns means that a rich variety of patterns can be realized.

For the cubic nonlinearity model with 8 <« 1 and a > 1, both the pattern regime and
the spike regime might be useful, depending on the particular application. Two surfaces
with micro-actuator arrays in contact with each other could change the coefficient of
friction between them by alternating between the spatially uniform equilibrium state (low
friction), and a state of disordered interlocking rolls (high friction), under the control of a
parameter common to all of the actuators. Alternatively, interlocking patterns of parallel
rolls would produce a high coefficient of friction normal to the rolls, and low friction in
the direction parallel to the rolls. In the friction example, the pattern regime would be the
regime of interest. An analog memory (discussed below), in which spikes are excited by
collocated sensor signals, is an application where the spike regime would be of interest.

2.1. Exciting Spikes Using the Control Parameter

One technique for exciting a spike is to locally raise the control parameter above the
bifurcation threshold. When the control parameter is in the pattern-forming regime over
a localized region, the pattern solution forms in that region but smoothly connects to the
spatially uniform equilibrium outside that region. When the control parameter is then
returned to the below-threshold value, the pattern solution relaxes to the corresponding
spike solution. This method of exciting spikes is illustrated for one dimension in Figure 4
and for two dimensions in Figure 5. If the control parameter is raised over a larger region
than required to excite a single spike, then there are various possibilities, depending on the
shape of the region in which the control parameter was raised and on the spatially uniform
value of control parameter to which the system is returned [17]. Some possibilities are
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Fig. 4. (a) One cycle of the pattern solution excited by locally raising the control parameter for
the one-dimensional system, and (b) the resultmg sp1ke equilibrium when the control parameter

is restored to its spatially uniform value. C = — 7 is the spatially uniform value and C = 0 is
the locally elevated value of the control parameter.

shown in Figure 6. Once spike solutions have been excited in various locations, they can
all be removed at once simply by taking the control parameter to a value where only a
spatially uniform equilibrium is stable.

Since the control parameter needs to be raised only temporarily in a localized region
to excite a spike, a sensor-driven mechanism for exciting a spike can be ac-coupled. A
network can thereby act as an analog memory, forming spikes asynchronously and in
parallel in response to local sensor driving. Given a spatial distribution of spikes (or
circular walls, as in Figure 6), any interaction between them decreases exponentially
with distance [21]. Therefore, unless the activator-inhibitor system is highly homoge-
neous, one would not expect to observe interactions between spikes or walls that are not
in close proximity. However, numerical study indicates that under some conditions in
highly homogeneous systems, spikes can attract or repel each other, creating complicated
“molecules,” and similar results have been observed in gas discharge experiments [21].
Even in systems that are homogeneous enough for spikes to influence each other, for

Fig. 5. (a) One cycle of the pattern solution excited by locally raising the control parameter for
the two-dimensional system, and (b) the resultmg splke equilibrium when the control parameter

is restored to its spatially uniform value. C = —7 is the spatially uniform value and C = 0O is
the locally elevated value of the control parameter.
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Fig. 6. (a) Response to a local increase in the control parameter over a circular region larger than
in Figure 5a, and (b) the resulting circular wall equilibrium when the control parameter is restored
to its spatially uniform value. (c) Response to a local increase in the control parameter over a
region which is not circularly symmetric, and (d) the resulting spikes when the control parameter

is restored to its spatially uniform value. As in Figure 5, C = ~ §7=‘/§ is the spatially uniform value
and C = 0 is the locally elevated value of the control parameter.

spikes separated by a sufficiently large distance, the resulting motion of the spikes is on
a much longer timescale than 7y and 7, (when 75 > 7,,, but 75 ~ 1,).

2.2. Adbvecting Spikes

For 8 « landa > 1, the stable solutions for the cubic nonlinearity model are equilibria.
When o « 1, time-periodic patterns and traveling spikes are also possible. However,
the pattern-selection problem (i.c., the problem of selecting stationary versus traveling
spikes and prescribing the direction the traveling spikes travel) is quite difficult. There
are, however, alternative approaches to taking @ < 1 in the cubic nonlinearity model in
order to obtain interesting time-varying patterns of activity in an array of actuators. One
approach is simply to add an additional advective term to the dynamics:

26
95— = I’°A0 —60°+0 +1n,
at
an 2
t,,E—LAn—n—9+C+L(€-V17), 2)

where € is a constant vector, V denotes the gradient with respect to x, and here the
dot denotes the inner product of vectors. If ||e]| is sufficiently small, the spike shape in
Figure 5b is slightly distorted, and the spike translates, as shown in Figure 7.
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Fig. 7. (a) Initial excitation, and (b) resulting traveling spike for system (2). The traveling spike
is a slightly distorted, translating version of the spike shown in Figure 5b.

2.3. Electronic Circuit Implementation

A digital implementation of the spatially discretized activator-inhibitor dynamics might
be possible when relatively large MEMS actuators are to be controlled. The actuators
would have to be large because of the area required for digital circuitry to perform the
calculations at each site. At the expense of greater complexity, one could also design a
digital implementation in which a number of actuators shared the same computational
circuitry in order to keep the area of the digital circuitry small enough. Besides the
usual advantages of a digital approach, such as simple biasing and highly accurate
computations, the uniformity across the array would make it possible to work with the
pattern-forming system very close to the bifurcation threshold.

However, an analog implementation would inherently lack the uniformity required
to operate very close to the bifurcation threshold, since analog circuits are sensitive to
processing variations that lead to device nonuniformities. The main advantage of an
analog implementation, however, is compact size, and if the actuators are small enough,
an analog approach might be preferred for that reason. There are different forms that an
analog implementation could take, but a simple approach is to consider both 6 and 7 to
be voltages, as shown in Figure 8.

From Figure 8, the equations for 6; and r; are

dé 2 12

(fea)d—: = 3(9k+1 = 6) + E(Gk—l —6) — (62 — 26 + C)8 + (mk — 61)8,
dme L2 L?

T TE = Z (st — M) + — et — 1) + (=6 — 165, 3)
dt ) 8

which simplify to
o, 12 ,
B = 8_2(0k+1 =20 +6_1) — 6, + 6 +m —C,

2

d L }
L 8_2(37k+1 = 2nk + Mi-1) — Mk — 6k 4

T ar
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Fig. 8. An implementation of the spatially discretized cubic nonlinearity model dynamics in
which the 6; and n; are voltages. Resistive coupling implements the diffusion, capacitors produce
the time constants, inverting and noninverting buffers provide the cross-coupling, and active ele-
ments (shown as diode symbols, representing tunnel diodes) provide the nonlinearity and positive
feedback. The tunnel-diode biasing circuitry is not shown.

In the continuum limit (i.e., taking § — 0), these équations become

30 3%0

— =PP—-0*+0+n-0C,
% at ax2 +to+n

an 26217

— = L’— —p-o6. 5
T ot ax? n )

The control parameter can be moved to the inhibitor equation by taking # = n — C
(although there is no problem with having the control parameter in the activator equa-
tion as opposed to the inhibitor equation). The circuit of Figure 8 generalizes to two
dimensions by making the resistor and capacitor grids two-dimensional.

An analog network essentially implementing the cubic nonlinearity model was built
by Purwins and Radehaus [22]. In their circuit, the inhibitor was the voltage across a
capacitor and the activator was the current through an inductor; therefore, the nonlin-
earity had to be implemented as an S-shaped current-voltage characteristic. (The analog
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network of Purwins and Radehaus was designed the way it was because of the physi-
cal analogy with gas discharge systems, and because the implementation used discrete
components rather than integrated circuit technology. In our setting, we are not so con-
strained.)

3. Basic Properties of Solutions

3.1. Existence, Uniqueness, and Regularity

The purpose of this section is to present mathematically rigorous statements concerning
the cubic nonlinearity model. The cubic nonlinearity model belongs to a general class
of models

26
Tgr + Lob + fo(0) = n,

/]
r,,a—'t’ + Lyn + fy(n) = =86, ©)

defined on an open bounded subset @ C R”, where Lg and L, are uniformly parabolic
operators, and f;(8) and f;(n) are odd-order polynomials with positive leading coeffi-
cients. Suppose also that the boundary conditions are one of the three basic types:

1. Dirichlet: 6(x,7) =0, n(x,t) =00nag,
2. Neumann: VO -n =0, Vn-n =0 on 32 where n is normal to 32, or
3. periodic boundary conditions.

Also, suppose the initial data (6(0), 7(0)) € L2(R2) x L%(). Using the standard tech-
niques for proving existence and uniqueness for parabolic PDEs, one can prove that the
above system of PDEs has a unique weak solution (6(x, ), (X, t)), with

6 € L®(0,T; L*(Q)) N L*0, T; H(R)) N L (0, T; L** (%)),
n € L0, T; L*(R)) N L*(0, T; H()) N L?1(0, T; L*()), (M

where 2py — 1 is the degree of f(9), 2 Py — Lis the degree of f,(n), and H(S2) is the ap-
propriate Sobolev space corresponding to the boundary conditions (e.g., H(Q) = Hj (Q)
for Dirichlet boundary conditions) [29], [30]. In addition to existence and uniqueness of
solutions, the solutions also depend continuously on the initial data.

If we have the further assumptions that the boundary <2 is C2 and that (6(0), 7(0)) €
L?Po(Q) x L?P(R2), then we can show further that

D% € L*0, T; LX), >

D’p e L*(0,T; LX(Q)), ®)
which implies

6 € L*0, T; HXQ)),

n € L*©0,T; HX(Q)), ©)
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with H2(S2) corresponding to H (S2) defined in the appropriate way. These bounds on the
second partial derivatives of 6 and 7 are what we mean by “regularity.” We will require
this amount of regularity in the calculations that follow. The restriction that the coupling
between the 6 and 5 equations is linear is used in the proofs of existence, uniqueness,
and regularity. '

3.2. Dissipativity

For finite-dimensional systems, the physical notion of dissipativity can be tied to the
mathematical concept of the existence of an absorbing set. For infinite-dimensional
systems, it is not so clear how dissipativity should be precisely defined, since there
are systems which are considered “dissipative,” but for which the existence of absorbing
sets has not been established [30]. However, if for an infinite-dimensional system we can
prove the existence of an absorbing set, we can certainly label the system dissipative,
and the cubic nonlinearity model does possess an absorbing set. The energy bounds
required to show the existence of an absorbing set are stronger than those required to
show existence, uniqueness, and regularity of solutions.

Let u(z) = (6(2), n(¢)) denote the solution for the cubic nonlinearity model, let
uy = u(0), and let L = L%(Q) x L?*(R2). Then the semigroup {S(¢)},»( defined by

S¢): L - L,
uy — u(?), (10)

is well-defined ¥t € [0, T for T arbitrarily large. Note that H = (H () N L2 (2)) x
(H(Q) N L?()) C L is the Hilbert space in which u(¢) lies for almost every t.
However, writing S(¢): L — L reflects the fact that our initial conditions only need to
be in L for the existence and uniqueness theory to hold.

The semigroup {S(7)};>o satisfies the basic semigroup properties,

Sit+s) = Sk)-S@) Vs, t >0,
S(0) = I (the iden‘tity),
u@ +s) = S@us) = SHu(), (11)

and in addition, because of the continuous dependence of solutions on initial data, we
have that S(¢) is a continuous operator V¢ > 0. A set B C U, where U is an open set in
L, is called an absorbing set in I{ if the orbit of any bounded set of U enters into B after
a certain time (which may depend on the set); i.e., VBy C U, By bounded, 3¢, (3p) such
that S(t)By C B Vt > 1t;(By). An attractor is a set A C L such that

(i) A isinvariant;ie., S@#)A =4 Vit >0, and
(if) 3U, open, such that Yug € U, S(t)ug — A ast — oo;i.e., dist(S(#)ug, A) — Oas
t — 00.

The largest such I/ is the basin of attraction of .A. If the basin of attraction of A is all of
L, then A is a global attractor for {S(¢)},5o.

The existence of a global attractor implies the existence of an absorbing set. For the
cubic nonlinearity model, the existence of an absorbing set implies the existence of an
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attractor, due to the following theorem (which is a special case of a theorem due to
Temam [30]; see [24] for a proof):

Theorem. Suppose L is a Banach space and that the operators S(t) satisfy the semi-
group properties and are continuous operators from L into itself Vt > 0. Suppose that
there exists an open set U and a bounded set B of U NH such that BC HCcC L and B
is absorbing in U. Then the w-limit set of B, A = w(B), is a compact attractor which
attracts the bounded sets of U. It is the maximal bounded attractor. Furthermore, ifU is
convex and connected, then A is connected, too.

Remark. By H CC L, for H and L Banach spaces, we mean H is compactly embedded
in L. For our H and L, H CC L follows from standard compactness theory [29].

'So to demonstrate the dissipativity of the cubic nonlinearity model, we need to exhibit
an absorbing set in H. Such an absorbing set does exist for the cubic nonlinearity model.
In fact, this absorbing set absorbs all the bounded sets of H. The existence of this
absorbing set then implies the existence of a global attractor by the above theorem. The
details can be found in [24].

4. Derivation of a Lyapunov Functional

Since dissipation plays a crucial role in the behavior of activator-inhibitor equations, it
is natural to try to apply energy methods. In fact, for the cubic nonlinearity model, it is
easy to write down an energy functional V for which the system is a gradient system,
but with respect to an indefinite metric. It turns out that for the cubic nonlinearity model,
this energy functional, for certain parameter values, leads us to find a radially unbounded
Lyapunov functional V, with V < 0, and with V = 0 only at equilibrium points of the
dynamics. This result is an infinite-dimensional generalization of a corresponding result
of Brayton and Moser for systems of ODEs [25], [31].

To illustrate the technique of Brayton and Moser, we spatially dlscretlze the cubic
nonlinearity model to obtain a system of ODEs. The discretized dynamics are shown
to be gradient dynamics with respect to an energy function, in analogy with the PDE
system. The procedure of Brayton and Moser is then applied to the system of ODEs,
yielding a Lyapunov function, provided the ratio of time constants, o = 74/t,, is greater
than one. Since the Lyapunov function V is radially unbounded and satisfies V < 0
with V = 0 only at equilibrium points of the dynamics, LaSalle’s invariance principle
enables us to conclude that all trajectories converge to the set of equilibrium points of the
dynamics [33]. Furthermore, because V is analytic, it can be proved that each trajectory
converges to an equilibrium [34], [35].

Having shown how the technique of Brayton and Moser applies to the discretized
system of ODEs, we then show how the technique extends to the infinite-dimensional
setting for the basic cubic nonlinearity model. Having obtained the Lyapunov functional
for the cubic nonlinearity model, we then show how analogous Lyapunov functionals
can be obtained for certain related systems.
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4.1. Gradient Dynamics Property of the Cubic Nonlinearity Model

For the cubic nonlinearity model (1), there is an energy functional

V—/ lz|ve|2+lo4 192 0 L2|V 12 12+c dx, (12)
=12 3’ T2 R

such that

]

v 8V (36 +Q an
dt 86 \ ot sn \ ot
39\? an\?
= -—/;zl:to (E) —t,,(g) dx
_ 00/0t] [z 0 7[06/0¢
= - ([an/at]’[o —1:,,] [an/at])' (13)

An equivalent way of expressing this is

-[e6/8t] - - [w ©
-7 [an/at] =vv. J= [0 —r,,]’ 14
so that
dv ~ [d6/3t 30/3t] - [a6/0¢
s (VV’ [an/ar]) == ([an/at] J [Bnlat]) ’ {13)

We thus have a gradient system with respect to an indefinite metric.

4.2. Lyapunov Function Derivation for the Spatially Discretized Cubic Nonlinearity
Model

To see how the technique of Brayton and Moser works for ODE systems, consider the
simplest discretization of system (1) in one spatial dimension with periodic boundary
conditions,

. Ox—1 — 26, + 6,
96 = 12( L 82k+ k+l)—913+0k+nk,
1—2
Ty = L2("" ‘ ;”""“) —me =6+ C, (16)

where the overdot denotes differentiation with respect to time, 8 is the distance between
the discretized points along the x-axis where we are evaluating 6; and 7;, and the indices
k are taken mod N, where 2N is the total number of ODEs. (The spatially discretized
version of the cubic nonlinearity model satisfies dissipativity bounds analogous to those
obtained in the PDE case. Since the necessary local Lipschitz condition is satisfied,
and the dissipativity bounds preclude finite escape times, existence and uniqueness of
solutions for the spatially discretized system of ODE:s is easily established [33].)
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As for the PDE system, we can write this discretized system as a gradient system with
respect to an indefinite metric: let .

2
V = (13_2 (Zekz —Zekgk.“) +%ZO§—%ZG§—ZBWC,
% x X 3 x
2
—%(Zni—zrnnkﬂ) —%Znﬁ+czrzk, a7)
x 3 x 3

so that
dv av . v
it~ 499, "+Z:f o™
= =Y [1%6)? - 7y()°]
k
— _fpT T 'L'el 0 0
where 8 = (0, ...,60x), 1 = (m1,...,nn), and I denotes the N x N identity matrix.
As before, we can equivalently express this as :
-6 .
-J| . |=VYV, 19)
n
so that
av. . . . -Té
— =07 gT1vVv =67 7117 |, |, 20
T 6" 7'l 6" 2] 7 (20)
where
7 _ 1’91 0
=[] ey
The technique of Brayton and Moser involves first computing D? V, which looks like
[ 92V 82V a2V 92V
3912 301801\/ 39137}1 391317N
3V 82V a2V 92V
2 _ 30139}1 39& 39N31}1 89N371N
DV=1 "9y 82V 2V a2V
06,9m a6y0n, an? 3619y
32V 82V 82V a2V
_39137]N 39N317N 37]1317N 37712\1 i
[P -1 .
= o, Q]’ (22)
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where each block is N x N. It turns out not to be necessary to compute P, but it is
necessary to write down @ and show that Q is invertible. A simple calculation gives

L2

where
2 -1 0 0 -1
-1 2 -1 0 0
0o -1 2 -1
R = .
0 .. 0
0 : 2 -1
-1 0 --- 0 -1 2]

(23)

(24)

R is easily seen to be positive semidefinite. Therefore, Q is negative definite, and hence

invertible. Then defining

0 0
M= [0 —2Q-1]’
we can define

J=J+ (D2V)M

J
_ ‘L’gl + P 0 0 te]
Lo —r,, ~1 0 —207'|[0
_ [l + —2r,,Q
Lo —t,,l 0 27,1

(151 —21,Q7!
0 7,1 ’

Corresponding to this J, there is a

~ 1 ~ ~
V=V+ E(VV)TMVV,

i

To see this, simply take the gradient of V:

such that

VV = VV + (D*V)MVV

= —(J+(DVIMJ) "

o]

(25)

(26)

27

(28)

(29)
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If J were symmetric, there would be a well-defined metric, and the dynamics would
be gradient dynamics. However, J is not symmetric. But if (the symmetric part of) J
is positive definite, V will still be decreasing along trajectories. If we can further show
that V is radially unbounded and V = 0 if and only if 6 = # = 0, we will be able to
conclude that the trajectories of the system converge to the set of equilibrium points.

As for the positive definiteness of (the symmetric part of) J, we have

oo el =27,071| 6
0 Tl n
= 190” + 7, l91* - 27,67 Q7'

2
1
+|vEi| - - o', (30)

. 1
Vil = 7207 (Jai)

and if
1
Ta
then we see that (the symmetric part of) J is positive definite. Furthermore, we can

calculate ||Q~!|| = 1 by finding the smallest singular value of —Q, and then inverting
it. Observing that for ||z|| = 1 we have

e <1, (31

T T L’ L ;
z (—-Q)z=12 (I + 8_2R) z=1+ Fz Rz, (32)

and in light of the fact that R is positi\}e semidefinite and z can be chosen such that
z" Rz = 0, it is clear that the smallest singular value of —Q is 1. Hence, [|Q~!|| = 1,
and we arrive at the condition that (the symmetric part of) J is positive definite if

a>1. (33)

Because
V=—[6T 371J [3] , (34)

we also see that if J is positive definite, then V < 0,and V = Oifand only if § = 7 = 0.
Next, we need to compute V and determine that it is radially unbounded. We define

vV = VoV (35)
LA

so that V, V represents the gradient of V with respect to the 6 only, and V,, 1% represents

the gradient of V with respect to the 7, only. Then from (27) and (25) we can express
V as

V=V-(V,V)Q'v,V. (36)



256 E. W. Justh and P. S. Krishnaprasad

Furthermore, we can directly calculate that

v L? L? L?
—~ =(-2= -1 = ket + =1 — 6+ C, 37
om < 3 )nk+82ﬂkl+82'7k+l ke + (37
and hence that

1

. 1
v,V =0on-6+cCc| _|. (38)

1

We thus compute
Ve G- Taen) ;X e - Y6
Szkkkkk+l 32.% 7320
L 2 ! 2
t5 an—zﬂk’?k+l +§Zﬂk—czflk
k x % k

+Y Om—©—-Cx)TQ7'O~Cn, (39)
k

where x =[1 1 --- 1]7.Itcanbe shown that V is radially unbounded, meaning V —
oo whenever |6x| = oo or |nx| = 00, for any k. We thus arrive at the conclusion that for
the discretized one-dimensional system with periodic boundary conditions, regardless
of the fineness of the discretization (N and 8), as long as & > 1, we can find a radially
unbounded Lyapunov function V such that V < 0, and with V = 0 if and only if
6 = i = 0. We can therefore conclude that all trajectories must converge to the set
of equilibrium points, provided @ > 1. If we have Dirichlet or Neumann boundary
conditions, similar conclusions can be reached [24].
For discretized systems in more than one spatial dimension, the results for the one-
- dimensional case carry over, as long as the domain £ is rectangular. For example, in
two spatial dimensions with periodic boundary conditions, the simplest discretization
would be

: ity + Oie—1) + B0k + 0Gi—1yk — 46

o= g2 iy + njk-1) + NG+ok + NG-vk — Mjk
Tlljk = 82

- njk - ejk + C. (40)

All the same calculations can be performed on this system as in the one-dimensional
case, and the conclusions are the same.
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4.3. Convergence Result for the Spatially Discretized Cubic Nonlinearity Model

With the Lyapunov function V given by equation (39) for the spatially discretized system,
we can prove a rigorous convergence result using the following theorem, (see [33]):

Theorem 1 (LaSalle’s Invariance Principle). Consider the system v = f(v). Let T be
a compact set and suppose the solution v(t) starting in T staysin X forallt > 0. Let
V: ¥ — R be a continuous function such that V (v(t)) is a monotone nonincreasing
function of t. Let E be the set of all points in Q where V (v) exists and equals zero. Let
M be the largest positively invariant set in E. Then v(t) approaches M ast — 0o.

Our preliminary convergence result is the following:

Theorem 2. Assume a = 14/t, > 1. Then every trajectory of the spatially discretized
system (16) (corresponding to periodic, Neumann, or Dirichlet boundary conditions for
the original PDE system) converges to the set of equilibria of the dynamics.

Proof. The existence of the compact invariant set X is guaranteed by the radial un-
boundedness of V. Also, E = M is simply the set of equilibria of the dynamics, due to
equation (34). Applying LaSalle’s invariance principle completes the proof. O

To prove convergence of each trajectory to an equilibrium, we need to use the fact that
V is analytic. The proof is essentially identical to the proof of convergence for gradient
flows with analytic cost functions [34], [35]. Related techniques and methods also appear
in [36]. The proof is based on a result of Lojasiewicz [34], [35], [37]:

Lemma (Lojasiewicz). Let f:R" — R be a real analytic function, and let v* € R" be
a critical point. Then there exists a neighborhood U C R" and a real number u. € (0, 1)
such that

lfW) = FOOIF <V,  Wel. \ (1)
Proof. See [34], [35], [37]. |

Theorem 3. Assume that V is analytic, J is positive definite (but not necessarily sym-
metric), v = f(v) = —J ~1VV, and the hypotheses of Theorem 1 are satisfied. Suppose
also that V = —(VV)T J-IVV. Then lim,_, o v(t) = v* for some equilibrium point v*.

Proof. Essentially as given in [34], [35]. See Appendix. O

Theorem 4. Assume a = t5/t, > 1. Then every trajectory of the spatially discretized
system (16) (corresponding to periodic, Neumann, or Dirichlet boundary conditions for
the original PDE system) converges to an equilibrium.

Proof. Follows directly from Theorem 3 and Theorem 2. a
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4.4. Lyapunov Functional Derivation for the Cubic Nonlinearity Model

We can generalize the technique of Brayton and Moser to the infinite-dimensional setting
and use it to find a Lyapunov functional for the basic cubic nonlinearity model.
The first step is to calculate the second derivative of the energy functional V. We have

V: X > R, 42)

where X represents the space in which the (6, n) lie. Ateach p € X, there is a derivative
map,

DVy: X >R

, 43)

e=0

- d -~
DV,-u= —V
u - p T (p+€un)

which corresponds to the first variation of V evaluated at a particular (9, ). By vV, we
mean

. [-1PA6+62—6-7
v=| , 44)
i L*Anp—n—-6+C
for then
DV, 0 f \"A% %9 d (45)
. = . X,
©.n E A 51 |

where fﬂ u - v dx is our inner product. We can then define the second-derivative map at
apointp € X as
DV, XxX - R
2

ded&

u,v) V(p + eu+§Ev) (46)

€=0,6=0

We can define the second-derivative matrix D2V by

D2V 20| 19621} _ / (86, sm]D*V %02 | 4x 47

The second-derivative matrix D?V is computed to be

D — (302 — 1 — IPA) ~1 @)
- -1 (-1+ L2A)Y |

We thus see that the quantity that plays the role of the matrix Q in the discretized
system is the operator (—1 + L2?A). Therefore, we need to address the issue of finding
an inverse for (—1 + L2A).

——
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Suppose that we have periodic boundary conditions. Since the functions (86, én) we

are working with are in L2(S2), their Fourier series are well-defined (in the distribu-
tional sense):

.
u@®x) = Y uxe’™*,
k

U = Tslz—| fﬂ u(x)e *xgx, (49)

u(x) € LXQ), Y lukl? < oo.
k

(Here we are thinking of k as a vector containing indices which are not necessarily
integer. For example, in the one-dimensional case, we would have k = 2w m/L where m
is an integer and £ = |Q]| is the length of the interval 2.) Then

(=14 L2A)u(x) = — Y (1 + L?[kP)uxe™™™, (50)
k
so the inverse operator for (—1 + L2A) has the form

(=1 + L2A) " o(x) = w(x) * v(x) = f w(x — )@y, 1)
Q

where w(x) can be represented as

_1 .
wx) =Yy ————ek%, (52)
Xk: 1+ L2k}

Before we can conclude that we have an appropriate inverse, however, we need to verify,
since (—1 + L2A) takes functions in H2(§2) to L%(S2), that w(x) * - takes functions in
L%(2) to H*(). But this is in fact the case, since an equivalent norm to the H2(Q)
norm is [32] )

172
lullz = (Z w2 (1 + |k|2)2) . (53)
k

Thus, from the form of w(X)*-, itis clear that w(x)*v(x) € H2(Q)ifv(x) € L3(R). Thus,
we have verified (at least for periodic boundary conditions) that (—1+L2A)"1: L2(Q) —
H?(Q) is a well-defined operator.

Proceeding by analogy with the spatially discretized case, we can compute

V=V-—(V,V,(-1+L*A)"'V, V), (54
where

V,V=L*An—60—n+C=(-1+L*A)n—-6+C. (55)
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Calculating
(VyV, (=1 + L2A)'V, V)

= / [(=1 4+ L?A)p — 6 + CI[(—1 + L2A) "' [(~1 + L®A)p — 6 + C]ldx
Q

=/[—L2|Vn|.2—r;2—29n+2Cn
Q

— (=0 + O)[(=1 + L2A) "' (-6 + C)1)dx, (56)

where integration by parts has been used (with the assumption of periodic boundary
conditions), we finally obtain

v—f 12|v9|2+19“ 192+L2|V P+l _cpeo
= Ll2 37 T T mammEnwon

-@-C)[(-1+L*A)'@ - C)]] dx. (57)

From this expression for V, it is apparent that V is radially unbounded (i.e., V = oo
whenever any of ”9”1}(9), ”nHLz(m, ||V6“L2(Q), or ”Vﬂ”LZ(Q) g0€s to ll’lﬁl’lity)

It now remains to determine VV, so that we can check whether (or under what
conditions) V < 0, with V = 0 only at equilibria. The only term of V for which we
have not yet computed the first variation is the (— 4+ C)[(—1 + L2A)~1(—60 + C)] term.
Using the representation (—1 + L2A)~!. = w * -, we compute

L [/ (=0 + O)[(-1+ L*A) (-6 + C)]dx] ‘u
80 | Jo

= / 2[(—=1 4 L2A)"1(=0 + O)u dx. (58)
Q

Therefore, we have

VoV = —PA0+6% -0+ +2(—1+L*A) (-6 +C)
= —u,% +2[n+ (=14 L2A) (-0 + O)],
V,V = —L2An+n+9—C=—t,,%. (59)
Observing that

]

) |
2t,(—1+ LZA)-la—:’ 2(—1+ L*A)"\(L2An—n— 0 +C)
= 2[n+ (-1+ L*A)"(-6 + O)], (60)

we conclude that VV can be expressed as

—2t,(—1 4+ L2A)~1 | | 86/3¢
gy =—|® TFa1+174) . 61)
0 - anlar
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f[ae an] 15 —2t,(—1+ L2A)7! || 36/t J
- - X
oldt 9t]]0 T, anlat
30 1 _ an\\> an\’
= - — — —(=14+L%A)"! — —
ﬁ[(ﬁat e war)) +(vaa)
1 2 Ay—1 an g

- (=14 L%A) ﬁgﬁ? dx. (62)
Thus, the sufficient condition for 14 <0is
1

Ja

where we are using the operator norm for ||(—1 + L2A)™!|| defined by

Therefore,

14

=1+ L*A) <1, (63)

N=1+L28) || = sup [[(~1+L*A) "ull ey, U = {u: llullaey = 1} (64)

ucl

Since the eigenvalues of (1 — L2A) are (14 L?|k|?), and the eigenvalues of (1 — L2A)~!
are 1/(1 + L?|k|?), with k = 0 an admissible eigenvalue, it follows as in the discretized
case that ||(—14+L2A)~!|| = 1, and we arrive at the same sufficient condition for V < 0,
namely,

o> 1. (65)

Thus, for periodic boundary conditions, we see that in analogy with the spatially dis-
cretized case, if @ > 1 then there is a radially unbounded Lyapunov functional V such
that V < 0, and with V = 0 only at equilibria of the dynamics.

For Dirichlet or Neumann boundary conditions, we need to assume that the boundary
of Q is C? (so that we have the necessary second-derivative bounds required for cal-
culating the variations of V and V), and we need to use Fourier transform techniques
instead of Fourier series techniques. Similar results are then obtained [24]. '

5. Related Systems

Various systems related to the cubic nonlinearity activator inhibitor system (1) can be
analyzed using the techniques described above. For example, symmetric long-range
coupling can be added to the activator equation of system (1), or the cubic nonlinearity
can be replaced by a bounded nonlinearity [24]. One related system which is interesting
in its own right as well as useful for further exploring the properties of system (1) is the
complex activator-inhibitor equation obtained by taking 6 and 7 in equation (1) to be
complex, and replacing 3 by |8]26. Another interesting system, an active transmission
line, is obtained by using gradient coupling terms instead of (or in addition to) the linear,
zeroth-order coupling terms.
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5.1. Complex Activator-Inhibitor Equation

The complex activator-inhibitor equation is

36
T = I2A0 — 101?60 +6 + 1,
]
r,,a—:l = L*An—n-0+C, (66)

where 6(x, t), n(x, t), and the bifurcation parameter C are complex, while 5, T, 0,and L
are positive real constants. The complex activator-inhibitor equation can be used, under
suitable hypotheses, to model the amplitude and phase evolution in the continuum limit
of a network of coupled van der Pol oscillators (represented by #), coupled to a network
of resonant circuits (represented by 7), with an external oscillating input (represented by
C). The resonant frequencies of the van der Pol oscillators and the resonant circuits are
assumed to be identical, and also equal to the frequency of the external input C.
System (66) can be rewritten as a coupled system of four real equations, which look
like two real activator-inhibitor systems nonlinearly coupled to each other through their
activator equations. As a result, the mathematical analysis for system (1) easily carries
over to system (66) [24]. When « > 1, system (66) possesses a Lyapunov functional

14 —/ lz|ve|2+1|o|4— 1|9|2+L2|v |2+1| |2 — Re{Cn} + Re{@n}
= L2 2 2 2 Va5 n n
-@-O[(-1+L*A)"'6 - 0)] ] dx, (67)

where the overbar denotes complex conjugation. The time derivative of V is then found
to be

30/t 1" [16 0 —2t,(~1+L2A)! 0
v = _ [ |36 0 1 0 —25,(—1+ L*A)™!
o | dnr/dt 0 0 T, 0
any/3t 0 0 0 T,
30g/ot
36,/3t
angldt | 4% (68)
‘amlat

where O, 61, nr, and n; are the real and imaginary parts of 6 and . Whena = 1/, > 1,
we can conclude that V < 0, and V = 0 only at equilibria [2], [24]. Since V is radially
unbounded, it serves as a Lyapunov functional provided o > 1.

The equilibria for the complex activator inhibitor system (66) differ somewhat from
the equilibria of system (1). For example, system (66) does not have the localized spike
equilibria that system (1) has. If |C| is sufficiently large for system (66), a spatially
uniform equilibrium is stable. In the coupled oscillator context, large |C| corresponds
to driving the oscillators with a sufficiently large-amplitude input signal that all of the
oscillators phase-lock to the input signal. If C = 0 (which in the coupled oscillator
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1

-1

Fig. 9. A one-dimensional equilibrium for the com-
plex activator-inhibitor equation having two domain
walls (indicated by w; and w,).

context corresponds to no external input), then an equilibrium consisting of parallel rolls
is stable, and the real and imaginary parts of 6 and  are sinusoidal along the direction
perpendicular to the rolls. In the intermediate case between C = 0 and |C| large, higher
spatial harmonics (besides the fundamental frequency when C = 0) are introduced into
the equilibrium phase pattern.

Just as patterns for system (1) could be irregular, patterns for system (66) need not
be ideal. In particular, domain walls can form between left-handed and right-handed
versions of the same spatially periodic pattern, as illustrated in Figure 9 for a single
space dimension.

The complex activator-inhibitor equation may be of interest in its own right for control
of large arrays of coupled oscillators, with potential applications being quasi-optical
power combining, phased-array antennas, or control of osillatory MEMS actuators [2].
Another key feature of the complex activator-inhibitor equation is that a modal analysis
is straightforward, and the results can be applied to system (1). To perform the modal
analysis, we assume a fundamental wave number corresponding to the wave number
of an ideal pattern solution, and take this as the lowest-order (nonzero) mode in our
modal expansion of the dynamics. We first rescale the dynamics by the fundamental
wave number which we take here to be /T — B/+/IL, since this is the wave number
of the lowest-energy ideal pattern equilibrium when C = O (i.e., lowest energy with
respect to our Lyapunov functional). Next, we obtain the dynamical equations for the
modal coefficients. Then we present a Lyapunov function for any finite number of modes.
Finally, we present a bound on the higher-order modes so that we can justify retaining
only the lower-order modes to obtain a good approximation of the equilibrium of interest.

The rescaled dynamics are

36 3% )
v ﬂ(l—ﬂ)ﬁ—|0|9+0+ﬂ,

an 1-83%
S ="f2 2 _g_6+cC. 69
i p a2 "0t ©9)
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Plugging in the Fourier series expansions

0 = Zekeikx, n= Z nkeikx’ (70)
k k

where because of the rescaling, k takes integer values, gives

%0 = (1 —m*B(1 — B))on

- [lemlzem +2) 16;P6m + ) Oomb}

Jj#m ks#m

+ Z Z 5j9k9m+j—k] + N,
J k#j.m,(m+j)2

1 —
tﬂﬁm = (1 +m Tﬂ) Nm — Om + Cdmo, an

where 8;; = 1for j = k and §;; = 0 otherwise. Let

V= 3 Y0 =m0~ Bl + ZIO 5 231 Pl

m j#m

+Re 2292,{_,,,9,( ]+Re 33> §9ko,,,+j_k§,,.]

m k#m m j#m k#jm,(m+5)2

+ 5 Z<1+m )Inmlz—Re{CnoHZRe{Omnm}

-1
+ Z (1 + mZ%ﬁ) 16 — Cmol?. (72)

Then the function V given above, appropriately truncated, is a radially unbounded Lya-
punov function for the dynamics given by equation (71) for any finite number of modes
(as can be proved by direct differentiation). We find that if o = 75/7, > 1, then V <o,
with V = 0 only for equilibria (for any finite number of modes).

‘We can obtain the following bound for the error in approximating the exact equilibrium
solution 6 with its finite modal approximation Zk__ v Oket**:

N . 1[40 +[CP)
_ § : ikx

k=—N

(73)

for N2 > 2/(B(1 — B)) [24]. Thus, the error in approximating an exact spatially periodic
equilibrium solution 8 of equation (71) using a finite number of modes approaches zero
as the number of modes used becomes large. Furthermore, the smaller 8 is (for 8 < 1/2),
the more terms are needed to achieve a given error tolerance, in accord with what one
would expect, considering S represents the ratio of the two length scales present in the
dynamics.
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Restricting the initial conditions for # and 7 to be purely real gives the corresponding
results for system (1). This is because if we take 6, = 0_rand g = Ny att =0, the
dynamics (71) maintain this condition for all time. Thus, the conclusion that we obtain for
system (1) is that despite the cubic nonlinearity, which results in complicated nonlinear
couplings in the modal equations, by considering the complex version of system (1), we
are nevertheless able to successfully perform the modal analysis.

5.2. Active Transmission Line

The active transmission line is another system that may be of interest in its own right as
well as helping us to better understand system (1). In one spatial dimension, the active
transmission line equation takes the form

30 0% 9
=P———¢+0—C—L(&£>

% ot dx2 ax

an , % 3

M _ 22 (eZ). 74
3t axz 1T \%ax 74)

(The control parameter C appears in the 6 .equation because adding a constant term to
the 1 equation will not influence the 6 dynamics.) The reason for calling this system an
active transmission line is that when only the coupling terms are retained,

a6 an
togt' = _(GL)E’

on a0

- - il 7
T ot (L) ax’ (s)

the system reduces to the wave equation for a transmission line,

8%  ,0%
— = v —,
at? 9x2
3277 282'7
w2 = Ve (76)

where 0 represents voltage, i represents current, 7y represents capacitance per unitlength,
1, represents inductance per unit length, and v = &L/,/TqT, is the speed of traveling
solutions. The additional terms in equation (74) add gain and dissipation.

There are two main circuit motivations for using active transmission lines. First, the
active elements placed along the length of the transmission line could potentially serve
as a simpler and more robust mechanism for overcoming transmission line losses than
discrete repeaters. Second, active transmission lines could be used to alleviate fanout
problems, because the transmission line only needs to be excited at one end, and then
the transmission line itself supplies the power necessary to propagate a pulse along its
length [38]. With passive transmission lines, the source needs to be able to drive enough
current into each transmission line it is connected to in order to send sufficiently large
pulses to the receivers. ;
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Fig. 10. Active transmission-line circuit with inhibitor diffusion and dissipation. The 6, are volt-
ages, the 7, are currents, and the diodes represent tunnel diodes (whose biasing circuitry is not
shown). The resistors in series with the inductors can be thought of as distributed resistance along
the length of the inductors. Parallel resistance associated with the capacitors can be considered to
be absorbed into the tunnel diode model. Series resistances (and the capacitances and inductances)
scale with §, and the parallel resistances scale as 1/5.

The active transmission line circuit shown in Figure 10 is a discrete approximation
to a lossy transmission line, with additional tunnel diodes. The circuit equations for
Figure 10 are

. 12 1
196, = 8—2(9k—1 — 20, +641) — 602 + 6, — C — g('?k — M—1)»

. 1 L? L?
Toe = —M + 3 O + 7(77&—1 — M) = Geg1 — ?(ﬂk — Nk+1)

2 - 1
= 6—2(77k-—1 — 20k + Megt) — Mk — 3(6k+1 — 6. an

In the continuum limit (i.e., taking § — 0), these equations become system (74) with
eL=1.

The connection between systems (1) and (74) has to do with the form of the coupling
terms. In system (1), the coupling terms are +7 and —6, which lead to the indefinite metric
associated with the gradient dynamics. In system (74), the coupling terms —d7/dx and
—36/3x also lead to gradient dynamics with an indefinite metric: The term — [, 6ndx
in equation (12) is replaced by ¢ L fQ 8(dn/dx)dx. The same approach used in Section 4
can then be applied to system (74), and a Lyapunov functional can be found.

Having a Lyapunov functional for an active transmission line system may seem pe-
culiar, since transmission lines are supposed to have traveling solutions, and Lyapunov
functionals indicate that stable states are equilibria. However, the Lyapunov functional
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analysis also gives conditions on the parameters, in this case, @ > &/2, to have a valid
Lyapunov functional [24]. Thus, for certain parameter values, system (74) acts like a
transmission line, and for others, it has a Lyapunov functional.

" The implication for system (1) is that we can add coupling terms like those appearing
in system (74), and still be able to find a Lyapunov functional. For example, we could take

a6
o = ’A0 —6°>+0+n+L(s-Vn),

an
TnE

L*An—n—0+C+ L(e- V8), (78)

for some constant vector €, and use the same technique as in Section 4 to find

4
—(—6+L(e-VO)+C)

2 , 1, 1., L? , 1,
V = —=|VO|" + =6" — -6+ —|Vn|°+ =n"—Cn+6n+ Ll(c - Vn)
el?2 2 2 2

x [(L*A = 1)"Y(=6 + L(e- VO) + C)]] dx. a9

Further analysis reveals that V is a valid Lyapunov functional as long as ||e|| < 1 and
a>1.

Note: In the work of R. S. MacKay, S. Aubry and collaborators (see [39]), the idea of
persistence of spatially localized solutions in networks of coupled (linear disordered or
nonlinear anharmonic) oscillators is placed on a rigorous mathematical footing. While
this is largely a Hamiltonian theory, there are similarities between the limiting cases
of active transmission lines and such networks of oscillators that deserve to be further
explored.

6. Optical Pattern-Forming System Example

To illustrate how the global nonlinear analysis techniques presented above canbe applied
to the design of a system containing large microactuator and sensor arrays, we consider
an optical pattern-forming system example. Optical pattern-forming systems, and even
optical two-component reaction-diffusion equations, have been investigated extensively
[7]. Here we ask how the optical pattern-forming system can be designed to ensure global
nonlinear stability. If successful, we then have a building block which could potentially
be incorporated into a larger control system. The larger control system could be an optical
signal processing system, or it could be a feedback system incorporating optical sensing,
but performing some other physical task.

An essential feature of the optical implementation we consider is nonlinearity arising
from the actuation of optical phase combined with the measurement of optical intensity.
There are various microactuator arrays for light which modulate optical phase, for ex-
ample MEMS piston micromirror arrays [6]. There is also a physical effect in materials,
known as the Kerr effect, by which the index of refraction in the material depends locally
on the incident optical intensity. For a thin slice of such material (called a Kerr slice),
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the phase shift distribution imposed on a light beam by the Kerr slice is related to the
intensity distribution of the beam at the Kerr slice. Although the Kerr effect is too weak
in practical materials to be of much use, a liquid-crystal light valve (LCLV) can imple-
ment the functionality of a Kerr slice in a practical system [7]. LCLV devices for this
purpose consist of a photoconductive layer, glass layers which hold the liquid crystals in
place, and transparent bias electrodes. The optical intensity distribution incident on the
photoconductive layer modulates the conductivity, which in turn changes the bias across
the liquid crystal layer, causing the liquid crystal molecules to reorient. The orientation
of the liquid crystal molecules determines how much phase shift is imposed on the light
(linearly polarized, with appropriate axis of polarization) passing through the device. For
approximating a Kerr slice, LCLV devices currently offer higher resolution than MEMS
devices. (Rather than deal with the details of LCLV devices, we will take the common
approach of analyzing systems with Kerr slices.)

Although actuation of optical phase is straightforward, optical phase cannot be sensed
directly. An interferometer creates an intensity distribution related to a beam’s phase
distribution by coherent superposition with a reference beam. However, the intensity
distribution which results is actually a sinusoidal function of the original phase distribu-
tion. There are also phase-contrast approaches, which yield intensity distributions that
are nonlinear functionals of phase, that do not require a reference beam as the interferom-
eter does. One of these phase-contrast techniques, the differential Zernike filter, provides
a phase-to-intensity mapping that is particularly well-suited to the problem of design for
global nonlinear stability [27], [28]. To keep the analysis as simple as possible, here we
will consider an interferometer for phase measurement.

6.1. Rescaled Dynamics

One feature of equation (1) which plays an intrinsic role in the stability analysis is
the linearity of the cross-coupling terms between the activator equation and inhibitor
equation. For our optical pattern-forming system, it is important to understand how the
global nonlinear analysis might be able to accomodate nonlinearity in this cross-coupling.
Remarkably, it can, but we first need to rescale the dynamics.

A slightly modified version of system (1) is

26
Toor = A6 -6 +6+n+C,

?
r,,a—': = L*An—1n—6 —5C, (80)

where § is a positive constant. All of the qualitative properties and mathematical results
for system (1) also hold for system (80). System (80) can be rescaled into the form

a9
tﬂoa_to = 13A9o - 93 - 1__%00 + 76 +yn.+yCo,

3
t,,o—£—3 = LZAn, — 0o — ¥0, — 1o — yCo, (81)
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c
a0 3 ~ 0
Togy =P80~ ~ 10+
e U,
Tn%=L2An—n~'yu .

Fig. 11. Block diagram of the rescaled activator-inhibitor system with a common feedback signal
driving both the activator and inhibitor equations.

using
1+y 1 J1+y 1
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System (81) can be expressed as a feedback system with a single feedback si gnal driving
both the activator and inhibitor equations:

a6,
Too— ot = leG —93—1—_'_——9 + yu, \

an, .
rnoa—t" = LXAn, — n, — yu,

u = 6,+n, + Co, (83)

where we are thinking of C, as an exogenous input signal. Figure 11 shows a block
diagram of system (83), where we have dropped the “o0” subscripts.

For the implementation shown in Figure 11, there is a single spatially varying feedback
signal u, which also incorporates the exogenous input, and this single feedback signal
drives both the state equation for 6 and the state equation for 7. We can think of u as
being the signal we have access to (for purposes of controlling a microactuator array, for
example), while 6 and 7 need not be directly available.
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c

¢9§9=12Ao—03———1170+7u

sin(-) u

T,,%Z— =L*Anp~n—u

Fig. 12. Block diagram of the (rescaled) activator-inhibitor system with a sinusoidal nonlinearity
in the feedback path.

In Figure 11, the inhibitor equation represents a typical linear model for a Kerr slice,
with optical phase shift represented by n and controlling intensity represented by u [7].
Similarly, except for the 6° term, the activator equation also represents a linear Kerr
slice, the difference being that the dependence of steady-state phase shift on controlling
intensity has the opposite sign of that for the inhibitor Kerr slice. In optics terminology,
the activator Kerr slice consists of “focusing” media, and the inhibitor Kerr slice consists
of “defocusing” media. Because of the > term in the activator equation, we are assuming
a particular nonlinear Kerr response for the activator Kerr slice.

6.2. Feedback Path Nonlinearity

We now introduce the nonlinearity in the feedback path due to the interferometric mea-
surement of phase. We will assume that the intérferometer has been adjusted so that
the intensity can be represented as a purely sinusoidal function of phase (we drop the
spatially uniform additive component of the interferometer intensity distribution, since
it plays no essential role). Figure 12 corresponds to the following dynamics:

a0 14
— =DP2A0-6>— ——0 in(9 0),
by i +ysin@@ +n+C)
37) _ 2 . °
T = L*An—n—ysin@ +n+C), (84)

where 0 < y < 1/2. The relationship between system (84) and system (80) is as
follows: If we assume 8, 77, and C in system (84) are small enough, we can approximate
sin(8 + n + C) by simply (6 + n + C), and we obtain system (81), which differs from
system (80) only by a rescaling. (We have introduced the exogenous input C before
instead of after the nonlinearity, but this choice was arbitrary.)
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We can use the same technique as in Section 4 to find

P la, 1( v 2 L2 2,1,
V = 5|V9| 4+ -6+ | —6 +ycos(0+n+C)+7|Vn| +5n
0 .

4 2\1+y
+2ynsin@ +n+ C) —ysin(@ + n+ C)
x [(L*A = D)7 V(ysin@ +n+ C))]] dx, (85)

which is a valid Lyapunov functional for system (84) provided y < 1/2,and @ = 19/, >
2
YA ~2y).

6.3. Dynamics with Advection

Once we have excited stable localized equilibrium structures in our activator-inhibitor
system, we would like to be able to translate them (for example, to manipulate objects
atop an actuator array). For purposes of illustration, let us temporarily take = 1 so that
we can rescale ¢ to set T = 7, = 1. The simplest modification to system (80) to achieve
translation of the stable localized equilibrium structures is the addition of advective terms
to both the activator and inhibitor dynamics:

36

3 = I’A6 —6*+6+n+C+L(- Vo),

an 2 :
-5;=LAn—n-9—8C+L(s-Vn), (86)

where € is a constant control vector determining the speed and direction of translation.
Then changing to the translating frame of reference

vx,t) = 0(x—¢€Lt,t),

t(x,t) = n(x—elt,t), 87N
we obtain
W 96
= L(e-V0) + 3
% _ . an
e L(e-Vn) + a (88)
and hence
W o PAy— Py tr+C
- AV ¢+e
?a—f = L’At -¢ — ¢ —8C, (89)

which is identical to system (80).
A slightly more complicated systemn with advection is

Y]

5 = PA6-60>+C+O@+n+L(-VO)+L-Vn),

)

A L2An—8C+(—6 —n+L(e-V8) + L(- Vn)), (90)

ot
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Fig. 13. Block diagram of the (rescaled) activator-inhibitor system with spatially shifted feedback.

where we have grouped together the terms associated with cross-coupling between the
two equations. If we again change to the translating frame of reference given by equation
(87), we obtain

W - PAY WYL HCHLE VD),
aC—LzA 8C+LE-V 91
> = (=t —¢—-8C+L(-VY), 91)

and this system is identical to system (78), except for the control parameter entering in
a slightly different way. Therefore, system (91) has the same basic behavior as system
(80) for |||| sufficiently small (i.e., a Lyapunov functional exists).

System (90) arises by spatially translating the feedback terms and then using a Taylor-
series approximation. The system with translated feedback is

06
&0 = PAO(X, 1) — (0(x,1))> + C+0(x+€eL,t) + n(x+€L,1),

%:l(x; t) = L*An(x,t) —8C —(x—eL,t) —n(x—eL,1), 92)

which for small ||¢]|| is approximately system (90). Physically, system (92) corresponds
to spatially shifting the feedback signal slightly in one direction for the 6 dynamics, and
the same amount in the opposite direction for the n dynamics. Figure 13 illustrates the
spatially shifted feedback, and corresponds to the system

36
o = ’A0—6° - &;9 +v0+yn+yC+yL(e-V8) +yL(e- Vn),
o7

iy = LAn—n—y6—yn—yC+yLle-V6) +yL(e-Vn), (93)
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where we have assumed that C is constant. System (93) can be rescaled into the form

36 1
‘L'g-é7 = 12A6—93+9+77+—%L(5~V0)+L(6-V?})+C,
0~ LAn—n—6+Le-V8) + —Y—L(e . Vi) 5C. (94)
" at 14y

We can change to the translating frame of reference and obtain a system corresponding
to (91), provided

2
_fg_(1+y)/y_<1+y> . 95)

a = = =
T, yI(+y) 14

7. Summary and Conclusions

We have examined an activator-inhibitor equation with a cubic nonlinearity as a model
pattern-forming system for control of large actuator arrays. We have described in broad
terms how pattern-forming systems could be used to control large actuator arrays through
interconnection templates and a control parameter which stresses the interconnections
(leading to the crossing of stability thresholds). We have shown that there are some
interesting mathematical results that can be derived for the activator-inhibitor system,
and that the results generalize to two other systems, the complex activator-inhibitor
equation and the active transmission line. We have also described a general approach
for optical implemention of the activator-inhibitor equations, and have shown that in
spite of the intrinsic nonlinearities that arise in optics, the global nonlinear convergence
behavior can still hold.

In addition to the generalizations of the cubic nonlinearity activator-inhibitor equation
we have presented, it should be noted that the results can also be extended to higher-
order nonlinearities in the activator equation. The higher-order Lyapunov functional is
straightforward to write down; however, the modal equations presented in Section 5.1 will
become much more complicated. Spatially varying coefficients (subject to appropriate
bounds) in equation (1) can also be accommodated by the Lyapunov functional analysis,
which is important for analog implementations subject to component nonuniformities.

It is only now becoming technologically feasible to construct arrays of sensors and
actuators which are so large that centralized processing is infeasible. Pattern-forming
systems are a natural approach for easing the demands on a centralized processor. While
there has been extensive theoretical and experimental work on pattern-forming systems
that arise in physics, chemistry, and biology, such systems have not yet been exploited
in control of engineering systems.

This work illustrates that even though pattern-forming systems are coupled systems of
nonlinear PDEs, in some cases it is still possible to obtain the types of mathematical re-
sults that can ensure global convergence. Furthermore, these systems are still rich enough
to provide an interesting family of stable (or metastable) states, including spikes, walls,
symmetric patterns, and disordered patterns. As actuator array technology improves and
array sizes increase, control issues will need to be considered as an integral part of the
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actuator array design. The convergence results presented here should be thought of as a
possible starting point for this design process.

Appendix: Proof of Theorem 3

The proof of Theorem 3 is essentially the same as the proof of a similar theorem given
in [34], [35]. We include the proof because it does not appear to be widely known within
the controls community. For example, although the result is mentioned as a footnote in
[40], no reference to a proof is given.

Proof.. Let L denote the positive limit set of v(z). Since v(¢) € T, a compact set, Vt >
0, we have that L* is a nonempty, compact, invariant set [33]. Therefore, 3v* € L*, and
a sequence {t,}, such that lim,_, , v(¢,) = v*. Furthermore, since J is positive definite,
V = 0if and only if f(v) = 0, so from Theorem 1 it follows that V(v(t)) > V(v*),
vVt > 0. Now we apply the Lojasiewicz lemma: at v*, 3U C X and u € (0, 1) such that

V@) = V(@*)H* < |IVV ()|, Yvel. (96)

Choose r such that B3, (v*) C U (where Bs, (v*) denotes the ball of radius 3r centered
at v*). Since v* € L% and V is continuous, 3¢; > 0 such that v(#;) € B,(v*), and

(V@) = V)™ < 1 -y, )

For v € B3, (v*) C U,

vV -1 -V
vyl < < ( )

i VI = minal Do \9V]

e (wor=ve)
= minA(J)gym \(V(V) = V(v*))*
I T
T min A gym

-1 d *yy 1
(1 — M) E(V(v) - V)T, (98)

wheremin A(J ‘1),,,,,, denotes the smallest eigenvalue of the symmetric paft of J=! (which
is positive, because J is positive definite). Now suppose v(¢) does not stay in Bs,(v*),
Vt > t;. Then 3¢, such that

3r < v(®) — v < (@) —v@)| + u() — v S @) —vi)l +r (99)

and so

2 dy

2| dv
ju(t) — vt} = ./t: d—;dt < ‘/t: Tz

1\ [ d ol
< ( )/ (Vo) - Vo ) ™ dr

l—l‘l' ]

2r

1A

dt
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: *))1-p *\y 1=
= 1—p [(V(v(tl)) -V@eY) - (V(v(t)) — V(v*) ]

1
= 7, (Vo) - 4 (100)
—u

However, equation (100) contradicts equation (97), and therefore v(t) € B3, (v*), V¢t >
t;. Finally, from equation (100) we see that

[
h

so the trajectory v(t) has finite Euclidean length. Therefore, lim, o, v(t) = v* [34],
[35], [36]. O

dv

dr < ;(V(v(tl)) - V) < o0, (13}
dt 1—pu
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