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Abstract. This paper is concerned with the problem of motion generation via cyclic
variations in selected degrees of freedom (usually referred to as shape variables) in
mechanical systems subject to non-holonomic constraints (here the classical system
of a disc rolling without sliding on a ¯at surface). In earlier work, we identi®ed an
interesting class of such problems arising in the setting of Lie groups, and investi-
gated these under a hypothesis on constraints, that naturally led to a purely kine-
matic approach. In the present work, the hypothesis on constraints does not hold,
and as a consequence, it is necessary to take into account certain dynamical phenom-
ena. Speci®cally we concern ourselves with the group SE…2† of rigid motions in the
plane and a concrete mechanical realization dubbed the 2-node, 1-module SE…2†-
snake. In a restricted version, it is also known as the Roller Racer (a patented ride/
toy). Based on the work of Bloch, Krishnaprasad, Marsden and Murray, one recog-
nizes in the example of this paper a balance law called the momentum equation,
which is a direct consequence of the interaction of the SE…2†-symmetry of the prob-
lem with the constraints. The systematic use of this type of balance law results in
certain structures in the example of this paper. We exploit these structures to demon-
strate that the single shape freedom in this problem can be cyclically varied to
produce a rich variety of motions of the SE…2†-snake. In their study of the snake-
board, a patented modi®cation of the skateboard that also admits the group SE…2†
as a symmetry group, Lewis, Ostrowski, Burdick and Murray exploited the same
type of balance law as that discussed here to generate motions. A key di� erence,
however, is that, in the present paper, we have only one control variable and thus
controllability considerations become somewhat more delicate. In the present paper,
we give a self-contained treatment of the geometry, mechanics and motion control of
the Roller Racer.
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1. Introduction
The idea of using periodic driving signals to produce recti®ed movement appears in a
number of settings in engineering. Some of the more inventive examples are associ-
ated with the design and operation of novel actuators exploiting vibratory transduc-
tion (Ueha and Tomikawa 1993, Venkataraman et al. 1995). Brockett (1989)
develops a mathematical basis for understanding such devices. Elsewhere, in the
context of robotic machines with many degrees of freedom designed to mimic
snake-like movements (Hirose 1993), periodic variations in the shape parameters
are used in an essential way to generate global movements. In Krishnaprasad and
Tsakiris (1994a, b), we have developed a general mathematical formulation to study
systems of this type. The study of periodic signal generators (also called central
pattern generators), as sources of timing signals to compose movements has a
long history in the neurophysiology of movement dating back to the early work of
Sherrington, Brown and Bernstein.

Recent studies by neurophysiologists (Carling et al. 1994) have attempted to bring
together principles of motion control based on pattern generation in the spinal cord
of the `lamprey’, its compliant body dynamics, and the ¯uid dynamics of its envir-
onment to achieve a comprehensive understanding of the swimming behaviour of
such anguilliform animals. These e� orts have in part relied on continuum mechan-
ical models of the body, and computational ¯uid dynamical calculations. There
appear to be some unifying themes that underlie this type of neural-mechanical
approach to biological locomotion, and the work of the authors and others involving
the study of land-based robotic machines subject to the constraint of `no sliding’. As
pointed out in Krishnaprasad (1995), the connecting links between these two streams
of research appear to be related to the manner in which systems of coupled oscilla-
tors are used to generate ®nite-dimensional shape variations of the bodies of specia-
lized robot designs, and the associated geometric±mechanical descriptions of the
constraints to produce e� ective motion control strategies (see also the work of
Collins and Stewart (1993) for another dynamical systems perspective).

In the present paper, we report on a complete study of an interesting example, the
(single module) SE…2†-snake, with a view towards deeper appreciation of the above-
mentioned connections. In section 2, we present the basic geometry of the con®g-
uration space, and the applicable constraints. We also discuss a simpli®cation that
reduces the shape freedom to one variable, leading to the Roller Racer. The con-
straints of `no sliding’ are `insu� cient’ to determine the movement of the Roller
Racer from shape variations alone. In sections 3 and 4, a model Lagrangian and the
action of SE…2†, the rigid motion group in the plane as a symmetry group (of the
Lagrangian and the constraints) are discussed. A balance law associated to the
SE…2†-symmetry, the momentum equation, is derived, which is a consequence of
the Lagrange±d’Alembert principle (the basic results behind momentum equations
are to be found in Bloch et al. (1996)). This momentum equation is the key addi-
tional data that, together with the constraints, allows us to generate motion control
laws. In section 5, we consider controllability and motion control issues.

G-snakes are kinematic chains with con®gurations taking values in products of
several copies of a Lie group G; and subject to non-holonomic constraints
(Krishnaprasad and Tsakiris 1994a, Tsakiris 1995). The group G acts on the chain
by diagonal action as a symmetry group. The shape space is the quotient by this
action. Figure 1 illustrates an SE…2†-snake composed of two modules and three
nodes, where the con®guration space Q is SE…2† SE…2† SE…2†:
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The machine in ®gure 1 is composed of three axles and linearly actuated linkages

connecting each adjacent pair of axles, resulting in an assembly of two identical
modules. Altering the lengths of the connecting linkages leads to changes in the
shapes of component modules. The wheels mounted on each axle are independent
and are `not’ actuated, but subject to the constraint of `no sliding’. In this case there
are three constraints, the shape space S is SE…2† SE…2†, the constraints de®ne a
principal connection on the bundle …Q; SE…2†; S†, away from a set of non-holonomic

singularities, and it is possible to generate global movement of the assembly by
periodic variations in the module shapes. The entire situation can be understood
at a kinematic level as long as the shapes are control variables (Krishnaprasad and
Tsakiris 1994a, b, Tsakiris 1995).

When one of the modules is removed from the machine in ®gure 1, leaving us with
two axles connected by linkages and two non-holonomic constraints, the resulting
problem is kinematically under-constrained. It is no longer possible to de®ne a

connection without using additional information. It is this type of 1-module
SE…2†-snake that is of interest here. Matters can be simpli®ed by limiting the
extent of shape freedom. In 1972, W. E. Hendricks was awarded US patent
No: 3; 663; 038 for a toy illustrated in ®gure 2 and dubbed the Roller Racer, that
serves as one such simpli®cation. The rider, on the seat shown, has to merely oscillate
the handlebars from side to side to generate forward propulsion, a behaviour for
which Hendricks did not claim to have an explanation.

The model of ®gure 3 will be used in our analysis. Two planar platforms with
centres of mass (c.o.m.’s) located at points O1 and O2 are connected with a rotary
joint at O1;2: A pair of idler wheels is attached on each of the platforms, with the axis
of the wheels perpendicular to the line connecting the c.o.m. with the joint. A
coordinate frame centred at the c.o.m. and with its x-axis along the line OiO1;2 for
i ˆ 1; 2 connecting the c.o.m. with the joint, will be used to describe the con®gura-
tion of each platform with respect to a global coordinate system at some reference

point O: For simplicity, it will be assumed that the axis of the wheels passes through
the c.o.m. of each platform.
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The e� ects of the rider’s body motion will be ignored at ®rst approximation.

Experiments with the Roller Racer and our analysis below, show that, even
though these body motions may amplify the resulting motion of the system, the

fundamental means of its propulsion is the pivoting of the steering arm around
the joint axis and the non-holonomic constraints coming from the wheels’ rolling-

without-slipping on the plane supporting the vehicle. In this respect, this system is

very di� erent from the snakeboard, a variation of the skateboard, where the motion
of the rider is essential for the propulsion of the system (Lewis et al. 1994). Riderless

prototypes of the Roller Racer built at the Intelligent Servosystems Laboratory (ISL)
veri®ed this. The propulsion and steering mechanism in these vehicles comes from a

rotary motor at the joint O1;2; whose torque can be considered as the control of our
system. As discussed in Krishnaprasad and Tsakiris (1994b), the purely kinematic

analysis of such a system does not allow us to determine the global motion of the
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Figure 2. The Roller Racer.

Figure 3. The Roller Racer model.



system by just the shape variations (the joint velocity in this case), since (unlike the 2-
module case) it does not possess a su� cient number of non-holonomic constraints
for this to happen. Our goal here is to complement this kinematic analysis with the
dynamics of the system, which will provide the necessary information. Thus, certain
fundamental behaviours of the system (`straight-line’ motion, `turning’ motion)
can be achieved by proper oscillatory relative motions of the two platforms. In
both numerical simulations and experiments with prototypes, we observed such
behaviours, as described in section 6.

In order to study the dynamics of this system, an alternative to the usual approach
of solving the full Lagrange±d’Alembert equations of motion of the system is con-
sidered here. In Bloch et al. (1996), the notion of the momentum map is examined for
systems with non-holonomic constraints and symmetries and its evolution law, the
momentum equation, is derived from the Lagrange±d’Alembert equations. By apply-
ing this method to the problem at hand, a useful decomposition of the equations of
motion is obtained: given a shape-space trajectory (which corresponds to the con-
trols of our system), ®rst we compute the non-holonomic momentum from the
momentum equation. This involves only the solution of a linear ordinary di� erential
equation (ODE). Subsequently, we use the momentum to reconstruct the group
trajectory, which corresponds to the global motion of the system. The corresponding
velocities depend linearly on the momentum. This process is very useful for the
derivation of motion control laws for this system and can be extended to 1-
module SE…2†-snakes with more general shape-changing mechanisms.

2. Kinematics of the Roller Racer
Consider a left-invariant dynamical system on a matrix Lie group G with an n-
dimensional Lie algebra G and a curve g… † » G. Then, there exists a curve

¹… † » G such that

_gg ˆ g¹: …1†

Let fAi; i ˆ 1; . . . ; ng be a basis of G and let [ , ] be the usual Lie bracket on G
de®ned by ‰Ai; AjŠ ˆ AiAj ¡ AjAi. Then, there exist constants ¡k

i;j, called `structure
constants’, such that

‰Ai; AjŠ ˆ
Xn

kˆ1

¡k
i;jAk; i; j ˆ 1; . . . ; n: …2†

Let G be the dual space of G, that is the space of linear functions from G to . Let
fA[

i ; i ˆ 1; . . . ; ng be the basis of G such that

A[
i …Aj† ˆ ¯j

i ; i; j ˆ 1; . . . ; n; …3†

where ¯j
i is the Kronecker symbol. Then the curve ¹… † » G can be represented as

¹ ˆ
Xn

iˆ1

¹iAi ˆ
Xn

iˆ1

A[
i …¹†Ai; …4†

for ¹i
def
ˆ A[

i …¹† 2 ; i ˆ 1; . . . ; n.
Let now the Lie group G be SE(2), the Special Euclidean group of rigid motions

on the plane, and G be se(2), the corresponding Lie algebra, with the basis
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A1 ˆ

0 ¡1 0

1 0 0

0 0 0

0

BB@

1

CCA; A2 ˆ

0 0 1

0 0 0

0 0 0

0

BB@

1

CCA; A3 ˆ

0 0 0

0 0 1

0 0 0

0

BB@

1

CCA …5†

Observe that

‰A1; A2Š ˆ A3; ‰A1; A3Š ˆ ¡A2; ‰A2; A3Š ˆ 0: …6†

From equation (4), an element ¹ 2 G is represented as

¹ ˆ
X3

iˆ1

¹iAi ˆ
0 ¡¹1 ¹2

¹1 0 ¹3

0 0 0

0

B@

1

CA: …7†

The homogeneous matrix representation of an element g 2 SE…2† with coordinates
…x; y; ³† is

g ˆ
cos ¿ ¡ sin ¿ x

sin ¿ cos ¿ y

0 0 1

0

B@

1

CA: …8†

From equations (1), (7) and (8), we get

¹1 ˆ _¿¿; ¹2 ˆ _xx cos ¿ ‡ _yy sin ¿; ¹3 ˆ ¡ _xx sin ¿ ‡ _yy cos ¿: …9†

Let

gi ˆ
cos ³i ¡ sin ³i xi

sin ³i cos ³i yi

0 0 1

0

B@

1

CA 2 SE…2†; for i ˆ 1; 2;

be the con®guration of platform i with respect to the global coordinate frame at O,
where xi, yi and ³i are indicated in ®gure 3. Let

g1;2 ˆ
cos ³1;2 ¡ sin ³1;2 x1;2

sin ³1;2 cos ³1;2 y1;2

0 0 1

0

B@

1

CA 2 SE…2†

be the con®guration of platform 2 with respect to the coordinate frame of platform 1
at O1. Because of the special structure of the joint, we have

x1;2 ˆ d1 ‡ d2 cos ³1;2; y1;2 ˆ d2 sin ³1;2; …10†

where ³1;2 is the relative angle of the two platforms and di is the distance of Oi from
the joint O1;2, as indicated in ®gure 3. We consider non-negative d1 and d2. In fact,
we assume d1 > 0. However, we allow for the case d2 ˆ 0 and we examine it in detail.

Since the platforms form a kinetmatic chain, we have

g2 ˆ g1g1;2; …11†

thus
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³2 ˆ ³1 ‡ ³1;2;

x2 ˆ x1 ‡ x1;2 cos ³1 ¡ y1;2 sin ³1 ˆ x1 ‡ d1 cos ³1 ‡ d2 cos ³2;

y2 ˆ y1 ‡ x1;2 sin ³1 ‡ y1;2 cos ³1 ˆ y1 ‡ d1 sin ³1 ‡ d2 sin ³2: …12†

The system kinematics are a special case of the n-module SE(2)-snake (n-VGT)
assembly (Krishnaprasad and Tsakiris 1994b, Tsakiris 1995), that is for

¹i ˆ

0 ¡¹i
1 ¹i

2

¹i
1 0 ¹i

3

0 0 0

0

BBB@

1

CCCA 2 G ˆ se…2†

we have

_ggi ˆ gi¹i; i ˆ 1; 2 …13†

and

_gg1;2 ˆ g1;2¹1;2; …14†

where

¹1;2 ˆ

0 ¡¹1;2
1 ¹1;2

2

¹1;2
1 0 ¹1;2

3

0 0 0

0

BB@

1

CCA ˆ _³³1;2

0 ¡1 0

1 0 d2

0 0 0

0

BB@

1

CCA:

By di� erentiating (12), we get

_³³2 ˆ _³³1 ‡ _³³1;2;

_xx2 ˆ _xx1 ˆ _³³1‰d1 sin ³1 ‡ d2 sin…³1 ‡ ³1;2†Š ¡ _³³1;2d2 sin…³1 ‡ ³1;2†;

_yy2 ˆ _yy1 ‡ _³³1‰d1 cos ³1 ‡ d2 cos…³1 ‡ ³1;2†Š ‡ _³³1;2d2 cos…³1 ‡ ³1;2†: …15†

From (12) we see that the con®guration space for the Roller Racer system is
Q ˆ SE…2† S1. Its shape space is S ˆ S1. then, Q ˆ G S.

Consider the bases fA1; A2; A3g for G ˆ se…2† (given by (5)) and fA[
1; A[

2; A[
3g for

its dual space G . The `non-holonomic constraints’ on the wheels of the two plat-
forms can be expressed as

¹1 ˆ A[
3…¹1† ˆ ¡ _xx1 sin ³1 ‡ _yy1 cos ³1 ˆ 0; …16†

¹2
3 ˆ A[

3…¹2† ˆ ¡ _xx2 sin ³2 ‡ _yy2 cos ³2 ˆ 0: …17†

From (15) and (17), we get

¹2
3 ˆ A[

3…¹2† ˆ ¡ _xx1 sin…³1 ‡ ³1;2† ‡ _yy1 cos…³1 ‡ ³1;2† ‡ _³³1…d1 cos ³1;2 ‡ d2† ‡ _³³1;2d2 ˆ 0:

…18†

Observe that for d2 ˆ 0, neither one of the constraints (16) and (18) involves _³³1;2.
From (16) and (18) we get

353Oscillations, SE(2)-snakes and motion control



¹2
3 ˆ A[

3…¹2† ˆ ¡… _xx1 cos ³1 ‡ _yy1 sin ³1† sin ³1;2 ‡ …d1 cos ³1;2 ‡ d2† _³³1 ‡ d2
_³³1;2 ˆ 0:

…19†

It can be easily seen that the non-holonomic constraints (16) and (18) are linearly
independent for all q 2 Q. The `constraint one-forms’ can be de®ned as

!1
q ˆ ¡ sin ³1dx1 ‡ cos ³1dy1;

!2
q ˆ ¡ sin…³1 ‡ ³1;2† dx1 ‡ cos…³1 ‡ ³1;2† dy1 ‡ …d1 cos ³1;2 ‡ d2† d³1 ‡ d2 d³1;2: …20†

The `constraint distribution’ Dq is the subspace of TqQ which is the intersection of
the kernels of the constraint one-forms, i.e.

Dq ˆ Ker !1
q \ Ker !2

q: …21†

Since the constraints are linearly independent, we know that Dq is always two-
dimensional. A basis for Dq is given by

Dq ˆ spf¹1
Q; ¹2

Qg; …22†

where in the case d2 6ˆ 0:

¹1
Q ˆ d2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ sin ³1;2
@

@³1;2

;

¹2
Q ˆ d2

@

@³1

¡ …d1 cos ³1;2 ‡ d2† @

@³1;2

; …23†

while in the case d2 ˆ 0:

¹1
Q ˆ d1 cos ³1;2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ sin ³1;2
@

@³1

;

¹2
Q ˆ @

@³1;2

: …24†

(Reader: do not confuse ¹i
Q here with in®nitesimal generators of group actions.)

In order to model friction in the bearings of the Roller Racer wheels, the relation-
ship between the wheel angular velocities and the con®guration velocities is needed.
For each platform i, i ˆ 1; 2, let ¿l;i and ¿r;i be the angle of its left and right wheel
with respect to some reference position of the wheel. The relationship of the angular
velocities _¿¿l;i, _¿¿r;i, i ˆ 1; 2, of the left and right wheel of platform i with the con®g-
uration velocities _qq ˆ … _xx1; _yy1; _³³1; _³³1;2†T of the system, is as follows:

_¿¿l;1 ˆ 1

R1

¡ L1

2
_³³1 ‡ _xx1 cos ³1 ‡ _yy1 sin ³1

µ ¶
;

_¿¿r;1 ˆ
1

R1

L1

2
_³³1 ‡ _xx1 cos ³1 ‡ _yy1 sin ³1

µ ¶
;

_¿¿l;2 ˆ 1

R2

¡ L2

2
… _³³1 ‡ _³³1;2† ‡ … _xx1 cos ³1 ‡ _yy1 sin ³1† cos ³1;2 ‡ _³³1d1 sin ³1;2

µ ¶
;

_¿¿r;2 ˆ 1

R2

L2

2
… _³³1 ‡ _³³1;2† ‡ … _xx1 cos ³1 ‡ _yy1 sin ³1† cos ³1;2 ‡ _³³1d1 sin ³1;2

µ ¶
; …25†
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where Ri and Li are respectively the wheel radius and the length of the wheel axis of
platform i.

3. Symmetry of the Roller Racer
Consider now the e� ect of symmetries on this system. We ®rst present some material
on actions of Lie groups, which is based on Marsden and Ratiu (1994).

Let Q be a smooth manifold. A (left) `action’ of a Lie group G on Q is a
smooth mapping © : G Q ! Q, such that, for all q 2 Q, ©…e; x† ˆ x and, for
every g; h 2 G, ©…g; ©…h; q†† ˆ ©…gh; q†. For every g 2 G, de®ne ©g : Q ! Q :
q ! ©…g; q†. This can be shown to be a di� eomorphism (i.e. one-to-one, onto and
both ©g and …©g†¡1 are smooth).

For q 2 Q, the `orbit’ (or ©-orbit) of q is Orb(q)def
ˆ f©g…q†jg 2 Gg. An action © is

`free’ if, for each q 2 Q, g 7! ©g…q† is one-to-one, that is the identity e is the only
element of G with a ®xed point. An action © is `proper’ if and only if the map
~©© : G Q ! Q Q : …g; q† 7! ~©©…g; q† ˆ …q; ©…g; q†† is proper, that is if the set
K » Q Q is compact, then its inverse image ~©©¡1…K† is also compact.

Let © : G Q ! Q be a smooth action and let G be the Lie algebra of G. If ¹ 2 G,
then ©¹ : Q ! Q : …t; q† 7! …exp t¹; q† is an -action on Q, that is, it is a ¯ow on
Q. The corresponding vector ®eld on Q is called the `in®nitesimal generator’ of ©
corresponding to ¹, is denoted by ¹Q…q† and is given by

¹Q…q† ˆ
d

dt
©…exp t¹; q†jtˆ0: …26†

The tangent space to the orbit Orb(q) of q is then

TqOrb…q† ˆ f¹Q…q†j¹ 2 Gg: …27†

Consider the action © of the group G ˆ SE…2† on the con®guration space
Q ˆ SE…2† S1 of the Roller Racer de®ned by

© : G Q ! Q

…g; …g1; ³1;2††7!…gg1; ³1;2†
……x; y; ³†; …x1; y1; ³1; ³1;2††7!

…x1 cos ³ ¡ y1 sin ³ ‡ x; x1 sin ³ ‡ y1 cos ³ ‡ y; ³1 ‡ ³; ³1;2†; …28†

where g ˆ g…x; y; ³† 2 G. The tangent space at q 2 Q to the orbit of © is given by

T1 Orb…q† ˆ sp
@

@x1

;
@

@y1

;
@

@³1

» ¼
: …29†

Notice that the sum of the subspaces Dq and Tq Orb…q† gives the entire TqQ :

Dq ‡ Tq Orb…q† ˆ TqQ: …30†

In Bloch et al. (1996), this is referred to as the `principal’ case. Our goal is to show
that the non-holonomic constraints, together with a momentum equation, can spe-
cify a connection on the principal ®bre bundle Q ! Q=G.

An important observation, that we prove below, is that the intersection Sq of Dq

and Tq Orb…q† is `non-trivial’ . Contrast this with the …n ¡ 1†-module G-snake with
dim G ˆ n, where TqQ ˆ Dq Tq Orb…q†, thus the intersection of Dq and Tq Orb…q†
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is trivial (Krishnaprasad and Tsakiris 1994a, Tsakiris 1995); this is referred to as the
`purely kinematic’ case. We specify a basis for Sq as follows.

Proposition 1. Consider the intersection

Sq ˆdefDq \ Tq Orb…q†: …31†

In the case of d1 6ˆ d2, the distribution Sq is one-dimensiona l and is given by

Sq ˆ spf¹q
Qg; …32†

where

¹q
Q ˆ …d1 cos ³1;2 ‡ d2† cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ sin ³1;2

@

@³1

: …33†

Proof. Consider Xq 2 Sq. Since Xq 2 Dq, we have Xq ˆ u1¹1
Q ‡ u2¹

2
Q; for some

ui 2 . Since Xq 2 Tq Orb…q†, we have

Xq ˆ v1

@

@x1

‡ v2

@

@y1

‡ v3

@

@³1

;

for some vi 2 R. In order for Xq to lie in the intersection of the two spaces, we should
have

u1¹1
Q ‡ u2¹2

Q ˆ v1

@

@x1

‡ v2

@

@y1

‡ v3

@

@³1

: …34†

(i) In the case d2 6ˆ 0, we have from (23):

d2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ sin ³1;2
@

@³1;2

µ ¶
u1

‡ d2

@

@³1

¡ …d1 cos ³1;2 ‡ d2† @

@³1;2

µ ¶
u2 ˆ v1

@

@x1

‡ v2

@

@y1

‡ v3

@

@³1

: …35†

This corresponds to a system of four equations:

d2 cos ³1 0 ¡1 0 0

d2 sin ³1 0 0 ¡1 0

0 d2 0 0 ¡1

sin ³1;2 ¡…d1 cos ³1;2 ‡ d2† 0 0 0

0

BBBBB@

1

CCCCCA

u1

u2

v1

v2

v3

0

BBBBBBBB@

1

CCCCCCCCA

ˆ

0

0

0

0

0

BBBBB@

1

CCCCCA
:

When d1 6ˆ d2, the 4 5 matrix above is always of maximal rank, thus
dim Sq ˆ 5 ¡ 4 ˆ 1, for all q 2 Q. Pick u1 ˆ …d1 cos ³1;2 ‡ d2†u5 and u2 ˆ
sin ³1;2u5. Then v1 ˆ d2 cos ³1…d1 cos ³1;2 ‡ d2†u5, v2 ˆ d2 sin ³1…d1 cos ³1;2‡
d2†u5 and v3 ˆ d2 sin ³1;2u5. Thus

Xq ˆ …d1 cos ³1;2 ‡ d2† cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ sin ³1;2

@

@³1

µ ¶
d2u5;

for aribrary u5. Observe that when d1 6ˆ d2, the vector ®eld Xq is non-trivial for
all q 2 Q.

(ii) In the case d2 ˆ 0, we have from (24):
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d1 cos ³1;2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ sin ³1;2
@

@³1

µ ¶
u1 ‡ u2

@

@³1;2

ˆ v1

@

@x1

‡ v2

@

@y1

‡ v3

@

@³1

:

From this, we get

u2 ˆ 0; v1 ˆ d1 cos ³1;2 cos ³1u1; v2 ˆ d1 cos ³1;2 sin ³1u1; v3 ˆ sin ³1;2u1: …36†

Therefore

Xq ˆ d1 cos ³1;2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ sin ³1;2
@

@³1

µ ¶
u1;

for arbitrary u1. Thus, Sq is again a one-dimensional distribution.
The two cases can be uni®ed in the expression (33). &

The in®nitesimal generators for the action © of SE…2† on Q de®ned in (28),
corresponding to the basis elements of G ˆ se…2† de®ned in (5), at the point q 2 Q,
are

Aq
1Q ˆ ¡y1

@

@x1

‡ x1

@

@y1

‡ @

@³1

; Aq
2Q ˆ @

@x1

; Aq
3Q ˆ @

@y1

: …37†

The in®nitesimal generator corresponding to ¹q ˆ ¹1A1 ‡ ¹2A2 ‡ ¹3A3 2 G is

¹
q
Q ˆ …¹2 ¡ y1¹1†

@

@x1

‡ …¹3 ‡ x1¹1†
@

@y1

‡ ¹1

@

@³1

: …38†

A given vector ®eld

¹q
Q ˆ v1

@

@x1

‡ v2

@

@y1

‡ v3

@

@³1

can be considered as the in®nitesimal generator of an element ¹q 2 G ˆ se…2†, under
the action ©. This element ¹q is

¹q ˆ v3A1 ‡ …v1 ‡ y1v3†A2 ‡ …v2 ¡ x1v3†A3: …39†

The vector ®eld ¹
q
Q in (33) corresponds then to the following element ¹q of se…2†:

¹q ˆ sin ³1;2A1 ‡ ‰…d1 cos ³1;2 ‡ d2† cos ³1 ‡ y1 sin ³1;2ŠA2

‡ ‰…d1 cos ³1;2 ‡ d2† sin ³1 ¡ x1 sin ³1;2ŠA3: …40†

By di� erentiating (40), we get

d¹q

dt
ˆ cos ³1;2

_³³1;2A1 ‡ ‰¡d1 sin ³1;2 cos ³1
_³³1;2 ¡ …d1 cos ³1;2 ‡ d2† sin ³1

_³³1

‡ _yy1 sin ³1;2 ‡ y1 cos ³1;2
_³³1;2ŠA2 ‡ ‰¡d1 sin ³1;2 sin ³1

_³³1;2

‡ …d1 cos ³1;2 ‡ d2† cos ³1
_³³1 ¡ _xx1 sin ³1;2 ¡ x1 cos ³1;2

_³³1;2ŠA3: …41†

The corresponding in®nitesimal generator is given by (38) as
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d¹q

dt

µ ¶

Q

ˆ ‰¡d1 sin ³1;2 cos ³1
_³³1;2 ¡ …d1 cos ³1;2 ‡ d2† sin ³1

_³³1 ‡ _yy1 sin ³1;2Š @

@x1

‡ ‰¡d1 sin ³1;2 sin ³1
_³³1;2 ‡ …d1 cos ³1;2 ‡ d2† cos ³1

_³³1 ¡ _xx1 sin ³1;2Š @

@y1

‡ cos ³1;2
_³³1;2

@

@³1

: …42†

Finally, by di� erentiating ¹q
Q in (33), we get

d¹
q
Q

dt
ˆ ‰¡d1 sin ³1;2 cos ³1

_³³1;2 ¡ …d1 cos ³1;2 ‡ d2† sin ³1
_³³1Š

@

@x1

‡ ‰¡d1 sin ³1;2 sin ³1
_³³1;2 ‡ …d1 cos ³1;2 ‡ d2† cos ³1

_³³1Š @

@y1

‡ cos ³1;2
_³³1;2

@

@³1

: …43†

4. Dynamics of the Roller Racer
4.1. The Lagrange±d’Alembert equations of motion
The Lagrangian dynamics of the Roller Racer are set up under the assumption that
the mass and linear momentum of platform 2 are much smaller than those of plat-
form 1 and can be ignored. However, the inertia of platform 2 is not ignored. Thus,
we consider the following Lagrangian:

L…q; _qq† ˆ 1
2
m1… _xx2

1 ‡ _yy2
1† ‡ 1

2
Iz1

_³³
2

1 ‡ 1
2
Iz2

… _³³1 ‡ _³³1;2†2; …44†

for q ˆ …x1; y1; ³1; ³1;2† 2 Q and _qq ˆ … _xx1; _yy1; _³³1; _³³1;2† 2 TqQ; where mi and Izi
are re-

spectively the mass and moment of inertia of platform i: From (44), we get by
di� erentiation

@L

@ _qq
ˆ

m1 _xx1

m1 _yy1

…Iz1
‡ Iz2

† _³³1 ‡ Iz2

_³³1;2

Iz2

_³³1 ‡ Iz2

_³³1;2

0

BBBBB@

1

CCCCCA
: …45†

The equations of motion of the Roller Racer are derived using the `Lagrange±
d’Alembert principle’ for a system with non-holonomic constraints (Vershik and
Faddeev 1981, Yang 1992).

Proposition 2 (Lagrange±d’Alembert principle). In the case of linear constraints on
the velocities, the Lagrange±d’Alembert principle for the Roller Racer with the
Lagrangian L…q; v† given by (44), with q ˆ …x1; y1; ³1; ³1;2† 2 Q and v ˆ …v1; v2;
v3; v4† ˆ _qq 2 TqQ; takes the form:

d

dt

@L

@v
¡ @L

@q
u ˆ ¬e u; …46†

where …q; v† satisfy the non-holonomic constraints:
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!1
q…v† ˆ ¡ sin ³1v1 ‡ cos ³1v2 ˆ 0;

!2
q…v† ˆ ¡ sin…³1 ‡ ³1;2†v1 ‡ cos…³1 ‡ ³1;2†v2 ‡ …d1 cos ³1;2 ‡ d2†v3 ‡ d2v4 ˆ 0; …47†

and the test vector u ˆ …u1; u2; u3; u4† 2 TqQ satis®es:

@

@v
!1

q…v† u ˆ ¡ sin ³1u1 ‡ cos ³1u2 ˆ 0;

@

@v
!2

q…v† u ˆ ¡ sin…³1 ‡ ³1;2†u1 ‡ cos…³1 ‡ ³1;2†u2 ‡ …d1 cos ³1;2 ‡ d2†u3 ‡ d2u4 ˆ 0;

…48†

while ¬e is the 1-form describing the external forcing to the system.
Using Lagrange multipliers, the Lagrange±d’Alembert principle for the case of a

system with two linear (in the velocity) non-holonomic constraints, takes the form:

d

dt

@L

@v
¡ @L

@q
ˆ ¬e ‡ ¶1

@!1
q

@v
‡ ¶2

@!2
q

@v
; …49†

for functions ¶1 and ¶2 on TQ and for …q; v† such that the non-holonomi c constraints
(47) are satis®ed.

Consider external forcing to the system described by the 1-form

¬e ˆ …Fx1
; Fy1

; F³1
; F³1;2

†; …50†

where F³1;2
may be the torque applied by the motor that actuates the rotary joint O1;2

and Fx1
; Fy1

; F³1
may be the result of friction in the bearings of the wheels. The

equations of motion of the Roller Racer are given below.

Proposition 3 (Lagrange±d’Alembert equations of motion).
(i) In the case d2 6ˆ 0; the equations of motion for the Roller Racer are

…Iz2
sin2 ³1;2 ‡ m1d

2
2 † _̧̧1 ¡ Iz2

d1 sin ³1;2 cos ³1;2 _̧̧2

‡ Iz2
sin2 ³1;2 cos ³1;2¸

2
1

¡ Iz2
sin ³1;2‰d1…cos2 ³1;2 ¡ sin2 ³1;2† ‡ d2 cos ³1;2Š¸1¸2

¡ Iz2
d1 sin2 ³1;2…d1 cos ³1;2 ‡ d2†¸2

2

ˆ d2…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ sin ³1;2F³1;2
;

¡ Iz2
d1 sin ³1;2 cos ³1;2 _̧̧1 ‡ …Iz1

d2
2 ‡ Iz2

d2
1 cos2 ³1;2† _̧̧2

¡ Iz2
d1 sin ³1;2 cos2 ³1;2¸2

1

‡ Iz2
d1 cos ³1;2‰d1…cos2 ³1;2 ¡ sin2 ³1;2† ‡ d2 cos ³1;2Š¸1¸2

‡ Iz2
d2

1 …d1 cos ³1;2 ‡ d2† sin ³1;2 cos ³1;2¸2
2

ˆ d2F³1
¡ r…³1;2†F³1;2

; …51†
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where ¸1 ˆdef …1=d2†… _xx1 cos ³1 ‡ _yy1 sin ³1†; ¸2 ˆdef …1=d2† _³³1 and r…³1;2† ˆdef
d1 cos ³1;2 ‡

d2:

(ii) In the case d2 ˆ 0; the equations of motion are

‰…Iz1
‡ Iz2

† sin2 ³1;2 ‡ m1d
2
1 cos2 ³1;2Š _̧̧1 ‡ Iz2

sin ³1;2 _̧̧2

‡ …Iz1
‡ Iz2

¡ m1d
2
1 † sin ³1;2 cos ³1;2¸1¸2

ˆ d1 cos ³1;2…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ sin ³1;2F³1
;

Iz2
sin ³1;2 _̧̧1 ‡ Iz2

_̧̧2 ‡ Iz2
cos ³1;2¸1¸2 ˆ F1;2; …52†

where

¸1 ˆdef 1

d1 cos ³1;2

… _xx1 cos ³1 ‡ _yy1 sin ³1†;

in the case cos ³1;2 6ˆ 0; or

¸1 ˆdef 1

sin ³1;2

_³³1

otherwise and ¸2 ˆdef _³³1;2:

Proof. The Lagrange±d’Alembert principle (46) for the Lagrangian given by (44),
for u ˆ …u1; u2; u3; u4†; v ˆ …v1; v2; v3; v4† 2 Dq and for ¬e ˆ …Fx1

; Fy1
; F³1

; F³1;2
†; takes

the form:

m1 _vv1u1 ‡ m1 _vv2u2 ‡ ‰…Iz1
‡ Iz2

† _vv3 ‡ Iz2
_vv4Šu3 ‡ Iz2

… _vv3 ‡ _vv4†u4

ˆ Fx1
u1 ‡ Fy1

u2 ‡ F³1
u3 ‡ F³1;2

u4: …53†

(i) Let d2 6ˆ 0
Any u 2 Dq can be represented as u ˆ ¬1¹

1
Q ‡ ¬2¹2

Q; for ¹1
Q and ¹2

Q given by
(23) and for some ¬1; ¬2 2 : Then its components are

u1 ˆ ¬1d2 cos ³1; u2 ˆ ¬1d2 sin ³1;

u3 ˆ ¬2d2; u4 ˆ ¬1 sin ³1;2 ¡ ¬2r…³1;2†: …54†

Similarly, any v 2 Dq can be represented as v ˆ ¸1¹1
Q ‡ ¸2¹

2
Q; for some

¸1; ¸2 2 : Its components are

v1 ˆ ¸1d2 cos ³1; v2 ˆ ¸1d2 sin ³1; v3 ˆ ¸2d2; v4 ˆ ¸1 sin ³1;2 ¡ ¸2r…³1;2†: …55†

These relationships can be used to derive ¸1 and ¸2 as follows:

¸1 ˆ 1

d2

… _xx1 cos ³1 ‡ _yy1 sin ³1†; ¸2 ˆ 1

d2

_³³1: …56†

By di� erentiating (55) we get
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_vv1 ˆ _̧̧1d2 cos ³1 ¡ ¸1d2 sin ³1
_³³1;

_vv2 ˆ _̧̧1d2 sin ³1 ‡ ¸1d2 cos ³1
_³³1;

_vv3 ˆ _̧̧2d2;

_vv4 ˆ _̧̧1 sin ³1;2 ¡ _̧̧2r…³1;2† ‡ ¸1 cos ³1;2
_³³1;2 ‡ ¸2d1 sin ³1;2

_³³1;2: …57†

Introducing (54) and (57) in (53), we get

m1 _̧̧1d
2
2 ¬1 ‡ ‰…Iz1

‡ Iz2
† _̧̧2d2 ‡ Iz2

… _̧̧1 sin ³1;2 ¡ _̧̧2r…³1;2† ‡ ¸1 cos ³1;2
_³³1;2

‡ ¸2d1 sin ³1;2
_³³1;2†Šd2¬2 ‡ Iz2

‰ _̧̧2d2 ‡ _̧̧1 sin ³1;2 ¡ _̧̧2r…³1;2†

‡ ¸1 cos ³1;2
_³³1;2 ‡ ¸2d1 sin ³1;2

_³³1;2Š ‰sin ³1;2¬1 ¡ r…³1;2†¬2Š

ˆ Fx1
d2 cos ³1¬1 ‡ Fy1

d2 sin ³1¬1 ‡ F³1
d2¬2

‡F³1;2
‰sin ³1;2¬1 ¡ r…³1;2†¬2Š; …58†

for arbitrary ¬1; ¬2 2 : From (55), we have

_³³1;2 ² v4 ˆ ¸1 sin ³1;2 ¡ ¸2r…³1;2†: …59†

Since ¬1; ¬2 are arbitrary, equation (58) splits (after using (59)) in the follow-
ing two equations:

…Iz2
sin2 ³1;2 ‡ m1d2

2† _̧̧1 ¡ Iz2
d1 sin ³1;2 cos ³1;2 _̧̧2

‡ Iz2
sin ³1;2…cos ³1;2¸1 ‡ d1 sin ³1;2¸2†…¸1 sin ³1;2 ¡ ¸2r…³1;2††

ˆ …Fx1
cos ³1 ‡ Fy1

sin ³1†d2 ‡ F³1;2
sin ³1;2;

¡Iz2
d1 sin ³1;2 cos ³1;2 _̧̧1 ‡ …Iz1

d2
2 ‡ Iz2

d2
1 cos2 ³1;2† _̧̧2

¡Iz2
d1 cos ³1;2…¸1 sin ³1;2 ¡ ¸2r…³1;2††

ˆ F³1
d2 ¡ F³1;2

r…³1;2†: …60†

By rearranging terms, we obtain (51). It can be easily seen that the ®rst of the
equations (51) is equation (46) with test vector u ˆ ¹1

Q; while the second is (46)
with u ˆ ¹2

Q:

(ii) Let d2 ˆ 0
Any u 2 Dq can be represented as u ˆ ¬1¹1

Q ‡ ¬2¹2
Q; for ¹1

Q and ¹2
Q given by

(24) and for some ¬1; ¬2 2 : Then its components are

u1 ˆ ¬1d1 cos ³1;2 cos ³1; u2 ˆ ¬1d1 cos ³1;2 sin ³1;

u3 ˆ ¬1 sin ³1;2; u4 ˆ ¬2: …61†

Similarly, any v 2 Dq can be represented as v ˆ ¸1¹
1
Q ‡ ¸2¹

2
Q; for some

¸1; ¸2 2 : Its components are

361Oscillations, SE(2)-snakes and motion control



v1 ˆ ¸1d1 cos ³1;2 cos ³1; v2 ˆ ¸1d1 cos ³1;2 sin ³1;

v3 ˆ ¸1 sin ³1;2; v4 ˆ ¸2: …62†

These relationships can be used to derive ¸1 and ¸2 as follows:

¸1 ˆ 1

d1 cos ³1;2

… _xx1 cos ³1 ‡ _yy1 sin ³1†; in the case cos ³1;2 6ˆ 0;

ˆ 1

sin ³1;2

_³³1; otherwise;

¸2 ˆ _³³1;2: …63†

By di� erentiating (62) we get

_vv1 ˆ _̧̧1d1 cos ³1;2 cos ³1 ¡ ¸1d1…cos ³1;2 sin ³1
_³³1 ‡ sin ³1;2 cos ³1

_³³1;2†;

_vv2 ˆ _̧̧1d1 cos ³1;2 sin ³1 ‡ ¸1d1…cos ³1;2 cos ³1
_³³1 ¡ sin ³1;2 sin ³1

_³³1;2†;

_vv3 ˆ _̧̧1 sin ³1;2 ‡ ¸1 cos ³1;2
_³³1;2;

_vv4 ˆ _̧̧2: …64†

Introducing (61) and (64) in (53), we get

m1… _̧̧1d1 cos ³1;2 cos ³1 ¡ ¸1d1 sin ³1;2 cos ³1
_³³1;2†d1 cos ³1;2 cos ³1¬1

‡m1… _̧̧1d1 cos ³1;2 sin ³1 ¡ ¸1d1 sin ³1;2 sin ³1
_³³1;2†d1 cos ³1;2 sin ³1¬1

‡‰…Iz1
‡ Iz2

†… _̧̧1 sin ³1;2 ‡ ¸1 cos ³1;2
_³³1;2† ‡ Iz2

_̧̧2Š sin ³1;2¬1

‡Iz2
… _̧̧1 sin ³1;2 ‡ ¸1 cos ³1;2

_³³1;2 ‡ _̧̧2†¬2

ˆ Fx1
d1 cos ³1;2 cos ³1¬1 ‡ Fy1

d1 cos ³1;2 sin ³1¬1

‡F³1
sin ³1;2¬1 ‡ F³1;2

¬2; …65†

for arbitrary ¬1; ¬2 2 : Since ¬1; ¬2 are arbitrary, (65) splits in the following
two equations:

‰…Iz1
‡ Iz2

† sin2 ³1;2 ‡ m1d
2
1 cos2 ³1;2Š _̧̧1 ‡ Iz2

sin ³1;2 _̧̧2

‡…Iz1
‡ Iz2

¡ m1d
2
1† sin ³1;2 cos ³1;2¸1

_³³1;2

ˆ d1 cos ³1;2…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ sin ³1;2F³1
;

Iz2
sin ³1;2 _̧̧1 ‡ Iz2

_̧̧2 ‡ Iz2
cos ³1;2¸1

_³³1;2 ˆ F1;2: …66†

By using _³³1;2 ² v4 ˆ ¸2 from (62) and by rearranging terms, we obtain (52).
Again, the ®rst of the equations (52) is equation (46) with u ˆ ¹1

Q; while the
second is (46) with u ˆ ¹2

Q: &

Remark 1. The quantities _̧̧1 and _̧̧2 above can be interpreted as accelerations in the
constrained directions.
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Suppose `friction’ is present in the joints of the Roller Racer wheels with their
axes. We consider a simple viscous friction model, where the frictional forces are
introduced in the Lagrange±d’Alembert equations through the following Rayleigh
dissipation function that involves the wheel angular velocities _¿¿l;i;

_¿¿r;i; i ˆ 1; 2
de®ned in (25):

R ˆ 1

2
k1

_¿¿
2

l;1 ‡ 1

2
k1

_¿¿
2

r;1 ‡ 1

2
k2

_¿¿
2

l;2 ‡ 1

2
k2

_¿¿
2

r;2

ˆ k1

R2
1

µ
L2

1

4
_³³
2

1 ‡ … _xx1 cos ³1 ‡ _yy1 sin ³1†
2

¶

‡ k2

R2
2

µ
L2

2

4
… _³³1 ‡ _³³1;2†2 ‡ g…… _xx1 cos ³1 ‡ _yy1 sin ³1† cos ³1;2 ‡ _³³1d1 sin ³1;2†2

¶
; …67†

where k1 > 0 and k2 > 0 are friction coe� cients, q ˆ …x1; y1; ³1; ³1;2†T 2 Q and

_qq ˆ … _xx1; _yy1;
_³³1; _³³1;2†

T: The external force 1-form ¬e is ¬e ˆ T 1;2 ¡ @R=@ _qq; where
T 1;2 ˆ25 …0; 0; 0; ½1;2†T; with ½1;2 being the torque applied by the motor at the joint
O1;2: The corresponding components of ¬e are

Fx1
ˆ ¡2

µ
k1

R2
1

‡
k2

R2
2

cos2 ³1;2 … _xx1 cos ³1 ‡ _yy1 sin ³1†

‡ k2

R2
2

d1 sin ³1;2 cos ³1;2
_³³1

¶
cos ³1;

Fy1
ˆ ¡2

µ
k1

R2
1

‡ k2

R2
2

cos2 ³1;2 … _xx1 cos ³1 ‡ _yy1 sin ³1†

‡ k2

R2
2

d1 sin ³1;2 cos ³1;2
_³³1

¶
sin ³1;

F³1
ˆ ¡2

µ
k2

R2
2

d1 sin ³1;2 cos ³1;2… _xx1 cos ³1 ‡ _yy1 sin ³1†

‡ k1

R2
1

L2
1

4
‡ k2

R2
2

L2
2

4
‡ d2

1 sin2 ³1;2

Á !Á !
_³³1

¶
;

F³1;2
ˆ ½1;2 ¡ 2

k2

R2
2

L2
2

4
_³³1;2: …68†

4.2. Non-holonomi c momentum and the momentum equation
The symmetries of an unconstrained system or of a system with holonomic con-
straints, described by the invariance of its Lagrangian with respect to a Lie group
action, imply the existence of conserved quantities, called momenta (Noether
Theorem). For systems with non-holonomic constraints, whose Lagrangian and
constraints are invariant with respect to an appropriate Lie group action, it is still
possible to de®ne momentum-like quantities. These, however, are not necessarily
conserved; instead, they evolve according to a law called the momentum equation
(Bloch et al. 1996).
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It is easy to verify that, for the Roller Racer, the non-holonomic constraints (16)
and (18) and the Lagrangian (44) are invariant under the action © given by (28)
(Krishnaprasad and Tsakiris 1998).

Momentum-like quantities can be de®ned for a constrained system by

p ˆ @L

@v
u;

where v 2 TqQ and u 2 Dq; the constraint distribution. In the present case, it is
particularly advantageous (see Proposition 5 below) to restrict u to Sq; the intersec-
tion of the subspaces Dq and Tq Orb…q†:

We de®ne, then, the `non-holonomic momentum’ as

p ˆdef
X

i

@L

@ _qqi
…¹q

Q†i; …69†

where ¹
q
Q 2 Sq: From (45) and (33), we get the non-holonomic momentum for the

Roller Racer:

p ˆ m1…d1 cos ³1;2 ‡ d2†… _xx1 cos ³1 ‡ _yy1 sin ³1† ‡ ‰…Iz1
‡ Iz2

† _³³1 ‡ Iz2

_³³1;2Š sin ³1;2: …70†

The non-holonomic momentum p given by equation (70) is (up to a scale factor) the
angular momentum about the point of intersection OICR

12 of the two wheel axles (cf.
®gure 3). It can be easily seen that

O1O
ICR
12 ˆ

d1 cos ³1;2 ‡ d2

sin ³1;2

;

when sin ³1;2 6ˆ 0:
Let

¢…³1;2† ˆdef …Iz1
‡ Iz2

† sin2 ³1;2 ‡ m1…d1 cos ³1;2 ‡ d2†2: …71†

For d1 6ˆ d2; we have ¢ > 0; for all q 2 Q: Also, let

¯…³1;2† ˆdef
Iz2

sin2 ³1;2 ‡ m1d2…d1 cos ³1;2 ‡ d2†: …72†

Proposition 4. The angular velocity _³³1 is an a� ne function of the non-holonomic
momentum

_³³1 ˆ 1

¢…³1;2†
‰sin ³1;2 p ¡ ¯…³1;2† _³³1;2Š: …73†

Proof. Multiplying both sides of (70) by sin ³1;2 and using (18), we get

sin ³1;2 p ˆ m1…d1 cos ³1;2 ‡ d2†‰…d1 cos ³1;2 ‡ d2† _³³1 ‡ d2
_³³1;2Š

‡ ‰…Iz1
‡ Iz2

† _³³1 ‡ Iz2

_³³1;2Š sin2 ³1;2: …74†

Solving for _³³1; the result follows. &

The momentum equation presented in the next result is derived in Bloch et al.
(1996) from the Lagrange±d’Alembert principle by considering only variations that
satisfy the constraints and that depend on the symmetry, as it is expressed by a free
group action. The equation does not depend on internal torques and depends only
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on the shape variables and not on the group variables. It is given below for the case
where external torques are not present.

Proposition 5. Consider a Lagrangian L which is invariant under the action © of a
group G on a con®guration space Q: Let Dq be a constraint distribution on TqQ and
consider the intersection Sq of Dq with the tangent space to the orbit of © at q: Let

¹Qq 2 Sq and let ¹q be the corresponding element of the Lie algebra G: The evolution of
the non-holonomic momentum p; de®ned as in equation (69), satis®es the equation

dp

dt
ˆ

X

i

@L

@ _qqi

µ
d¹q

dt

¶i

Q

: …75†

This result generalizes the classical Noether Theorem, which speci®es conserved
quantities for solutions of the Euler±Lagrange equations (Arnold 1978, Abraham
and Marsden 1985, Marsden and Ratiu 1994). In the present paper, the subspace Sq

is one-dimensional and one has a scalar p: In general, one could have a vector non-
holonomic momentum.

Proposition 6 (momentum equation without external forces). The momentum equa-
tion for the Roller Racer is

dp

dt
ˆ A4

1…³1;2† _³³1;2p ‡ A4
2…³1;2† _³³

2

1;2; …76†

where

A4
1…³1;2† ˆdef 1

¢…³1;2† ­ …³1;2† sin ³1;2 …77†

and

A4
2…³1;2† ˆdef m1

¢…³1;2† ¶…³1;2†®…³1;2†; …78†

with

­ …³1;2† ˆdef …Iz1
‡ Iz2

† cos ³1;2 ¡ m1d1…d1 cos ³1;2 ‡ d2†;

®…³1;2† ˆdef ¡Iz1
d2 ‡ Iz2

d1 cos ³1;2;

r…³1;2† ˆdef
d1 cos ³1;2 ‡ d2; ¶…³1;2† ˆdef

d1 ‡ d2 cos ³1;2; I ˆdef
Iz1

‡ Iz2
: …79†

Proof. From (75), (45) and (42) we get

dp

dt
ˆ ¡m1d1… _xx1 cos ³1 ‡ _yy1 sin ³1† sin ³1;2

_³³1;2

‡ m1…d1 cos ³1;2 ‡ d2†…¡ _xx1 sin ³1 ‡ _yy1 cos ³1† _³³1

‡ ‰…Iz1
‡ Iz2

† _³³1 ‡ Iz2

_³³1;2Š cos ³1;2
_³³1;2: …80†

Introducing the non-holonomic constraints (16) and (18), in (80) above, we get

dp

dt
ˆ ‰…Iz1

‡ Iz2
† cos ³1;2 ¡ m1d1…d1 cos ³1;2 ‡ d2†Š _³³1

_³³1;2 ‡ ‰Iz2
cos ³1;2 ¡ m1d1d2Š _³³

2

1;2:

…81†
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By substituting _³³1 from (73) in the above expression, the result follows. &

Proposition 7. The solution of the momentum equation (76) is

p…t† ˆ ©…t; t0†p…t0† ‡
…t

t0

©…t; ½†A4
2…³1;2…½†† _³³

2

1;2…½† d½; …82†

where

©…t; t0† ˆdef
exp

µ …t

t0

A4
1…³1;2…½†† _³³1;2…½† d½

¶
ˆ

����������������������
¢…³1;2…t††
¢…³1;2…t0††

s

…83†

is the state transition matrix of the time-varying linear ordinary di� erential equation
(76).

Proof. Equation (76) is a ®rst-order linear time-varying ODE with state transition
matrix ©…t; t0†: Thus, (82) is obvious. To compute the state transition matrix ©…t; t0†;
observe that we get from (71)

d¢

d³1;2

ˆ 2­ …³1;2† sin ³1;2: …84†

From this and from the de®nition of A4
1 in (76) we get

A4
1…³1;2† ˆ

­ …³1;2†
¢…³1;2†

sin ³1;2 ˆ 1

2¢

d¢

d³1;2

: …85†

Thus

©…t; t0† ˆ exp

µ …t

t0

A4
1…³1;2…½†† _³³1;2…½† d½

¶
ˆ exp

µ …³1;2…t†

³1;2…t0†
A4

1…³1;2† d³1;2

¶

ˆ exp

µ …¢…³1;2…t††

¢…³1;2…t0††

1

2

d¢

¢

¶
ˆ exp ln

����������������������
¢…³1;2…t††
¢…³1;2…t0††

sÁ !" #
ˆ

����������������������
¢…³1;2…t††
¢…³1;2…t0††

s

: …86†

&

Equation (82) can be used to derive qualitative information about the momentum,
which can be useful in motion control.

Proposition 8 (sign of the non-holonomic momentum). Assume d1 > d2:

(a) Let Iz1
d2 > Iz2

d1:
Assume further that the initial momentum of the system is non-positive. Then,
the momentum p is negative at all subsequent times.

(b1) Let Iz1
d2 < Iz2

d1:
Suppose, in addition, that the angle ³1;2 remains in an ~°°-neighbourhood of

³1;2 ˆ 0; with ~°° µ cos¡1…Iz1
d2=Iz2

d1†: Assume further that the initial momentum
of the system is non-negative. Then, the momentum p is positive at all subsequent
times.

(b2) Let Iz1
d2 < Iz2

d1:
Suppose, in addition, that the angle ³1;2 remains outside an ~°°-neighbourhood of

³1;2 ˆ 0; with ~°° µ cos¡1…Iz1
d2=Iz2

d1†: Assume further that the initial momentum
of the system is non-positive. Then, the momentum p is negative at all subsequent
times.
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Proof. Since d1 > d2; we know that ¢ > 0 and ¶ ˆ d1 ‡ d2 cos ³1;2 > 0; for all ³1;2:

(a) In the case Iz1
d2 > Iz2

d1 we have ® ˆ ¡Iz1
d2 ‡ Iz2

d1 cos ³1;2 < 0; for all ³1;2:
Thus A4

2 ˆ …m1=¢†¶® < 0; for all ³1;2 and, thus, the second term of (82) is
negative. If p…t0† µ 0; then p…t† < 0; 8t > t0:

(b1) In the case Iz1
d2 < Iz2

d1; by our choice of the ~°°-neighbourhood we have ® > 0;
for all ³1;2 in this neighbourhood. Then, A4

2 ˆ …m1=¢†¶® > 0 and the second
term of (82) is positive. If p…t0† 0; then p…t† > 0; 8t > t0:

(b2) In the case Iz1
d2 < Iz2

d1; by our choice of the ~°°-neighbourhood we have ® < 0;
for all ³1;2 outside this neighbourhood. Then, A4

2 ˆ m1=¢¶® < 0 and the sec-
ond term of (82) is negative. If p…t0† µ 0; then p…t† < 0; 8t > t0: &

As shown in Bloch et al. (1996), the momentum equation (76) can be derived
directly from the Lagrange±d’Alembert principle (46), by considering a test vector
u in the space Sq » Dq » TqQ: This approach is used below to derive the momentum
equation for the case when external forces, of the type considered in equation (50),
are acting on the Roller Racer.

Proposition 9 (momentum equation with external forces). Consider external forcing
to the system described by the 1-form ¬e ˆ …Fx1

; Fy1
; F³1

; F³1;2
†: The non-holonomic

momentum evolves according to the equation below:

dp

dt
ˆ A4

1…³1;2† _³³1;2p ‡ A4
2…³1;2† _³³

2

1;2 ‡ r…³1;2†…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ sin ³1;2F³1
: …87†

Proof. Consider the Lagrange±d’Alembert principle (53) with u restricted to
Sq » Dq; instead of belonging to the whole Dq:

(i) For d2 6ˆ 0; the vectors v 2 Dq and _vv in this equation are given by (55) and (57),
while u 2 Sq » Dq is given by (54), where ¬1 ˆ r…³1;2†=d2 and ¬2 ˆ …sin ³1;2†=d2

(cf. equation (33)). Thus, (53) takes the form (58), with ¬1 and ¬2 as speci®ed
above, which gives

…Iz2
sin2 ³1;2 ‡ m1d2r…³1;2†† _̧̧1 ‡ …Iz1

d2 ¡ Iz2
d1 cos ³1;2† sin ³1;2 _̧̧2

‡ Iz2
…¸1 cos ³1;2 ‡ ¸2d1 sin ³1;2† sin ³1;2

_³³1;2

ˆ r…³1;2†…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ F³1
sin ³1;2; …88†

from which we get

¯…³1;2† _̧̧1 ¡ ®…³1;2† sin ³1;2 _̧̧2 ˆ ¡ Iz2
…¸1 cos ³1;2 ‡ ¸2d1 sin ³1;2† sin ³1;2

_³³1;2

‡ r…³1;2†…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ F³1
sin ³1;2:

…89†

Consider the non-holonomic momentum de®ned in (70), that is

p ˆ m1r…³1;2†…v1 cos ³1 ‡ v2 sin ³1† ‡ ‰…Iz1
‡ Iz2

†v3 ‡ Iz2
v4Š sin ³1;2; …90†

with v ˆ …v1; v2; v3; v4† 2 TqQ: By restricting v to Dq; we get for p (using, for
d2 6ˆ 0; the expression (55)):
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p ˆ m1r…³1;2†d2¸1 ‡ …Iz1
‡ Iz2

†d2 sin ³1;2¸2

‡ Iz2
sin ³1;2…sin ³1;2¸1 ¡ r…³1;2†¸2†

ˆ ¯…³1;2†¸1 ¡ ®…³1;2† sin ³1;2¸2: …91†

The last of the equations (55) (the one for v4 ² _³³1;2) and equation (91) are
linear in ¸1 and ¸2: By solving them, we get

¸1 ˆ 1

d2¢…³1;2† ‰r…³1;2†p ¡ ®…³1;2† sin ³1;2
_³³1;2Š;

¸2 ˆ 1

d2¢…³1;2† ‰sin ³1;2p ¡ ¯…³1;2† _³³1;2Š: …92†

By di� erentiating (91), we get

dp

dt
ˆ ¯…³1;2† _̧̧1 ¡ ®…³1;2† sin ³1;2 _̧̧2

‡ @¯

@³1;2

¸1 ¡ @®

@³1;2

sin ³1;2¸2 ¡ ®…³1;2† cos ³1;2¸2
_³³1;2: …93†

Replacing the ®rst two terms of the right-hand side above with their expres-
sion from (89), using (92) and using the de®nitions (77) and (78), we get (87).

(ii) For d2 ˆ 0; the vectors v 2 Dq and _vv in equation (53) are given by (62) and
(64), while u 2 Sq » Dq is given by (61), where ¬1 ˆ 1 and ¬2 ˆ 0 (cf. equation
(33)). From (53) we get

¢…³1;2† _̧̧1 ‡ Iz2
sin ³1;2 _̧̧2 ˆ ¡­ …³1;2† sin ³1;2

_³³1;2 ¸1

‡ r…³1;2†…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ sin ³1;2F³1
: …94†

From the de®nition of the non-holonomic momentum (equation (70)) and by
restricting the corresponding v to Dq; we get

p ˆ ¢…³1;2† ¸1 ‡ Iz2
sin ³1;2¸2: …95†

From this and (62), we can get ¸1 and ¸2 as functions of p and _³³1;2

¸1 ˆ 1

¢…³1;2†
…p ¡ Iz2

sin ³1;2
_³³1;2†; ¸2 ˆ _³³1;2: …96†

By di� erentiating p; we get

dp

dt
ˆ ¢…³1;2† _̧̧1 ‡ Iz2

sin ³1;2 _̧̧2 ‡ 2­ …³1;2† sin ³1;2
_³³1;2 ¸1 ‡ Iz2

cos ³1;2
_³³1;2 ¸2: …97†

Replacing the ®rst two terms of the right-hand side above with their expres-
sion from (94), using (96) and using the de®nitions (77) and (78) for d2 ˆ 0; we
get (87). &

In the case when viscous friction, of the type considered in section 4.1, is present,
the momentum equation takes the form below.

Proposition 10 (momentum equation with friction). In the presence of friction, the
non-holonomi c momentum evolves according to the equation
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dp

dt
ˆ ‰A4

1…³1;2† _³³1;2 ¡ A5
1…³1;2†Š p ‡ ‰A4

2…³1;2† _³³1;2 ‡ A5
2…³1;2†Š _³³1;2; …98†

where

A5
1…³1;2† ˆdef 1

¢…³1;2† ‰²1…³1;2† sin ³1;2 ‡ ²2…³1;2†r…³1;2†Š;

A5
2…³1;2† ˆdef 1

¢…³1;2†
‰²1…³1;2†¯…³1;2† ‡ ²2…³1;2†®…³1;2† sin ³1;2Š;

²1…³1;2† ˆdef
2

k1

R2
1

L2
1

4
‡

k2

R2
2

L2
2

4
‡

k2

R2
2

d1¶…³1;2†

" #

sin ³1;2;

²2…³1;2† ˆdef
2

k1

R2
1

r…³1;2† ‡ 2
k2

R2
2

¶…³1;2† cos ³1;2: …99†

If d1 > d2; then A5
1…³1;2† > 0; for all ³1;2:

Proof. We consider the momentum equation (87) with an external force 1-form ¬e

which is due to friction and to the torque ½1;2 at the joint O1;2: Thus, ¬e has the form
(68). The force-related terms from the right-hand side of (87) take, then, the form

r…³1;2†…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ F³1
sin ³1;2 ˆ ¡²1…³1;2† _³³1 ¡ ²2…³1;2†… _xx1 cos ³1 ‡ _yy1 sin ³1†;

…100†

where ²1 and ²2 are de®ned in (99).

(i) Let d2 6ˆ 0: For v ˆ … _xx1; _yy1;
_³³1; _³³1;2† 2 Dq; we have from (55)

_xx1 cos ³1 ‡ _yy1 sin ³1 ˆ ¸1 d2 and _³³1 ˆ ¸2 d2;

for ¸1; ¸2 2 : Thus

r…³1;2†…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ F³1
sin ³1;2 ˆ ¡²1¸2d2 ¡ ²2¸1d2:

Using (92), we get

r…³1;2†…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ F³1
sin ³1;2

ˆ ¡ 1

¢…³1;2†
‰²1…³1;2† sin ³1;2 ‡ ²2…³1;2†r…³1;2†Šp

‡
1

¢…³1;2† ‰²1…³1;2†¯…³1;2† ‡ ²2…³1;2†®…³1;2† sin ³1;2Š _³³1;2: …101†

From this, the result follows.

(ii) Let d2 ˆ 0: For v 2 Dq; we have from (62)

_xx1 cos ³1 ‡ _yy1 sin ³1 ˆ ¸1 d1 cos ³1;2 and _³³1 ˆ ¸1 sin ³1;2;

for ¸1; ¸2 2 : From (96) and (100), the result follows.
It is easy to check from the de®nitions (99) that

A5
1…³1;2†

2

¢…³1;2†
k2

R2
2

¶2…³1;2†: …102†
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If d1 > d2; then ¢…³1;2† > 0 and also ¶…³1;2† > 0 for all ³1;2: Thus,

A5
1…³1;2† > 0: &

Comparing the momentum equations (98) and (76), it is possible to identify the
extra terms that are due to friction.

When the shape of the Roller Racer is held constant … _³³1;2 ˆ 0†; the momentum

equation for the model without friction (76) takes the form _pp ˆ 0; i.e. the momentum

is conserved. However, in the same case, the momentum equation for the model with

friction (98) takes the form

dp

dt
ˆ ¡A5

1…³1;2…0††p; …103†

thus

p…t† ˆ e¡A5
1…³1;2…0††tp…0†; …104†

for a constant A5
1…³1;2…0†† > 0; which is the rate at which the momentum decreases

exponentially and at which the system will come to rest. This provides a `braking

mechanism’ for the Roller Racer, which has been noticed in experiments with the

ISL’s Roller Racer prototypes.

4.3. Reconstruction of group motion

Assume that a shape-space trajectory ³1;2… † » S has been speci®ed. The correspond-

ing non-holonomic momentum can be determined from the solution of the momen-

tum equation (76) in the case of the Roller Racer model without external forces, or

from the solution of the momentum equation (98) in the case of the Roller Racer
model with friction. From the de®nition of the non-holonomic momentum (equation

(70)) and from the non-holonomic constraints (equations (16) and (18)), we can

reconstruct the group trajectory g1… † ˆ g1…x1… †; y1… †; ³1… †† » SE…2†: This can be

done by ®rst specifying … _xx1; _yy1; _³³1† and then integrating to ®nd …x1; y1; ³1†:

Proposition 11 (reconstruction of group trajectory). For g1 ˆ g1…x1; y1; ³1† 2 SE…2†;
the corresponding curve in the Lie algebra ¹1 ˆ g¡1

1 _gg1 is given by

¹1 ˆ ¹1
1…³1;2; _³³1;2†A1 ‡ ¹1

2…³1;2; _³³1;2†A2; …105†

where for d1 6ˆ d2; the components of ¹1 are

¹1
1…³1;2; _³³1;2† ˆ _³³1 ˆ 1

¢…³1;2†
‰sin ³1;2 p ¡ ¯…³1;2† _³³1;2Š; …106†

¹1
2…³1;2; _³³1;2† ˆ _xx1 cos ³1 ‡ _yy1 sin ³1 ˆ 1

¢…³1;2†
‰r…³1;2† p ¡ ®…³1;2† sin ³1;2

_³³1;2Š: …107†

The group trajectory is given by solving
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_³³1 ˆ ¹1
1 ˆ 1

¢…³1;2† ‰sin ³1;2 p ¡ ¯…³1;2† _³³1;2Š;

_xx1 ˆ cos ³1 ¹1
2 ˆ cos ³1

¢…³1;2†
‰r…³1;2† p ¡ ®…³1;2† sin ³1;2

_³³1;2Š;

_yy1 ˆ sin ³1 ¹1
2 ˆ sin ³1

¢…³1;2†
‰r…³1;2† p ¡ ®…³1;2† sin ³1;2

_³³1;2Š: …108†

The solution can be obtained by quadratures .

Proof. Equation (106) is immediate from (73).
When d1 6ˆ d2; either sin ³1;2 6ˆ 0 or r…³1;2† ˆ d1 cos ³1;2 ‡ d2 6ˆ 0:
First consider sin ³1;2 6ˆ 0: From equations (19) and (73) we get

… _xx1 cos ³1 ‡ _yy1 sin ³1† sin ³1;2 ˆ
r…³1;2†

¢
sin ³1;2 p ¡ ®…³1;2†

¢
sin2 ³1;2

_³³1;2: …109†

Since sin ³1;2 6ˆ 0; equation (107) follows.
Now let r…³1;2† 6ˆ 0: From equation (70) we get

m1r…³1;2†… _xx1 cos ³1 ‡ _yy1 sin ³1† ˆ p ¡ …Iz1
‡ Iz2

† sin ³1;2
_³³1 ¡ Iz2

sin ³1;2
_³³1;2: …110†

From equation (73) we get

m1r…³1;2†… _xx1 cos ³1 ‡ _yy1 sin ³1† ˆ p ¡
Iz1

‡ Iz2

¢
sin2 ³1;2 p ‡

…Iz1
‡ Iz2

†¯ ¡ Iz2
¢

¢
sin ³1;2

_³³1;2:

…111†

Observe that …Iz1
‡ Iz2

†¯…³1;2† ¡ Iz2
¢…³1;2† ˆ ¡m1r…³1;2†®…³1;2†: Then

m1r…³1;2†… _xx1 cos ³1 ‡ _yy1 sin ³1† ˆ
m1r…³1;2†

¢
‰r…³1;2† p ¡ ®…³1;2† sin ³1;2

_³³1;2Š: …112†

Since r…³1;2† 6ˆ 0; equation (107) follows.
Finally, equations (108) are immediate from (107) and (16).

Now observe that from (106) and (107) we get

¹1
1

¹2
1

0

@

1

A ˆ 1

¢

sin ³1;2 ¡¯…³1;2†

r…³1;2† ¡®…³1;2† sin ³1;2

Á !
p

_³³1;2

Á !
ˆdef

B…³1;2†
p

_³³1;2

Á !
…113†

and notice that

r…³1;2†¯…³1;2† ¡ ®…³1;2† sin2 ³1;2 ˆ d2¢…³1;2†; …114†

therefore

det B…³1;2† ˆ d2

¢…³1;2†
: …115†

Thus, in the case d2 ˆ 0; given a group trajectory ¹1 » G; we cannot always solve
(113) for p and _³³1;2:

When d1 6ˆ d2 and d2 6ˆ 0; from (113) and (115), we get

p

_³³1;2

Á !
ˆ B¡1…³1;2†

¹1
1

¹2
1

Á !
ˆ 1

d2

¡®…³1;2† sin ³1;2 ¯…³1;2†

¡r…³1;2† sin ³1;2

Á !
¹1

1

¹2
1

Á !

: …116†
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4.4. Principal ®bre bundles and connections
The following material on principal ®bre bundles and connections is based on
Bleecker (1981) and Nomizu (1956). These references consider principal ®bre bundles
where the group action is a right action. Here, we consider left actions and modify
appropriately the de®nition of a principal ®bre bundle, as for instance done in Yang
(1992).

Let S be a di� erentiable manifold and G a Lie group. A di� erentiable manifold Q
is called a (di� erentiable) `principal ®bre bundle’, if the following conditions are
satis®ed:

(1) G acts on Q to the left, freely and di� erentiably:

© : G Q ! Q : …g; q† 7! g q ˆdef
©g q: …117†

(2) S is the quotient space of Q by the equivalence relation induced by G; i.e.
S ˆ Q=G and the canonical projection º : Q ! S is di� erentiable.

(3) Q is locally trivial, i.e. every point s 2 S has a neighbourhood U such that

º¡1…U† » Q is isomorphic with U G; in the sense that q 2 º¡1…U† 7!
…º…q†; ¿…q†† 2 U G is a di� eomorphism such that ¿ : º¡1…U† ! G satis®es

¿…g q† ˆ g¿…q†; 8g 2 G:

For s 2 S; the `®bre over’ s is a closed submanifold of Q which is di� erentiably
isomorphic with G: For any q 2 Q; the `®bre through’ q is the ®bre over s ˆ º…q†:
When Q ˆ S G; then Q is said to be a `trivial’ principal ®bre bundle (®gure 4).

De®nition 1. Let …Q; S; º; G† be a principal ®bre bundle. The kernel of Tqº; denoted
Vq ˆdef fv 2 TqQ j Tqº…v† ˆ 0g; is the subspace of TqQ tangent to the ®bre through q
and is called the `vertical subspace’. A `connection’ on the principal ®bre bundle is a
choice of a tangent subspace Hq » TqQ at each point q 2 Q; called the `horizontal
subspace’, such that:

(1) TqQ ˆ Hq Vq:
(2) For every g 2 G and q 2 Q; Tq©g Hq ˆ Hg q:
(3) Hq depends di� erentiably on q:

4.5. The non-holonomic connection
In this section, we explicitly realize a connection on the bundle …Q; S; º; G†; the non-
holonomic connection of Bloch et al. (1996) for the Roller Racer.

Consider the `kinetic energy inner product’ ½ ; ¾ speci®ed by the Lagrangian
(44):

½ v; ~vv ¾ˆdef
vT

m1 0 0 0

0 m1 0 0

0 0 Iz1
‡ Iz2

Iz2

0 0 Iz2
Iz2

0

BBBBB@

1

CCCCCA
~vv; …118†

for v; ~vv 2 TqQ:

Proposition 12. The orthogonal complement Hq of the subspace Sq with respect to the
constraint subspace Dq; that is

Sq Hq ˆ Dq; …119†
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where orthogonality is de®ned with respect to the kinetic energy inner product ½ ; ¾; is
given by

Hq ˆ ¹H
Q ; …120†

where

¹H
Q ˆ ®…³1;2† sin ³1;2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ ¯…³1;2† @

@³1

¡ ¢…³1;2† @

@³1;2
: …121†

Proof. Since dim Sq ˆ 1 and dim Dq ˆ 2; we should have dim Hq ˆ 1: Consider an
element ¹H

Q 2 Hq: As ¹H
Q also belongs to Dq; it can be written, as a function of the

basis elements of Dq; as

¹H
Q ˆ ¬1¹1

Q ‡ ¬2¹2
Q; …122†

for some ¬1; ¬2 2 :

(i) When d2 6ˆ 0; we have from (23)

¹H
Q ˆ ¬1d2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ ¬2d2

@

@³1

‡ ‰¬1 sin ³1;2 ¡ ¬2r…³1;2†Š
@

@³1;2
:

…123†

The vector ¹H
Q should be orthogonal to every ¹

q
Q 2 Sq; i.e. ½ ¹

q
Q; ¹H

Q ¾ ˆ 0:
This gives ¯…³1;2†¬1 ¡ ®…³1;2† sin ³1;2¬2 ˆ 0: Choose ¬1 ˆ ®…³1;2† sin ³1;2 and

¬2 ˆ ¯…³1;2†: Using (114) and dividing by d2; we get (121).

(ii) In the case d2 ˆ 0; we have from (24):

¹H
Q ˆ ¬1d1 cos ³1;2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ ¬1 sin ³1;2

@

@³1

‡ ¬2

@

@³1;2
: …124†
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From orthogonality to ¹q
Q; we obtain ¬1 ˆ Iz2

sin ³1;2 and ¬2 ˆ
‰…Iz1

‡ Iz2
† sin2 ³1;2 ‡ m1d

2
1 cos2 ³1;2Š; thus

¹H
Q ˆ Iz2

d1 sin ³1;2 cos ³1;2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ Iz2
sin2 ³1;2

@

@³1

¡ ‰…Iz1
‡ Iz2

† sin2 ³1;2 ‡ m1d2
1 cos2 ³1;2Š @

@³1;2

: …125†

Note that, when d2 ˆ 0; this expression is the same as (121). &

Proposition 13. The orthogonal complement Uq of the subspace Sq with respect to the
subspace Tq Orb…q†; that is

Sq Uq ˆ Tq Orb…q†; …126†

where orthogonality is de®ned with respect to the kinetic energy inner product ½; ¾; is
given by

Uq ˆ f¹U1

Q ; ¹U2

Q g; …127†

where

¹U1

Q ˆ ¡ sin ³1

@

@x1

‡ cos ³1

@

@y1

;

¹U2

Q ˆ …Iz1
‡ Iz2

† sin ³1;2 cos ³1

@

@x1

‡ sin ³1

@

@y1

¡ m1…d1 cos ³1;2 ‡ d2† @

@³1

: …128†

Proof. Since dim Sq ˆ 1 and dim Tq Orb…q† ˆ 3; we have dim Uq ˆ 2: Let ¹U1

Q and

¹
U2

Q be two basis elements of Uq: Since the ¹
U i

Q ; i ˆ 1; 2 also belong to Tq Orb…q†; they
can be expressed as a function of its basis elements as

¹U i

Q ˆ ui
1

@

@x1

‡ ui
2

@

@y1

‡ ui
3

@

@³1

;

for some ui
j 2 : The ¹U i

Q need to be mutually linearly independent and orthogonal to

¹
q
Q 2 Sq: This last requirement gives

m1r…³1;2†…ui
1 cos ³1 ‡ ui

2 sin ³1† ‡ …Iz1
‡ Iz2

† sin ³1;2ui
3 ˆ 0; i ˆ 1; 2:

Two linearly independent vectors that ful®l this condition are the ones given in
(128). &

The con®guration space for the Roller Racer is Q ˆ SE…2† S1: From left invar-
iance of the system’s kinematics, the tangent space TqQ to the con®guration space is

TqQ ˆ f… _gg1; _³³1;2† j g1 2 SE…2†; ³1;2 2 S1g ˆ f…g1¹1; _³³1;2† j ¹1 2 se…2†; _³³1;2 2 g:

…129†

Consider, then, the con®guration space Q ˆ SE…2† S1; the group G ˆ SE…2†; the
shape space S ˆ S1 of the Roller Racer, which is the quotient space of Q by G; and
the canonical projection

º : Q ¡! S : …g1; ³1;2† 7! ³1;2: …130†
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The projection º is di� erentiable and its di� erential at q ˆ …g1; ³1;2† 2 Q is

Tqº : TqQ ¡! Tº…q†S : …g1¹g1; _³³1;2† 7! _³³1;2: …131†

The quadruple …Q; S; º; G†; together with the left action © of G on Q de®ned by
equation (28), is a (trivial) `principal ®bre bundle’. This bundle expresses the ultimate
dependence of all con®guration variables on the shape ³1;2:

By considering the Lagrangian dynamics in addition to the kinematic constraints,
we can synthesize a principal connection for this system, which re¯ects the depen-
dence of all con®guration velocities on the shape variation _³³1;2:

Proposition 14 (non-holonomic connection). The non-holonomi c kinematic constraints
and the system dynamics determine a connection on the principal ®bre bundle
…Q; S; º; G†: The horizontal subspace of the connection is the subspace Hq de®ned in
(120) and (121), that is the orthogonal complement of the subspace Sq with respect to
the constraint distribution Dq; with orthogonality de®ned with respect to the kinetic
energy inner product. When d1 6ˆ d2; the horizontal subspace is

Hq ˆdef fv 2 TqQ j v 2 f¹QHgg

ˆ
»

v ˆ … _xx1; _yy1;
_³³1; _³³1;2† 2 TqQ j _xx1 ¡

®…³1;2† sin ³1;2

¢…³1;2† cos ³1
_³³1;2;

_yy1 ˆ ¡
®…³1;2† sin ³1;2

¢…³1;2†
sin ³1

_³³1;2; _³³1 ˆ ¡
¯…³1;2†
¢…³1;2†

_³³1;2

¼
: …132†

The vertical subspace of the connection is

Vq ˆdef fv 2 TqQ j Tqº ˆ 0g ˆ fv ˆ … _xx1; _yy1; _³³1; _³³1;2† 2 TqQ j _³³1;2 ˆ 0g: …133†

Proof. It is easy to see that the horizontal subspace Hq de®ned in (132) is

Hq ˆ f…g1¹1; _³³1;2† j g1 2 SE…2†; ¹1 ˆ ¡Aloc…³1;2† _³³1;2g; …134†

where the local form Aloc of the connection (Bloch et al. 1996) is

Aloc…³1;2† ˆdef ¯…³1;2†
¢…³1;2†

A1 ‡
®…³1;2† sin ³1;2

¢…³1;2† A2 2 se…2†: …135†

To show property …1† of De®nition 1, consider a non-zero vector v 2 Vq \ Hq: Since
v is non-zero and belongs to Hq; we have from (134) that _³³1;2 6ˆ 0: But then, because
of (133), v cannot belong also to Vq; as we supposed. Thus, Vq \ Hq ˆ f0g:
Moreover, dim Vq ‡ dim Hq ˆ 3 ‡ 1 ˆ 4 ˆ dim TqQ: Thus, Vq Hq ˆ TqQ:

To show property …2† of De®nition 1, consider a g 2 G: From left-invariance

Tq©g Hq ˆ g Hq ˆ g f…g1¹1; _³³1;2† j ¹1 ˆ ¡Aloc…³1;2† _³³1;2g

ˆdef f…g1¹1; _³³1;2† j ¹1 ˆ ¡Aloc…³1;2† _³³1;2g
…136†

and

Hg q ˆ fv 2 Tg qQ j ¹1 ˆ ¡Aloc…³1;2† _³³1;2g ˆ f…gg1¹1; _³³1;2† j ¹1 ˆ ¡Aloc…³1;2† _³³1;2g:

…137†

Then, obviously, Tq©g Hq ˆ Hg q:
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The di� erentiability of Hq with respect to q 2 Q (property …3† of De®nition 1)
follows from the smooth dependence of Aloc on the shape ³1;2 and from the left-
invariance of our system. &

Physically, Vq is the set of all possible rigid motions of the system on the plane that
keep shape constant; these `frozen-shape’ motions do not need to satisfy the non-
holonomic constraints. On the other hand, Hq is the set of all possible motions of the
system on the plane that comply with the non-holonomic constraints. Observe that
all such motions are due to shape variations.

Let the set of Lie algebra elements, whose in®nitesimal generators belong to Sq; be
denoted as Gq: From (40): Gq ˆ spf¹qg: The `locked inertia tensor’ …q† relative to Gq

is de®ned in Marsden and Ratiu (1994) and Bloch et al. (1996), as

…q† : Gq ¡! …Gq†? : ¹q 7¡!h …q† ¹q; i; …138†

where, for ²q 2 Gq; with corresponding in®nitesimal generator ²q
Q 2 Sq; we de®ne

h …q† ¹q; ²qi ˆdef ½ ¹q
Q; ²q

Q ¾; …139†

and where ½ ; ¾ is the kinetic energy inner product de®ned in (118).
It is easy to verify from (33) and (71), that for the Roller Racer

h …q† ¹q; ¹qi ˆ ½ ¹q
Q; ¹q

Q ¾ ˆ ¢…³1;2†: …140†

Since ²
q
Q ˆ ­ ¹

q
Q; for some ­ 2 ; we have

h …q† ¹q; ²qi ˆ ½ ¹
q
Q; ²

q
Q ¾ ˆ ­ ½ ¹

q
Q; ¹

q
Q ¾ ˆ ­ ¢…³1;2†: …141†

With the above de®nition of Aloc in equation (135), the reconstructed group tra-
jectory equations (105), (106) and (107) take the form

¹1 ˆ g¡1
1 _gg1 ˆ ¡Aloc…³1;2† _³³1;2 ‡ ¡1

loc…³1;2† p; …142†

where

¡1
loc…³1;2† ˆ

sin ³1;2

¢…³1;2†
A1 ‡

r…³1;2†
¢…³1;2†

A2 …143†

is the local form of the inverse of the locked inertia tensor of the Roller Racer.

4.6. The reduced dynamics
A Lagrangian reduction procedure for systems with non-holonomic constraints is
developed in Bloch et al. (1996). Its goal is to lower the dimension of the system’s
dynamics by passing to an appropriate quotient space. The reduced equations are
composed of a set of Euler±Lagrange equations on the shape space of the system,
where some of the forcing terms are due to the curvature of the non-holonomic
connection, and a set of momentum equations. These reduced equations, together
with the reconstruction ones and the non-holonomic constraints, give the full set of
equations of motion of the system.

In the case of the Roller Racer, the reduced dynamics are composed of a Euler±
Lagrange equation on the one-dimensional shape space S and of the momentum
equation derived in section 4.2. The reduced Euler±Lagrange equation is a second-
order equation on the shape variable ³1;2 and involves the `reduced Lagrangian’
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lc…³1;2; _³³1;2; p† ˆdef
L…q; _qq…q; _³³1;2; p†† ˆ44;108 1

2

1

¢…³1;2†
p2 ‡ 1

2

¢1…³1;2†
¢…³1;2†

_³³
2
1;2; …144†

as described in Bloch et al. (1996). The quantity ¢1 is de®ned in equation (145)
below. The curvature of the non-holonomic connection of section 4.5 can be easily
seen to be zero, since the shape space is one-dimensional, thus the corresponding
forcing terms are zero.

In our derivation of the reduced dynamics of the Roller Racer, we take a short cut
around Bloch et al. (1996), by employing directly the Lagrange±d’Alembert principle
with a test vector horizontal with respect to the non-holonomic connection, but still
in the constraint distribution, thus belonging to the orthogonal complement Hq of Sq

with respect to Dq:
Let

¢1…³1;2† ˆdef
Iz1

Iz2
sin2 ³1;2 ‡ m1…Iz1

d2
2 ‡ Iz2

d2
1 cos2 ³1;2†: …145†

Observe that ¢1…³1;2† > 0; 8q 2 Q:

Proposition 15 (reduced dynamics with external forces). Consider external forcing to
the system described by the 1-form ¬e ˆ …Fx1

; Fy1
; F³1

; F³1;2
†: The reduced dynamics of

the Roller Racer take the form

�³³1;2 ˆ B4
1…³1;2† _³³1;2p ‡ B4

2…³1;2† _³³
2

1;2

‡ B4
3…³1;2†…Fx1

cos ³1 ‡ Fy1
sin ³1† ‡ B4

4…³1;2†F³1
‡ B4

5…³1;2†F³1;2
;

dp

dt
ˆ A4

1…³1;2† _³³1;2p ‡ A4
2…³1;2† _³³

2

1;2 ‡ r…³1;2†…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ sin ³1;2F³1
; …146†

where

B4
1…³1;2† ˆdef ¡

A4
2…³1;2†

¢1…³1;2†
;

B4
2…³1;2† ˆdef ¡

1

2

¢

¢1

@

@³1;2

¢1

¢

ˆ
m1®…³1;2† sin ³1;2

¢…³1;2†¢1…³1;2†
‰®…³1;2† cos ³1;2 ‡ d1¯…³1;2†Š;

B4
3…³1;2† ˆdef ¡

®…³1;2† sin ³1;2

¢1…³1;2† ; B4
4…³1;2† ˆdef ¡

¯…³1;2†
¢1…³1;2† ;

B4
5…³1;2† ˆdef ¢…³1;2†

¢1…³1;2†
: …147†

For d1 6ˆ d2; we have B4
5…³1;2† > 0; for all q 2 Q:

Proof. Consider the Lagrange±d’Alembert principle (53) with a test vector u 2 Dq;
which we restrict to the orthogonal complement Hq of Sq with respect to Dq:
Orthogonality is de®ned using the kinetic energy inner product ½ ; ¾ of equation
(118). Without loss of generality, we choose u as
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u ˆ ¹H
Q ˆ ®…³1;2† sin ³1;2 cos ³1

@

@x1

‡ sin ³1

@

@y1

‡ ¯…³1;2† @

@³1

¡ ¢…³1;2† @

@³1;2

:

…148†

(i) Let d2 6ˆ 0: From (53), with u given by (148) and _vv given by (57), and since
_vv4 ² �³³1;2; we have

m1d2®…³1;2† sin ³1;2 _̧̧1 ‡ ‰Iz1
¯…³1;2† ‡ Iz2

…¯…³1;2†

¡ ¢…³1;2††Šd2 _̧̧2 ‡ Iz2
‰¯…³1;2† ¡ ¢…³1;2†Š �³³1;2

ˆ ®…³1;2† sin ³1;2…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ F³1
¯…³1;2† ¡ F³1;2

¢…³1;2†; …149†

for ¸1; ¸2 2 : Observe that ¢…³1;2† ¡ ¯…³1;2† ˆ Iz1
sin2 ³1;2 ‡ m1d1 cos

³1;2r…³1;2†; then Iz1
¯…³1;2† ‡ Iz2

‰¯…³1;2† ¡ ¢…³1;2†Š ˆ ¡m1®…³1;2†r…³1;2†: Then,
the left-hand side of (149) becomes

m1d2®…³1;2† sin ³1;2 _̧̧1 ¡ m1d2®…³1;2†r…³1;2† _̧̧2 ‡ Iz2
‰¯…³1;2† ¡ ¢…³1;2†Š �³³1;2: …150†

By di� erentiating (92), the terms _̧̧1 and _̧̧2 above can be expressed as functions
of ³1;2; _³³1;2; �³³1;2; p; _pp :

_̧̧1 ˆ 1

d2¢
2

µ
r…³1;2†¢…³1;2† _pp ‡ @r

@³1;2

¢…³1;2† ¡ r…³1;2† @¢

@³1;2

_³³1;2 p

¡ ®…³1;2†¢…³1;2† sin ³1;2
�³³1;2 ‡ ®…³1;2† sin ³1;2

@¢

@³1;2

¡ @®

@³1;2

¢…³1;2† sin ³1;2 ¡ ®…³1;2†¢…³1;2† cos ³1;2
_³³
2

1;2

¶
;

_̧̧2 ˆ 1

d2¢
2

µ
¢…³1;2† sin ³1;2 _pp ‡ ¢…³1;2† cos ³1;2 ¡ @¢

@³1;2

sin ³1;2
_³³1;2 p

¡ ¢…³1;2†¯…³1;2† �³³1;2 ‡ @¢

@³1;2

¯…³1;2† ¡ @¯

@³1;2

¢…³1;2† _³³
2

1;2

¶
: …151†

Thus, the left-hand side of (149) becomes, after some calculations using (150) and
(151):

µ
m1d2®…³1;2† ‡ Iz2

…¯…³1;2† ¡ ¢…³1;2††
¶

�³³1;2

‡
m1®…³1;2†
¢…³1;2†

@r

@³1;2

sin ³1;2 ¡ r…³1;2† cos ³1;2
_³³1;2 p

¡
m1®…³1;2†
¢…³1;2†

d2

@¢

@³1;2

‡ @®

@³1;2

sin2 ³1;2

‡®…³1;2† sin ³1;2 cos ³1;2 ¡ r…³1;2†
@¯

@³1;2

_³³
2

1;2: …152†
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The expression in parentheses in the second term above can be shown to be equal to

¡¶…³1;2†; while the expression in parentheses in the third term can be shown to be

equal to ¡‰®…³1;2† cos ³1;2 ‡ d1¯…³1;2†Š sin ³1;2: Thus, equation (146) follows.

(ii) Let d2 ˆ 0: From (53), with u given by (148) and _vv given by (64), we have

‰…Iz1
‡ Iz2

†¯…³1;2† ¡ Iz2
¢…³1;2† ‡ m1d1®…³1;2† cos ³1;2Š sin ³1;2 _̧̧1 ‡ Iz2

‰¯…³1;2†

¡ ¢…³1;2†Š _̧̧2 ‡ ‰…Iz1
‡ Iz2

†¯…³1;2† cos ³1;2 ¡ Iz2
¢…³1;2† cos ³1;2

¡ m1d1®…³1;2† sin2 ³1;2Š _³³1;2 ¸1

ˆ ®…³1;2† sin ³1;2…Fx1
cos ³1 ‡ Fy1

sin ³1† ‡ ¯…³1;2†F³1
¡ ¢…³1;2†F³1;2

; …153†

for ¸1; ¸2 2 : Observe that the coe� cient of _̧̧1 is zero, while

Iz2
‰¯…³1;2† ¡ ¢…³1;2†Š ˆ ¡¢1…³1;2† and …Iz1

‡ Iz2
†¯…³1;2† cos ³1;2 ¡ Iz2

¢…³1;2† cos ³1;2¡
m1d1®…³1;2† sin2 ³1;2 ˆ ¡m1Iz2

d2
1 cos ³1;2: Notice that from (64), we have �³³1;2 ²

_vv4 ˆ _̧̧2: Using this in (153) and rearranging terms, the result follows. &

The following two results are special cases of Proposition 15.

Proposition 16 (reduced dynamics without external forces). In the absence of external

forces or torques, other than the torque ½1;2 applied to the joint O1;2; the reduced

dynamics of the Roller Racer, take the form

�³³1;2 ˆ B4
1…³1;2† _³³1;2p ‡ B4

2…³1;2† _³³
2

1;2 ‡ B4
5…³1;2†½1;2;

dp

dt
ˆ A4

1…³1;2† _³³1;2p ‡ A4
2…³1;2† _³³

2
1;2: …154†

Proposition 17 (reduced dynamics with friction). In the presence of friction, the

reduced dynamics of the Roller Racer take the form

�³³1;2 ˆ ‰B4
1…³1;2† _³³1;2 ‡ B4

6…³1;2†Š p ‡ ‰B4
2…³1;2† _³³1;2 ¡ B4

7…³1;2†Š _³³1;2 ‡ B4
5…³1;2† ½1;2;

dp

dt
ˆ ‰A4

1…³1;2† _³³1;2 ¡ A5
1…³1;2†Š p ‡ ‰A4

2…³1;2† _³³1;2 ‡ A5
2…³1;2†Š _³³1;2; …155†

where B4
1; B4

2 and B4
5 were de®ned previously in (147) and where

B4
6…³1;2† ˆdef A5

2…³1;2†
¢1…³1;2† ; B4

7…³1;2† ˆdef A5
3…³1;2†

¢1…³1;2† ; …156†

with A5
2 as de®ned in (99), with ¢1 as de®ned in (145) and with

A5
3…³1;2† ˆdef 1

¢…³1;2† ²3…³1;2†®…³1;2† sin ³1;2 ‡ ²4…³1;2†¯…³1;2† ‡ ²5…³1;2†¢…³1;2† ; …157†

where
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²3…³1;2† ˆdef
2

k1

R2
1

‡ k2

R2
2

cos2 ³1;2 ®…³1;2† ‡ k2

R2
2

d1¯…³1;2† cos ³1;2

µ ¶
sin ³1;2;

²4…³1;2† ˆdef
2

k2

R2
2

d1®…³1;2† sin2 ³1;2 cos ³1;2

‡ 2
k1

R2
1

L2
1

4
‡

k2

R2
2

L2
2

4
‡

k2

R2
2

d2
1 sin2 ³1;2 ¯…³1;2†;

²5…³1;2† ˆdef
2

k2

R2
2

L2
2

4
¢…³1;2†: …158†

If d1 6ˆ d2; then A5
3…³1;2† > 0; for all ³1;2:

Proof. From the reduced dynamics of the Roller Racer with external forces given
by equation (146) and from the external force 1-form due to friction given by
equation (68), we have for the last three terms of (146), using the de®nitions of (147):

B4
3…³1;2†…Fx1

cos ³1 ‡ Fy1
sin ³1† ‡ B4

4…³1;2†F³1
‡ B4

5…³1;2†F³1;2

ˆ 1

¢1…³1;2† ²3…³1;2†… _xx1 cos ³1 ‡ _yy1 sin ³1† ‡ 1

¢1…³1;2†
²4…³1;2† _³³1

¡ 1

¢1…³1;2† ²5…³1;2† _³³1;2 ‡
¢…³1;2†
¢1…³1;2†

½1;2; …159†

where ²3; ²4 and ²5 are de®ned in (157).

(i) Let d2 6ˆ 0: For v ˆ … _xx1; _yy1; _³³1; _³³1;2† 2 Dq; we have from (55)

_xx1 cos ³1 ‡ _yy1 sin ³1 ˆ ¸1d2 and _³³1 ˆ ¸2d2;

for ¸1; ¸2 2 : From this and from (92) we get

B4
3…³1;2†…Fx1

cos ³1 ‡ Fy1
sin ³1† ‡ B4

4…³1;2†F³1
‡ B4

5…³1;2†F³1;2

ˆ B4
6…³1;2† p ¡ B4

7…³1;2† _³³1;2 ‡ B4
5…³1;2† ½1;2: …160†

It is an easy calculation to show that

B4
6…³1;2† ˆdef 1

¢1…³1;2†
1

¢…³1;2†
‰²3…³1;2†r…³1;2† ‡ ²4…³1;2† sin ³1;2Š ˆ 1

¢1…³1;2†
A5

2…³1;2†;

with A5
2…³1;2† as de®ned in (99).

(ii) Let d2 ˆ 0: From equations (62) and (96), we get, similarly to case (i), the
desired result. &

Remark 2. Consider the unforced Roller Racer dynamics …¬e ˆ 0†: From equation
(146), the dynamics of the shape variable ³1;2 are �³³1;2 ˆ B4

1…³1;2† _³³1;2 p ‡ B4
2…³1;2† _³³

2
1;2:

It can be easily seen that the reduced Lagrangian lc; de®ned in equation (144), is
`conserved’ on the trajectories of this system.
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5. Controllability and motion control of the Roller Racer
We are interested in controlling a nonlinear system where the number of controls is
less than the dimension of its state space and whose tangent linearization is
uncontrollable . Tools from nonlinear control theory are, then, necessary to analyse
it. The discussion in this section follows Nijmeijer and van der Schaft (1990), unless
otherwise noted.

Consider the smooth a� ne nonlinear control system

_xx ˆ f …x† ‡
Xm

jˆ1

gj…x†uj ; …161†

where x are local coordinates for the smooth manifold M with dim M ˆ n and
u : ‰0; T Š ! U » m is the set of admissible controls. The unique solution of (161)
at time t t0 with initial condition x…t0† ˆ x0 and input function u… † is denoted
x…t; t0; x0; u† or simply x…t†:

The `reachable set’ RV …x0; T† is the set of points in M which are reachable from
x0 2 M at exactly time T > 0; following system trajectories which, for t µ T ; remain
in the neighbourhood V of x0: Consider also RV

T …x0† ˆdef S
tµT RV…x0; t†; the set of

points in M reachable from x0 at time less or equal to T :
The system (161) is locally `accessible’ from x0 2 M ; if, for any neighbourhood V

of x0 and all T > 0; the set RV
T …x0† contains a non-empty open set. If the system is

locally accessible from any x0 2 M ; then it is locally accessible. The system (161) is
locally `strongly accessible’ from x0 2 M; if, for any neighbourhood V of x0 and for
any T > 0 su� ciently small, the set RV…x0; T† contains a non-empty open set.

The `strong accessibility algebra’ C0 is the smallest subalgebra of the Lie algebra of
smooth vector ®elds on M containing the control vector ®elds g1; . . . ; gm; which is
invariant under the drift vector ®eld f ; that is ‰ f ; X Š 2 C0; 8X 2 C0: The `strong
accessibility distribution’ C0 is the corresponding involutive distribution C0…x† ˆ
fX…x† j X 2 C0g: Every element of the algebra C0 is a linear combination of
repeated Lie brackets of the form ‰Xk; ‰Xk¡1; ‰. . . ; ‰X1; gjŠ . . .ŠŠŠ; for j 2 f1; . . . ; mg
and where Xi; i 2 f1; . . . ; kg; k ˆ 0; 1; . . . belongs to ff ; g1; . . . ; gmg: Observe that
the drift vector ®eld f is not contained explicitly in these expressions.

Proposition 18. If the Strong Accessibility Rank Condition at x0 2 M is satis®ed,
that is if

dim C0…x0† ˆ n; …162†

then the system (161) is locally strongly accessible from x0: If the Strong Accessibility
Rank Condition is satis®ed at every x 2 M; then the system is locally strongly acces-
sible. If the system (161) is locally strongly accessible, then dim C0…x† ˆ n; for x in an
open and dense subset of M:

The system (161) is `controllable’, if, for every x1; x2 2 M; there exists a ®nite time
T > 0 and an admissible control u : ‰0; T Š ! U such that x…T ; 0; x1; u† ˆ x2:

For systems without drift (i.e. where f ˆ 0 in (161)), accessibility is equivalent to
controllability. However, this is no longer true for systems with drift and various
notions of controllability have been developed. Below we consider the notion of
small-time local controllability, for which relatively simple veri®cation tests have
been established, as well as links to the closed-loop control of non-holonomic
systems (Sussmann 1983, 1987, Coron 1995).
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The system (161) is `small-time locally controllable (STLC)’ from x0 2 M; if, for
any neighbourhood V of x0 and any T > 0; x0 is an interior point of the set RV

T …x0†;
that is a whole neighbourhood of x0 is reachable from x0 at arbitrarily small time
(Sussmann 1987).

In Sussmann (1983) , a condition for `lack’ of STLC is given for single-input
systems (see also the discussion on single-input systems in Sussmann (1987)).

Proposition 19. Consider an analytic a� ne nonlinear system with a single input, of
the form

_xx ˆ f …x† ‡ g…x† u; …163†

with juj µ 1; f …x0† ˆ 0 and g…x0† 6ˆ 0; for some x0 2 M: Assume that the bracket
‰g; ‰g; f ŠŠ…x0† does not belong to the linear span of the vector ®elds
fadj

f g …x0†; j ˆ 0; 1; . . .g: Then, the system `is not’ STLC from x0:

Certain nonlinear systems can be transformed, at least locally, into a linear con-
trollable system, via a state coordinate transformation and static state feedback. This
process is called `static feedback linearization’. Other nonlinear systems can be
transformed into a linear controllable system via dynamic state feedback and a
coordinate transformation involving the extended state of the system. This process
is called `dynamic feedback linearization’. As Pomet (1995) remarks, dynamic feed-
back linearization, as de®ned above, is equivalent to the concept of `di� erential
¯atness’ introduced by Fliess et al. (1995).

Remark 3. Charlet et al. (1989) and Pomet (1995) show that di� erential ¯atness is
equivalent, for single-input systems, to static feedback linearization, a necessary and
su� cient condition for which is provided in Nijmeijer and van der Schaft (1990).

Proposition 20. Consider system (161) with f …x0† ˆ 0: Assume that the strong acces-
sibility rank condition holds at x0: This system is static feedback linearizable if and only
if the distributions D1; . . . ; Dn de®ned by

Dk…x† ˆ spfadr
f g1…x†; . . . ; adr

f gm…x† j r ˆ 0; 1; . . . ; k ¡ 1g; k ˆ 1; 2; . . . …164†

are all involutive and constant dimensional in a neighbourhood of x0:
Assume further that this is a single-input system. This system is static feedback

linearizable around x0 if and only if dim Dn…x0† ˆ n and Dn¡1 is involutive around x0:

5.1. The reduced dynamics
In this section we only consider the reduced dynamics for the Roller Racer model
without external forces, other than the torque ½1;2 applied to the rotary joint (equa-
tions (154)).

For control purposes, we assume that p; ³1;2 and _³³1;2 are available from proprio-
ceptive sensors. The dynamics of the base variable ³1;2 for the system without exter-
nal forces (®rst of equations (154)) can be transformed into the form of a double
integrator by the nonlinear static state feedback

½1;2 ˆ 1

B4
5…³1;2†

‰u ¡ B4
1…³1;2† _³³1;2p ¡ B4

2…³1;2† _³³
2
1;2Š: …165†

Note that for d1 6ˆ d2; we have B4
5…³1;2† > 0; for all q 2 Q: Thus, after feedback

linearization, the reduced dynamics take the form
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dp

dt
ˆ A4

1…³1;2† _³³1;2 p ‡ A4
2…³1;2† _³³

2

1;2;
d³1;2

dt
ˆ _³³1;2;

d _³³1;2

dt
ˆ u: …166†

De®ning the state vector z ˆdef …p; ³1;2; _³³1;2†T 2 M ; where M ˆdef 2 S1; the reduced
dynamics (166) take the form of an a� ne nonlinear system with a single control
u 2 :

_zz ˆ f …z† ‡ g…z† u; …167†

with

f …z† ˆdef

A4
1…³1;2† _³³1;2p ‡ A4

2…³1;2† _³³
2

1;2

_³³1;2

0

0

BBB@

1

CCCA and g…z† ˆdef

0

0

1

0

BB@

1

CCA: …168†

The equilibria of this system are states ze 2 M where f …ze† ˆ 0: It can be easily seen
that these are of the form ze ˆ …pe; ³1;2e

; 0†T 2 M ; with pe 2 and ³1;2e
2 S1: In

particular, the origin z0 ˆ …0; 0; 0†T 2 M is an equilibrium.
The tangent linearization of the system (167) is `not’ controllable at equilibria,

since the matrix

µ
g

@f

@z
g

@f

@z

2

g

¶

ze

ˆ
0 A4

1…³1;2e
†pe 0

0 1 0

1 0 0

0

BB@

1

CCA

is singular.
De®ne

A4
3…³1;2† ˆdef

A4
1…³1;2†A4

2…³1;2† ¡
@A4

2…³1;2†
@³1;2

…169†

and, iteratively

A4
i‡1…³1;2† ˆdef ¡A4

1…³1;2†A4
i …³1;2† ‡

@A4
i …³1;2†

@³1;2

; for i ˆ 3; 4; . . . …170†

When d1 > d2; the roots ³?
1;2 of A4

2…³1;2† correspond to the solutions of ®…³1;2† ˆ 0;
that is to

³?
1;2 ˆ cos¡1 Iz1

d2

Iz2
d1

:

Notice that at roots of A4
2…³1;2† such that Iz1

d2 6ˆ Iz2
d1; we have ³?

1;2 6ˆ 0; º and

@A4
2…³?

1;2†
@³1;2

ˆ ¡ m1

¢2
Iz2

d1¶ sin ³?
1;2 6ˆ 0:

Thus, when A4
2…³1;2† ˆ 0 and Iz1

d2 6ˆ Iz2
d1; we have from (169) that A4

3…³1;2† 6ˆ 0:

Proposition 21. Assume d1 > d2 and Iz1
d2 6ˆ Iz2

d1: The reduced dynamics (167) are
locally strongly accessible from equilibria ze ˆ …pe; ³1;2e

; 0†T:

Proof. If ³1;2e
is such that A4

2…³1;2e
† 6ˆ 0; then spfg; ‰f ; gŠ; ‰‰f ; gŠ; gŠg…ze† ˆ 3:

If ³1;2e
is such that A4

2…³1;2e
† ˆ 0 and Iz1

d2 6ˆ Iz2
d1; then spfg; ‰f ; gŠ;

h
‰f ; gŠ;
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‰‰f ; gŠ; gŠ
i
g…ze† ˆ 3: In both cases, the system satis®es the strong accessibility rank

condition at ze: &

However, since system (167) is a system with drift, its accessibility does not imply
its controllability. In particular, it is possible to show that, under the parametric
condition which occurs most frequently in practice, the reduced dynamics are not
STLC from all equilibria

Proposition 22. Assume d1 > d2:

(a) Let Iz1
d2 > Iz2

d1: The reduced dynamics (167) are not STLC from all equilibria
ze ˆ …pe; ³1;2e

; 0†T:
(b) Let Iz1

d2 µ Iz2
d1: The reduced dynamics (167) are not STLC from all equilibria

ze ˆ …pe; ³1;2e
; 0†T such that cos…³1;2e

† 6ˆ …Iz1
d2=Iz2

d1†:

Proof. Observe that at equilibria ze we have g…ze† 6ˆ 0;

‰g; ‰g; f ŠŠ…ze† ˆ
2A4

2…³1;2e
†

0

0

0

BB@

1

CCA

and

spfadj
f g…ze†; j ˆ 0; 1; . . .g ˆ spfg…ze†; ‰f ; gŠ …ze†g ˆ sp

0

0

1

0

BB@

1

CCA;

A4
1…³1;2e

†pe

1

0

0

BB@

1

CCA

8
>><

>>:

9
>>=

>>;
:

Obviously, the bracket ‰g; ‰g; f ŠŠ …ze† does not belong to spfadj
f g…ze†; j ˆ 0; 1; . . . g

when A4
2…³1;2e

† 6ˆ 0: In this case, the lack of STLC of the reduced dynamics follows
from Proposition 19.

When d1 > d2 and Iz1
d2 > Iz2

d1; then A4
2…³1;2e

† 6ˆ 0; for all q 2 Q:
When d1 > d2 and Iz1

d2 µ Iz2
d1; then there are at most two discrete values of ³1;2e

;
speci®ed above, such that A4

2…³1;2e
† ˆ 0: &

Proposition 23. The reduced dynamics (167) are not static feedback linearizable
around equilibria ze ˆ …pe; ³1;2e

; 0†T:

Proof. The dimension of the state space is n ˆ 3: At the equilibrium ze; the distri-
bution Dn is

Dn…ze† ˆ sp

0

0

1

0

BB@

1

CCA;

A4
1…³1;2e

†pe

1

0

0

BB@

1

CCA

8
>><

>>:

9
>>=

>>;

and its dimension is strictly less than n: Thus, the result follows from Proposition
20. &

Remark 4. In view of Remark 3, the reduced dynamics (167) are neither dynamic
feedback linearizable, nor di� erentially ¯at.
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5.2. The full dynamics

The full dynamics of the Roller Racer (model without external forces other than the

torque actuating the rotary joint) are given by the reduced dynamics (equations

(154)) and by the group equations _gg1 ˆ g1¹1; where 1 2 SE…2†; ¹1 2 se…2† and ¹1 is

given by (105). Consider local coordinates …x1; y1; ³1† for g1 2 SE…2†: Letting

z ˆdef …³1; x1; y1; p; ³1;2; _³³1;2†T 2 M ˆ 6 and after feedback linearization of the

dynamics of the base variable (cf. equation (165)), the dynamics take the form of
an a� ne nonlinear control system, with the shape acceleration �³³1;2 being the single

control of the system:

_zz ˆ f …z† ‡ g…z† u; …171†

with u 2 and

f …z† ˆdef

1

¢…³1;2†
‰sin ³1;2 p ¡ ¯…³1;2† _³³1;2Š

cos ³1

¢…³1;2†‰r…³1;2† p ¡ ®…³1;2† sin ³1;2
_³³1;2Š

sin ³1

¢…³1;2†‰r…³1;2† p ¡ ®…³1;2† sin ³1;2
_³³1;2Š

A4
1…³1;2† _³³1;2p ‡ A4

2…³1;2† _³³
2

1;2

_³³1;2

0

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

and g…z† ˆdef

0

0

0

0

0

1

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

: …172†

The `equilibria’ of the system are states ze 2 M of the form ze ˆ
…³1e

; x1e
; y1e

; 0; ³1;2e
; 0†T 2 M ; that is states where, not only the shape ³1;2 is con-

stant, but also the non-holonomic momentum p is zero.

Remark 5. Based in part on the results for the reduced dynamics in section 5.1, it

can be shown that for d1 > d2; the full dynamics of the Roller Racer (equation (171))

are locally accessible from equilibria ze; but are not STLC from equilibria where

A4
2…³1;2e

† 6ˆ 0 and are not di� erentially ¯at. See details in Krishnaprasad and Tsakiris

(1998).

Remark 6. The above properties still hold for d2 ˆ 0: This is due to the non-zero

inertia Iz2
of the second platform.

Other undulatory locomotors, like the snakeboard, are known to be STLC

(Ostrowski and Burdick 1995). The non-trivial second term in the momentum equa-

tion (76) of the Roller Racer …A4
2…³1;2† _³³

2

1;2† plays a crucial role in its property of
being accessible, but not being STLC.

It is interesting to observe that, even though the Roller Racer resembles a unicycle

with one trailer which is hitched to a point displaced from the centre of the unicycle’s

wheel axis (also referred to as kingpin hitch) and this last system has been shown to

be di� erentially ¯at (Rouchon et al. 1993), the peculiar actuation scheme of the

Roller Racer makes it non-¯at.
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6. Simulation and experimental results
A computer-controlled prototype of the Roller Race was built at the Intelligent
Servosystems Laboratory (ISL) of the University of Maryland (®gure 5). The
assumption of our models that the only feature of the body motion of a Roller
Racer rider which is crucial to the propulsion of this mechanism is the swinging of
the steering arm around the pivot axis, was veri®ed using this and other similar
prototypes.

The models of the dynamics of the Roller Racer, which were developed in the
previous sections, were used in computer simulations of the system on Silicon
Graphics workstations and in Mathematica and Simparc (Astraudo and Borrelly
1992) simulations on SUN SPARCstations.

A periodic shape trajectory of period T1;2 of the form

³1;2…t† ˆ ³1;2…0† ‡ ¬1;2 sin…!1;2t ‡ ¿1;2†; …173†

with !1;2 ˆ 2º=T1;2 is used in the simulations. The average value of ³1;2 is ³1;2…0†.
Setting this average to p, as in ®gure 6, generates a `straight-line’ motion. Setting
³1;2…0† to a value other than p or zero, as in ®gure 9 (where ³1;2…0† ˆ 1:772 154 2 rad),
generates a rotation around the point where the axes of the platforms intersect when
the system is in the con®guration corresponding to this average value. Once momen-
tum has built up through periodic shape variations, we can stop varying the shape
periodically and use ³1;2 just to steer the system. In what follows, we give only a
sampling of our simulation results. For further details, see Krishnaprasad and
Tsakiris (1998). Movies of experiments with Roller Racer prototypes can be seen
on the home page of the Intelligent Servosystems Laboratory (URL: http://www.
isr.umd.edu/Labs/ISL/isl.html) and on the second author’s home page at FORTH
(URL: http://www.ics.forth.gr/ tsakiris).

6.1. Gaits
Consider the Roller Racer model without friction or external forces, except for the
joint torque needed to actuate ³1;2. The model parameters used in these simulations
are m1 ˆ 1, d1 ˆ 5, d2 ˆ 1, Iz1

ˆ 10; Iz2
ˆ 1 …Iz1

d2 > Iz2
d1†.

In all the …x1; y1† plots that follow, the system starts at (0,0) and is initially
oriented towards the positive x1-axis …³1 ˆ 0†.
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Figure 5. Roller Racer prototype.
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Figure 6. Forward translation: (a) x1 2 ‰0; 1000Š; (b) x1 2 ‰1000; 2000Š;
(c) x1 2 ‰2000; 3000Š; (d) x1 2 ‰3000; 4000Š; (e) x1 2 ‰4000; 5000Š.



6.1.1. Forward translation. When the initial shape angle ³1;2…0† is equal to p, the
system translates forward. In the present simulations, the system starts at
…x1; y1† ˆ …0; 0† pointing towards the positive x1-axis and the shape control has
amplitude of oscillation ¬1;2 ˆ 0:3 and frequency !1;2 ˆ 1.

In ®gure 6, the …x1; y1†-trajectory is shown. Figure 6(a) shows the initial part of the
trajectory: the system initially translates to the right, while oscillating about the x1-
axis. These oscillations become more pronounced as the momentum increases, giving
rise to elastica-like trajectory segments (cf. section 3.2.6. of Tsakiris 1995), which at
some point reverse direction and the system starts moving to the left, creating the
upper branch of the trajectory of ®gure 6. As we move from ®gure 6(a) to (e), we are
moving to the right of the x1-axis. The lower branch of the trajectory, the one that

corresponds to a translation of the Roller Racer to the right, is shown as a solid line.
The upper branch of the trajectory, the one that corresponds to a translation to the
left, is shown as a dotted line.

The group variable ³1 is shown in ®gure 7(a), showing that the system oscillates
with increasing amplitude as the non-holonomic momentum increases, but that the
average of this oscillation is zero. Thus, the system translates on a more or less
straight-line trajectory. The corresponding non-holonomic momentum p, which
increases on the average, is shown in ®gure 7(b).

6.1.2. Backward translation. When ³1;2…0† ˆ 0, the system translates backwards.
In the present simulations, the system starts at …x1; y1† ˆ …0; 0† pointing towards
the positive x1-axis and the shape oscillation has amplitude ¬1;2 ˆ 0:1 and fre-
quency !1;2 ˆ 1. The corresponding group variables …x1; y1; ³1† are shown in ®gure
8. Observe that y1 and ³1 merely oscillate around zero, while the magnitude of x1

increases.

6.1.3. Pure rotation. When the instantaneous centre of rotation of the system is,
on the average, at the middle of the rear wheel axis, that is when ³1;2…0† is a root
of r…³1;2† ˆ 0, which we denote as ³rˆ0

1;2 , the Roller Racer rotates without translat-
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Figure 7. Forward translation: (a) angle ³1; (b) non-holonomic momentum p.



ing (on the average). This can be seen in ®gure 9 for a clockwise rotation with

³1;2…0† ˆ ³rˆ0
1;2 ˆ 1:772 154 2 rad.

When the average of the shape oscillations …³12;…0†† is not set to 0, p or ³rˆ0
1;2 , the

system rotates around the average position of the instantaneous centre of rotation.

6.2. Geometric and dynamic phase
Consider a periodic shape variation of the type of equation (173) corresponding to
forward translation of the system with ³1;2…0† ˆ p, ¬1;2 ˆ 0:1 and !1;2 ˆ 1. We con-
sider the momentum equation without friction (equation (76)).

The notions of `geometric’ and `dynamic phase’ (Marsden et al. 1990, Bloch et al.
1996) describe how much the system moved after one period of the oscillatory
controls. The group velocity, given by the reconstructed group motion equations
(142)

¹1 ˆ g¡1
1 _gg1 ˆ ¡Aloc…³1;2† _³³1;2 ‡ ¡1

loc…³1;2†p …174†

is composed of two parts: the system motion due to the ®rst term ¡Aloc…³1;2† _³³1;2

(where the non-holonomic momentum plays no role) is called the `geometric phase’,
while the system motion due to the second term ¡1

loc…³1;2†p is called the `dynamic
phase’. Thus, the geometric phase is

„ T1;2

0 _gg1…t† dt, with _gg1…t† ˆ ¡g1…t†Aloc…³1;2…t††
_³³1;2…t† and the dynamic phase is

„ T1;2

0 _gg1…t†dt, with _gg1…t† ˆ g1…t† ¡1
loc…³1;2…t††p…t†. The

dynamic phase obviously depends on the initial value of the momentum p…0†. In the
simulation results presented below, we suppose that the system starts at rest, that is
p…0† ˆ 0.

The components of x1; y1 and ³1, that are due to each of the above two terms, are
shown in ®gure 10. It is easy to see from this ®gure that the geometric phase, over
one period of the periodic shape controls, is zero (this is shown by the curves marked
`(x, y) geom’ and `th geom’ in the ®gures). In ®gure 10(a), the contribution of `(x, y)
geom’ is the swallowtail to the left of point (0,0). In ®gure 10(b), the curve `th geom’,
an oscillation around zero, initially overlaps the curve `th total’. These simulation
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(a) (b)

Figure 8. Backward translation: (a) angle …x1; y1†-trajectory; (b) ³1-trajectory.



results show that the geometric phase in this case is zero. However, the dynamic
phase is not zero. In ®gure 10(a), the curve `(x, y) dyn’ has an evident non-zero
component in the x1-direction, while the motions in the y1 and ³1 directions are,
again, oscillations around zero.

6.3. Parametric study of the system
In the present section, we study the dependence of the motion of the Roller Racer,
for the model without external forces, on the amplitude and the frequency of the
sinusoidal shape controls (equation (173)).

Figure 11 shows the evolution of the group variables x1; y1; ³1 for a forward
translation of the system …³1;2 ˆ p; !1;2 ˆ 1:0† and for control oscillation amplitude

¬1;2 varying from 0.1 to 1.0. Figure 11(a) shows the evolution of x1, ®gure 11(c)
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(a) (b)

Figure 9. Clockwise rotation by p=2: (a) (x1; y1)-trajectory; (b) ³1-trajectory.

(a) (b)

Figure 10. Geometric and dynamic phase: (a) …x1; y1†-trajectory; (b) ³1-trajectory.



shows this of y1 and ®gure 11(d) shows this of ³1 all for a time duration of four time
periods of the controls, while ®gure 11(b) shows the evolution of x1 for a bigger time
duration of 20 time periods of the controls. It is obvious that y1 and ³1 merely
oscillate around zero. This is not the case for x1. Figure 11(a) shows that for
short times (of 1±2 periods of the controls), the bigger ¬1;2 is, the bigger the system’s
forward motion. However, as can be seen in ®gure 11(b), this is no longer true for
longer time periods. From the above it appears that small-amplitude motion gives
forward translation without too much oscillation in the group variables, which
closely approximates a straight-line motion.

Consider now the e� ect of the frequency !1;2 on the group variables x1; y1; ³1. We

vary the frequency from 0.1 to 1.0, while ³1;2…0† ˆ p and ¬1;2 ˆ 0:1:
Figure 12 shows the …x1; y1†-trajectory of the system for !1;2 ˆ 0:1, superimposed

to the corresponding trajectory for !1;2 ˆ 1:0, for a time duration of 2T1;2 (40p and
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(c) (d)

Figure 11. E� ect of the amplitude ¬1;2 on x1; y1; ³1: (a) x1 for a duration of 4T1;2;
(b) x1 for a duration of 20T1;2; (c) y1 for a duration of 4T1;2; (d) ³1 for a duration
of 4T1;2.



4p seconds respectively). Figure 12(a) shows the initial part of the trajectory, where
non-holonomic momentum is low, and ®gure 12(b) shows a later part of it, where
non-holonomic momentum is higher. The trajectory corresponding to !1;2 ˆ 1:0
appears as a solid line, while the one for !1;2 ˆ 0:1 appears as a dotted line. When
non-holonomic momentum is low, the trajectories for !1;2 ˆ 1:0 and !1;2 ˆ 0:1 are
geometrically almost the same (®gure 12(a)); it is the time traversal of the trajectory
that becomes faster as !1;2 increases. However, as non-holonomic momentum
increases, both the geometry of the trajectory and its time traversal become di� erent
(®gure 12(b)).

6.4. Model with friction
6.4.1. Forward translation. We consider the Roller Racer model with friction
(momentum equation (98)) with the following parameters (in addition to the ones
mentioned earlier): k1 ˆ k2 ˆ 0:01, R1 ˆ R2 ˆ 0:5, L1 ˆ 1, L2 ˆ 0:25. The control
input (173) is considered with ³1;2…0† ˆ p, ¬1;2 ˆ 0:1 and !1;2 ˆ 1:0. The non-holo-
nomic momentum corresponding to this control is shown in ®gure 13. Comparing
this with ®gure 7(b), we observe that, contrary to the continuously increasing, on
the average, momentum p of ®gure 7(b), here, each shape oscillation pumps just
enough energy into the system to overcome friction. This is similar to the real sys-
tem’s behaviour observed by the prototypes built at ISL.

6.4.2. Parallel parking. We now set the friction coe� cients to k1 ˆ k2 ˆ 0:1,
leaving the rest of the parameters as before. In order to create a `parallel parking’
behaviour, the idea is to generate a motion in the Lie-bracket direction by ®rst
translating forward, then rotating clockwise, then translating backwards and ®nal-
ly rotating counter-clockwise. The ®rst step corresponds to a shape oscillation
with average p, for a few periods, the second step corresponds to a shape oscilla-
tion with average ³rˆ0

1;2 , the third step corresponds to a shape oscillation with aver-
age 0 and the ®nal step corresponds to a shape oscillation with average ¡³rˆ0

1;2 .
This sequence of shape controls is shown in ®gure 14(b), where, starting with a
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(a) (b)

Figure 12. E� ect of the frequency !1;2 on …x1; y1†-trajectory: (a) low p; (b) high p.



basic shape oscillation of the type of equation (173) with amplitude ¬1;2 ˆ 0:1, fre-
quency !1;2 ˆ 1:0 and period T1;2 ˆ 2p=!1;2, we reset its average as was described
above. The whole cycle lasts 30T1;2, after which we restart at p (shown as ¡p in
®gure 14(b)). The corresponding …x1; y1†-trajectory is shown in ®gure 14(a).

7. Conclusions
The present work is aimed at revealing some of the rich mathematical and physical
structure associated with a speci®c mechanical system that is underactuated. Part of
our fascination with this system derives from the drive to understand how it works at
all! As shown in this paper, the interplay between the symmetries and the constraints
is crucial to this understanding. Additionally, Lie algebraic analysis reveals both the
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Figure 13. Model with friction: forward translation: non-holonomic momentum p.

(a) (b)

Figure 14. Model with friction: parallel parking manoeuvre: (a) …x1; y1†-trajectory;
(b) ³1;2-trajectory.



capabilities and the limitations of such an underactuated system. The ®rst draft of
this paper was provided to the organizers of a workshop at the IEEE Conference on
Decision and Control in Kobe in December 1996. (After the ®rst draft of this paper
was completed, in the summer of 1997, we received a preprint of Zenkov et al.
(1998), which investigates the stability of relative equilibria of the `unforced’
Roller Racer as an application of a general theory of stability of non-holonomic
systems.)

The present paper also explores via simulation certain motion control questions:
speci®cally, controls for generating translational and curved motions, as well as
parking manoeuvres. The in¯uence of dissipation is also considered in some detail.
Much remains to be done to understand the problem of constructive control for the
Roller Racer. Models of the type used here may prove to be of interest in under-
standing problems of locomotion in biology and in bio-mimetic robotic systems.
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Appendix. List of symbols
Ai Basis element of Lie algebra G
A[

i Basis element of dual space G of Lie algebra G
Aloc…³1;2† Local form of non-holonomic connection
A4

i …³1;2† Auxiliary function …i ˆ 1; 2; 3; . . .†
A5

i …³1;2† Auxiliary function …i ˆ 1; 2; 3†
B4

i …³1;2† Auxiliary function …i ˆ 1; . . . ; 5†
Dq Constraint distribution
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Dk…x† Distributions related to static feedback linearization
di Distance of centre of platform i from the rotary joint

…Fx1
; Fy1

; F³1
; F³1;2

† Components of external forcing one-form ¬e

f …x† Drift vector ®eld of a� ne nonlinear control system
G Lie group
G Lie algebra of Lie group G
G Dual space of Lie algebra G
Gq Set of Lie algebra elements with in®nitesimal generators in Sq

g Element of Lie group G
gj…x† Control vector ®eld of a� ne nonlinear control system
Hq Horizontal subspace of principal bundle …Q; S; º; G†
Hq Orthogonal complement of Sq with respect to Dq

I…q† Locked inertia tensor relative to Gq

Izi
Moment of inertia of platform i

ki Friction coe� cient of wheels of platform i
L Lagrangian
Li Length of wheel axis for platform i
mi Mass of platform i
Orb…q† Orbit of q 2 Q under action ©
p Non-holonomic momentum
Q Con®guration space
q Element of con®guration space Q
…Q; S; º; G† Principal ®bre bundle
R Rayleigh dissipation function

Ri Wheel radius for platform i
r…³1;2† Auxiliary function
S Shape space
Sq Intersection of constraint distribution Dq with Tq Orb…q†
SE…2† Special Euclidean group of rigid planar motions
se…2† Lie algebra of the Special Euclidean group SE(2)
TqQ Tangent space to q 2 Q
T1;2 Period of shape control
Uq Orthogonal complement of Sq with respect to Tq Orb…q†
Vq Vertical subspace of principal bundle …Q; S; º; G†
…x; y; ³† Coordinates of g 2 SE…2†
…x1; y1; ³1; ³1;2† Coordinates of Roller Racer con®guration space

Q ˆ SE…2† S1

z State of a� ne nonlinear control system
ze Equilibrium of a� ne nonlinear control system

Greek symbols

¬1;2 Amplitude of shape control

¬e External forcing 1-form

­ …³1;2† Auxiliary function

¡k
i; j Structure constants of Lie algebra

®…³1;2† Auxiliary function

¢…³1;2† Auxiliary function

¢1…³1;2† Auxiliary function

¯…³1;2† Auxiliary function
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²i…³1;2† Auxiliary function …i ˆ 1; . . . ; 5†
³1;2 Angle of Roller Racer rotary joint

¶…³1;2† Auxiliary function

¸i Auxiliary velocity …i ˆ 1; 2†
¹ Element of Lie algebra G
¹Q…q† In®nitesimal generator of action © corresponding to ¹ 2 G
¹Qi Basis element of Dq

¹H
Q Basis element of Hq

¹U i

Q Basis element of Uq

¹Qq Basis element of Sq

º : Q ! S ˆ Q=G Canonical bundle projection

½1;2 Torque applied by motor to the rotary joint

© Action of a Lie group on a manifold
©…t; t0† State transition matrix

¿j;i Angle of jth wheel of platform i

!1;2 Frequency of shape control

!i
q Non-holonomic constraint 1-forms

Miscellaneous symbols

& End of proof
‰ ; Š Lie bracket of Lie algebra G
½ ; ¾ Kinetic energy inner product
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