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Stabilization of Rigid Body Dynamics by
- Internal and External Torques*

" A. M. BLOCH,f P. S."KRISHNAPRASAD,} J. E. MARSDENS and G.
' : SANCHEZ DE ALVAREZ||

The energy-Casimir method - from geometric mechanics yields specific
internal torque feedback laws that stabilize the dynamics of a rigid body
about an otherwise unstable axis and attitude Phase drifts can be computed

for nearby motions.

.

Key Words—Stabilizers; feedback control; satellite control; attitude c;)ntrol; dynamic stability.

Abstract—In this paper we discuss the stabilization of the
rigid body dynamics by external torques (gas jets) and
internal torques (momentum wheels). Our starting point is a
generalization of the stabilizing quadratic feedback law for a
single . external torque recently analyzed in Bloch and
Marsden [Proc. 27th IEEE Conf Dec. and Con., pPP-
2238-2242 (1989b); Sys. Con. Letts., 14, 341-346 (1990)] with
quadratic feedback torques for internal rotors. We show that
with such torques, the equations for the rigid body with
momentum  wheels are Hamiltonian with respect to a
Lie—Poisson bracket structure. Further, these equations are

shown to generalize the dual-spin equations analyzed by’

Krishnaprasad [Nonlin. Ana. Theory Methods .and App.,. 9,
1011-1035 (1985)] and Sénchez de Alvarez [Ph.D. Diss.
(1986)]. We establish stabilization with a single rotor by
using the energy-Casimir method. We also show how to
realize the external torque.feedback equations using internal
torques. Finally, extending some work of Montgomery [Am.
J. Phys., 59, 394-398°(1990)], we derive a formula for the
attitude drift for the rigid body-rotor system when ‘it is

" perturbed away from a stable equilibrium and we indicate

how to compensate for this.
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1. INTRODUCTION

THE PROBLEM of stabilization of the rigid body
and systems of rigid bodies is of importance for
numerous practical applications. There has been
much work recently on stabilizing the angular
momentum equations and attitude equations of
the rigid body with n =2 torques. Work in this
area includes that of Baillieul (1981), Bonnard
(1986), Brockett (1976, 1983), Crouch (1986),
Aeyels  (1985a,b),  Krishnaprasad ~ (1985),
Sanchez de Alvarez (1986, 1989), Aeyels and
Szafranski '(1988), Sontag and Sussman (1988),
and Byrnes and Isidori (1989).

A related area where there has also been
much progress, is the problem of analyzing the
stability of coupled rigid and flexible bodies. A
method of analysis based on ideas of geometric
mechanics for these systems (including dissipa-
tion) was introduced in Krishnaprasad (1985),
Krishnaprasad - and Marsden (1987), and
Baillieul and Levi (1987). In particular, stability
of a rigid body with flexible attachment was
analyzed in the body frame by the energy-
Casimir method developed by Arnold (1966) and
further developed by Holm et al. (1985). (The
method has a long history, special cases of which
can be found already in the last century in the
work of Riemann (1860) and Poincaré (1885) on
gravitating fluid masses.) In this method, energy
and momentum are used together to prove
Lyapunov stability. More. recently, a variant of
this method called the energy —momentum
method, where the stability analysis is in the
material representation, has -been developed.
See, for example, Simo et al. (1990, 1991).

Bloch and Marsden (1989b, 1990) showed that
the energy-Casimir method could be used to
prove a stabilization result, namely that the
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angular momentum equations of the rigid body
can be stabilized about the intermediate axis of
inertia by a single external torque applied about

the major or minor axis. Moreover, , they showed

that there was an interesting -Lie—Poisson
structure associated with the system. This gave a

quite different feedback law and method of -

analysis for a closely related result originally due
to Aeyels (1985).

A striking feature of the analysis is that there ‘
are still conserved quantities, even while torque’

is being applied. This leads one to conjecture
that the feedback might be realizable as an
internal torque between the rigid body and an
attached rigid body or bodies. We show in this

paper that the externally stabilized feedback -
system may be realized as a rigid body with three . .

internal rotors. Our analysis is based on the
original analysis of this system by Krishnaprasad
(1985) (see also Sadnchez de Alvarez (1986)). In
fact, we show that the three internal rotors can
realize any external torque feedback for the rigid
body. “Moreover, we show that a-- particular
choice of internal tofques for body-rotor system
makes this system behave precisely hke thé
classical heavy rigid body. - -«

"We go on, however, to-do more than thls We
analyze the rlgld body with internal rotors with
certain quadratic feedbacks that make the rigid
body=-rotor system Hamiltonian with respect to a
Lie=Poisson bracket. -We -show that with a
specific choice-of feedback, the. rotors rotate at
constant angular velocity—i.e. we obtain as a
special case, “the’ driven dual" spin satellite as
analyzed by Krlshnaprasad (1985) and Sanchez
de Alvarez (1986).

Thus, we have produced a further class of
systems that, despite “having feedback torques,
are Hamiltonian. :In. fact, we show -that under
certain integrability conditions, even under cubic
feedback, we get Hamiltonian systems. Some
additional information"on when control systems

can be expected to be Hamiltonian starting. with-
a Lagrangian -point of view and the Lagrange—

d’Alembert variational: principle ‘is 'given' 1in
Krlshnaprasad and Wang (1990). .

We then. discuss the Hamlltoman structure of
the single rotor case and.show that we can again
prove  stabilization of the system about the
intermediate axis for sufficiently large torque by
using the energy-Casimir- method. Related to
this Hamiltonian' structure is' the existence of
conserved quantities 'in - other. forced systems,
such as the kinematic. chains of ‘Baillieul (1987)
and Baillieul and Levi (1991). The question of
stabilization of -Hamiltonian control systems has

been considered, ‘although in a rather different
fashion ‘by van der Schaft (1986) (see also van

der Schaft (1982)). :

We then show, using the work of Marsden et
al. (1990), Krishnaprasad (1990) and Montgo-
mery (1991), (see also Levi (1990)) on geometric
phases, how an attitude drift can occur if the
body is perturbed away from a stable equi-
librium. Generalizing a formula of Montgomery
(1991), we show how to calculate this drift

. precisely and indicate how to compensate for it.

“The outline of the paper is as follows. First we

" present the rigid body with a single external

torque. We introduce feedback, discuss the

.- Lie— Poisson structure of the system, and recall
the stability result proved in Bloch and Marsden
.(1989b, 1990). We also show how this feedback

system is indeed the generalized (possibly
indefinite) rigid body. Next,.we show how to
realize the rigid body with external torque as a
system with three internal rotors. We then
discuss the body-rotor system with quadratic
feedback and its Hamiltonian structure, -as well
as the cubic feedback case. In the next section
we discuss stabilization by one rotor with
quadratic feedback using the energy- -Casimir
method.

Finally, we discuss ‘the questnon of attitude
drift and how to compensate for it. We rémark
that the work discussed above on phases may be
useful here .when used in conjunction with the
work on chaos in ‘mechanical system using
Melnikov’s, method, as was done in Oh et al.
(1989).

- Another thing that can be done with the 1deas
heré is the following. Suppose that one wanted
to control a, satellite to rotate stably about its:
intermediate axis, and.that this is done by means
of the techniques of this paper, say through'
internal rotors. Then one uses geometric phases
to reorient the body. One way to do this is to
relax the control so the body becomes unstable,
then let it go unstable so it will swing around its’
homoclinic orbit, and when it comes back to the
opposite 'saddle” point, one imposes the stabi--
lizing control again. One can also help initiate
motion along the homoclinic orbit using a linear;
control near the saddle point, as in Bloch and
Marsden (1989a). Some of these ideas are
reminiscent of those in Beletskii (1981). This
maneuver achieves a reorientation of 180° about-
the body’s long axis, but one can imagine -
reorienting it using more general phases. We
remark " that -this kind of ‘control could ‘be very-
useful in ceftain circumstances as it is both fast
and energy-efficient since it uses ‘the natural-
dyrnamics of the system to achieve most of the '
reorientation, rather than control torques. (For
further details,. see Bloch and Marsden (1989a) )
See also Section 6. :
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2. THE RIGID BODY ‘WITH AN.EXTERNAL
o TORQUE _

" The rigid body equatlons with a single torque
about the minor axis are given by

L 12_13
W, = I w,ws,
, 1
L—-1 . '
d)2= 31 41 W3Wq, - (2'1)
A ‘ ) ) ~
L -1 -
@3'_"11 20)1@2"‘“,
3 )

where the [; are the principal moments of inertia
and we assume for the moment that I, > 1, > L.
There are no essential changes in the analysis if
the torque is taken about the major axis. Now
let us implement the feedback torque

L-b -

U=—€-
£3

0w, T 9(2.2)

Making the transformation’ ‘to "‘the  classical
momentum variables m; =1 w;; 1=1;2, 3 the
equations of motion become cy :

nty _-a1m2m3)

m2=a2m3m1,‘ . . (23)
‘ L om= ay(1— s)rnlmz; ‘ '
where L
a 12_13. a I "I and ) Il ;—12
=0, - » as = .
VYA ¥ Y

Remarkably, this feedback system (2 3) has two
constants of motion.

Lemma 2.1. The functions

1 ml m;m%l -
e (e L)
N AY A A

_ 2.9
and .

F = 2(’"1(1 —&)+ m2(1 = 5) + m3) (2 5)‘

are constants of the motion (we assume ¢ #1 for,

the moment).

The proof is a straightforward computation.
Given these constants of the. motion—an
energy-like quantity and a. momentum-like
quantity, one might ask whether this feedback
system is a Hamiltonian-system. This is-in fact
true—this system, like the free rigid body, is'a
Lie-Poisson system. To. explain this, we recall
the theory of Lie—Poisson.systems; see also, for
example, Holmes and Marsden (1983), Krish-
naprasad (1985), and Krishnaprasad and Mars-
den (1987).

Let G be a Lie group (such- as the special
orthogonal group SO.(3)). and let its Lie algebra

be denoted by g and its dual (as.a vector space)
by g*. For a smooth function F:g*—>R we
define its functional derivative 6F/6u:g* —>q
by

DF () 64 = <5—M, ou),

where DF (u) - u is the directional derivative—
the derivative of F at u in the direction of
dueg*, where 8F/Su is" understood to be
evaluated at the point y € g*, and where (, ) is
the pairing between the vector space g and its
dual g*. We then define the + Lie— Poisson
brackets of two functlons F and K deﬁned on g*
by

6F 6K]> e
o’ oul/”
where [, ] is the Lie algebra bracket on g. We
denote by g¢i the (Poisson) manifolds g*
equipped with the Poisson bracket {F K}, or
{F, K}_. One can identify the space g* with the
reduced space T*G/G where T*G is the
cotangent bundle of G. For the rigid body,
G=S0(3) is the conﬁguratlon space and
T*SO (3) is the full phase space of configura-
tions'.and momenta. The reduced space is
5o (3)* =R® and is identified with the space of
body angular momenta, m. The (minus)
Lie—Poisson bracket is given on functions of m
by the triple product

7’{F, G}(m)=-—m- (VF X VG),

and the Euler equations of free rigid body
motion are simply given by

m={m, H},

{F K}i(u‘) = :t<u, [

where H is the rigid body Hamiltonian given by
1 my - mzl m%
H=: (— + 2
. 2\L o n
In our controlled case, we, 51m11arly have
Proposztzon' 2.2. The controlledr'system'(2.3) is

Lie—Poisson with Hamiltonian Hg with respect
to the Lie—Poisson structure :

{F, G}e==VME - (VFXVG).  (2.6)

- This 'follows from checking that iy, =

{m;, HeYg, i=1,2;3. (For a discussion of .

Lie-Poisson systems see, for example, Krish-
naprasad (1985) and references therein.)- :

There are "three other canonical Poisson
structures - associated with the system. (2.3),
which are - discussed in. Bloch and Marsden
(1989b). Note also, as pointed out in the latter
paper, that for £ <1, the invariance group of the
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Lie—Poisson bracket (2.6) is SO (3), while for
e>1, it is SO(2,1). . Thus, we have -a
deformation of the structure with the parameter
e. (Deformations of Poisson structures are

discussed in Weinstein (1983).) In fact, we can

show that (2.3) are generalized rigid body
equations. The generalized - rigid body is
discussed in Abraham and Marsden (1978) and
in Arnold (1978); for £ > 1, we get an indefinite
rigid body, which is discussed in the work of
Klein (1897). '

Theorem 2.3. The equatlons (2.3) are the
generalized rigid body (Euler) equations for the
Lie group Gy={A|AeSL(3), ATZA=%},
where X is the quadratic form given by
S=diag(1-¢)~', 1—¢)"', 1).

Proof. We use the fact (see, for example,
Marsden et al. (1983)) that any Lie—Poisson
system is the reduction of the system on T*G
obtained by declaring the Hamiltonian to be left
invariant on the corresponding group, in this
case, G = Gs. Note that (2.6) is the Lie—Poisson
bracket (with a minus sign, hence we take a left
invariant extension) for the group Gz with My a
Casimir. One can ‘check explicitly that the
€quations may be writteén in Eulerian form as

i = Az VHg(m),

where Ay is the Poisson tensor:

0 _m3 (1 - E)mz
As= ms 0 —-(1-¢&)m,
-(1-¢&)m, (1-¢)m, 0

Bloch and Marsden (1989b) -analyzed stabi-
lizability ‘of the free rigid body system about its:
intermediate axis using ' the feedback ="
—easm,m,. this is equivalent to analyzing
stability of the closed loop system (2.3). Of
course, since the system is Hamiltonian and
there is no damping,. we ‘are concerned-here with
Lyapunov stability, not asymptotic stability.
Recall that an equlllbrlum point u, of a
dynamlcal system o =X(u) is. said to be
Lyapunov stable if for any neighborhood U of
u,, there is a neighborhcod V of u, such that
trajectories u(¢) initially inV never leave U. In
problems considered here, once Lyapunov
stability has been established, it is straightfor-
ward " to . obtain - .asymptotic -stability. by: -the
addition of velocity feedback (see Bloch er al.
(1991)). ;While this . paper- considers- Lyapunov
stability :of. equilibrium points -of . the- reduced
system . in = momentum space, . these, points
correspond .to. orbits. in the full phase space—
such;solutions are ;called relative. equilibria. Our

stability results then imply the Lyapunov orbital
stability of rotational motion about a particular
axis.

Note first that (2.3), linearized about the
(relative) equilibrium (m,, m,, m3)= (0, M, 0),
has one zero, one. stable and one unstable
eigenvalue for € <1, but has one zero-and two
imaginary eigenvalues for &£>1. Hence we
cannot use linearization to conclude stability for
£>1. To prove stability we will determine a
suitable Lyapunov function. For this we will use
the energy-Casimir method. We describe this

method - below and carry out -a. detailed .

computation in Section 5. The energy-Casimir
method shows in fact. that the system is
(non-linearly) stable for £>1. For £=1 the
system is gyroscopically stable (all nontrivial
orbits are periodic). - .

Recall that the energy-Casimir method. for
determining stability “provides a systematic
procedure for determining a Lyapunov function
for Hamiltonian systems defined on Poisson
manifolds P, i.e. manifolds equipped with a
Poisson bracket operation {,} on the space of
real valued functions on P that makes them into
a Lie algebra and which is a derivation in each
variable (see for example, Holm et al. (1985) and
Krishnaprasad and Marsden (1987)). The point
is that on such manifolds, there often exist
Casimir functions, that. is, functions C that
commute with every other dynamical variable

under the bracket operation. If we have a -

Hamiltonian system with Hamiltonian H, the
equation of motion for any dynamical variable F
if given by F={F, H}. Hence the Casimir
functions are all conserved under the flow. The
procedure -of determining stablhty is then as
“follows. : . .. - e

(1) Consider conserved quantltles of the form
H + C, where H is the energy and C is a Casimir
function (or; in' some" examples, a Casimir
function plus another conserved quantity).

(2) Choose C-such that H +C has a critical
pomt at the (relatlve) equlhbrlum of interest.

“(3) Definiteness ' of the second variation of
H + € at -the .critical point s -sufficient for
Lyapunov stability (at.least in finite dimensions—
the. infinite dimensional case is; discussed in .the
cited references). -

In. our situation,-we use the; energy HF and the
Casimir Mg. It is easy to check that Mg is indeed
a Casimir—it commutes with every dynamical
variable under the Poisson bracket {,}r: We
omit the proof here but state the theorem.

Theorem 2.4. The rigid body:,equations with a
single torque about the minor axis and with
feedback u = —easm;m,, i.e. the system (2.3), is
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stabilized about the relative --~equilibrium
(my, my, my) = (0, M, 0) for £>1.

3. RECOVERY OF THE EXTERNALLY TORQUED

v SYSTEM AND THE HEAVY RIGID BODY

As discussed in the Introduction, the fact that
the system of Section 2 with external torque
feedback has conserved quantities and a
Lie-Poisson structure, leads one to ask if there
is a mechanical extension of the system to larger
system where the closed loop dynamics is
realized by an internal torque feedback. In this
section we show that such a mechanical
extension does indeed exist—a rigid body
carrying three symmetric rotors with associated
internal torques. The Lie-Poisson structure and
stability of this system was first -analyzed by
Krishnaprasad (1985) and also by Sinchez de
Alvarez (1986).

Consider a rigid body carrying one, two or
three symmetric rotors. Denote the system
center of mass by 0 in the body frame and at 0
place a set of (orthonormal) body axes. Assume
that the rotor axes are aligned w1th prmmpal
axes of the carrier body.

The configuration space of the system is
SO (3) x §* x §' x ' with tangent space denoted
T(SO(3) x ' x §' x §Y). :

Let Hbody be the inertia tensor of.the carrier
body, l,o,, the diagonal matrix of rotor inertias
about the principal axes and [, the remaining
rotor inertias about ‘the -other axes. Let
Dock = lhody + lrotor + liotor be the locked inertia
tensor (i.e. with rotors locked). of .the full
system; this definition coincides with the usage in
Marsden et al. (1989).

The Lagrangian (kinetic energy) of the free
system is the total kinetic energy of the body
plus the total kinetic energy of the rotor, i.e.

2(9 l]bodysz)"*'Zgz l]mtor .
+3HR+ Q) oo + Q) ERY)
= %(Q) I]lock‘._ Hroltor)g) )
+3HQ+Q) Lo+ Q), (3.2)
where Q is the vector of body angular velocities
and Q, is the vector of rotor angular velocities
about the principal axes with respect to a body
fixed frame.

By the Legendre transform, the conjugate
momenta are: C

*aL

- m-=. ey (I]lock - lLotor)sg +'ﬂrotor(Qv + Qr)
= nlockg + []rotor i ’ : ’ (33)
oL i
l= = boor(R2 + Q,), 3.4

aQ,
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and the “equations of motion with internal
torques (controls) u in the rotors are

m=mxQ=mX (lox — biotor) '(m—1), (3.5)
=u (36

We - now show how to recover the feedback
equations with a single external torque from
Section 2. To do so, it is convenient to use the
variables 7 =m — [ and I. Let | = [, ~ l,o40r (for
explicit computation we will let lyoqy =

diag (11, b, L) as before and let I = o — lopor =
diag (I, L, L)). Then we get the equations

a=(m+)x1"'r—u, 3.7
I=u. (3.8)

Theorem 3.1. There is a choice of internal
torque feedback u(m, /) such that the body
dynamics in the system (3.7)—(3.8) are precisely
those of -system (2.3) (with external torque .
feedback).

Proof. Firstly set
u(m, ) =1x1"'7 —u'(x), (3.9
so the system (3.7)—(3.8) becomes:
7 =a X1 w+u' (), (3.10)
[=1x1""n —u' (). (3.11)
Now suppose that [ = diag (I, 12, L), 11 > I2 >

and
0

u'(n)= 0 . (3.12)
. _038-71:].71:2
Here ay, a,, and a5 are defined as in Section 2,
= (7, 72, m3)7, and I =(l;, b, I5)". Then the
equations (3.7), (3.8) reduce to
Ty = a1 70,713,
7Ty = ay7t3m,

73 =a3(1 — €)m,m,,

j b b
UL ) A - (3.13)
s hLry Ly
12=_~—_T‘,4

=20+ em) = 2 (1 + emy),
I I,
in which the 7 equations are precisely (2.3).

In fact, we see from (3.10) and (3.11) that we

- can realize any external torque feedback for the

rigid body with our rigid body plus rotor system.
Consider now the following interesting case.
Let m=m +1 as before and take as controls
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u'(m, m). Then (3.10) and (3.11) may be written

a=ax1"'\x+u'(x, m), ’
. . (3.14)
m=mXx[l""m.

“In particular we have the following.

Proposition 3.2: For u'(x, m) = —Cy X m where
C is a constant,-and ¥ is a constant (body fixed)
vector, the equation (3.14) are the equations: for
the heavy top. Hence these admit the conserved
Hamiltonian H=3x-0"'7+ Cx-m and kine-
matic conserved quantities (Casimir functions),
C,=|m||* and C,= 7 - m.

This may be verified by referring to the heavy
top equations in Marsden et al. (1984). The
equations are Lie~Poisson on- the dual of the
Euclidean Lie algebra se(3)

4. THE HAMILTONIAN STRUCTURE OF TH'E
RIGID BODY WITH THREE ROTORS UNDER
FEEDBACK

The equations of motion for the three rotor
system with internal torque controls are

rr=mx Q=m X (hoo — bowr) "M = 1), (4.1)
I=u ' 4.2)

We have the following result:

Theorem 4.1. For the feedback
boior) '(m = 1)), (4.3)

where k is a constant real matrix such that the
matrix J=(1—Kk) '(liock — lrotor) iS Symmetric,
the system (3.5) .reduces to ‘a Hamiltonian
system on so(3)* with respect to the standard
Lie—Poisson structure {F, G}(m)=—~m - (VF X
VG).

u=k(m X (loex —

Proof. We have L
I=u=km, (4.4)

which is an acceleration feedback. (Note that
also U = k(loa @ + Lowor@;) X Q.) Therefore,

km — [ =p, (4.5)

where p is an arbitrary constant. Hence the
closed loop system becomes

bioior) ™" m = 1)
hotor) ™' = ki + p)
o) ' (1 —K)(m — £, (4.6)

where E =—(1- k) p Deﬁne the k-dependent
“inertia tensor

m=m X (ﬂlock -
=m X (loek —

=mX (ﬂlock -

J= (1] - k) 1(I]lock rolor)~ (47) ‘

- Hamiltonian system on so(3).

Then the equations become

i =VC x VH, (4.8)

where . : s
FC=%|m?, T -(49)
and -
=3(m—-§)-J 1(m 8. @ 10)

Equations (4.8) are Hamiltonian on so(3)* w1th
respect to the usual Lie—Poisson structure.
Remark 1. Note that (4 5) is equivalent to
k(ﬂrock9+ﬂmtor 2) < L@+ Q) =p,
ie. " R
(roor = Klroror) R =
Thus for .

(kﬂlock - ﬂro'tor)Q Y 2
(4.11)

l([]lock 1]roton

one spec1allzes to the usual dual spin case (see
Krishnaprasad (1985) and Sanchez de Alvarez
(1986)) where the acceleration feedback is such
that. "each rotor rotates at constant angular
velocity relative to the carrier. Also note that the
Hamlltoman in (4: 10) is indefinite for high gams

Remark 2. Furthermore 1f we set my,=m — §
the equat1ons become :

mb =(m, + £) x I 'm, (4.12)

whrch is'a k-dependent form of the dual-spin
equations. Hence one can apply, for example,
the Morse-theoretic analysis of Krishnaprasad
and Berenstein (1984) to' this situation. For a
related stability analysis .using the energy-
momentum method (see Wang (1990)).

It is instructive to consider the case- where
k = diag (klyk2; ks).  Let 1= (loek = lrotor) =
diag (I, L, ) and the matrix J satisfies the
symmetry: hypothesrs of Theorem 4.1. Then
L=p;+km; i=12,3, and the equations
become ri = m X VH where

1 (1 - k)m, +p)° | (L—k)m,+ ps)°
HT—Z ( ,(1_k1)1~1’ " (1—k2)i2
((1 = k3)ms + p3)*\ -
v ) (4.13)

It is possrble to have more complex feedback
mechanisms where the system still reduces to a
If we. set
u=k(m, )y, the key to reduction is that
k(m, D — [ =0 is integrable. The natural case
to consider is k = k(m). '

Theorem 4.2. The system (3.5), (3.6) with
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u =k(m)m, where .
k,(m)"
. k(m) =1 kZ(m)T ’
. ky(m)”
and k;(m) = V¢,(m) for some smooth ¢,,

such that (Do — lrotor) ™ k(m) is symmetrlc is
Hamiltonian.

Proof. We have
ki(m) - it — A =v0 = Vid)i(m)’h -1

[¢,(m) ] =¢
or
¢i'(m) —li=p.

Thus, k(m)=3®/6m, where ® is the vector
potential [¢,, ¢2, ¢3]” gives integrability. Then
(3.15) and (3.16) reduce to

Teotor) ™ — cI>(m)+P) . (4.14)

This is Lie— Ponsson on so(3)* if and only if there
exists an H(m) such that.. =~ . .

VH = (ulock rotor) l(m q)(m) +p)

By equality of. mixed partial derivatives, this
holds if S

3 s~ o) = 0m) +p) -

a‘ . B B “ E
=4 (e‘(ﬂlock - []roto'r) 'l(m - (I)(m) +P))’
where ¢; is the ith unit vector. ThlS is true if
and only if €i(hock = lrotor) ™ 'k(m)e, —e([]lock,
rotor) k(m)en . ‘1 c.. ([]lock rotor) lk(m) iS
symmetric. - R o

To compute. H, we. need to solve the Set of
partial differential equations

VH = (Ulock rotor) 1(m q)(m) + p)

Consider the special case where (Do — lrotor)
and k(m) are diagonal, (lox — lrotor) =
diag (I, L, L) and k(m) = diag (k,,m,, kom,,
kyms). Then k(m) = 0®/0m (m) where

kl".”%.
@(m) =3 | ko
k3m_§ .
Hence o A )
oH 1 kim? ) o o
—==(m—-——4+p;), i=1,2,3.
3 I,-‘('"’ 2 P PR SS
AUTO 28:4-G

N

3 4 2t
Thus, letting H = ,Z H,(m;) we have

1/mf km?
H; == ( == —+p; )
TTI\2 e TP

This })rocedure clearly generalizes to k;(m;) an
arbitrary polynomial in m;, yielding a large class
of Hamiltonian feedback systems.

(4.15)

5. THE RIGID BODY WITH A SINGLE ROTOR-
FEEDBACK STABILIZATION BY THE ENERGY-
CASIMIR METHOD

We now consider the equations for a rigid
body with a single rotor. This reveals the
essentials of the dynamics “and Hamiltonian
structure and, further, we are able to obtain the
result that with a single rotor about the third
principal ~axis, quadratic feedback with
sufficiently high gain stabilizes the system about
its intermediate axis—a result similar to that of
the single gas jet (external torque) case.

. We adopt the following notation: let the r1g1d
body have moments of inertia I,>L>1 as
before and suppose the symmetric ‘rotor is
aligned with theé third principal axis and has
moments of inertia J,=J, and Ji. Let w,

=1,2,3, denote the carrier body angular
velocmes and let & denote that of the rotor
(relative té a frame ﬁxed on the’ carrier body)
Let

diag'(A, A5, 43) '
=diag (J;+ 1), L+ L, s+ 1), (5.1)

be the locked inertia tensor. Then from (3.3)
and (3.4), the natural momenta are

ml=(‘]l+ll) C'Oizl'ia)i) . l=1; 2‘7:'v.
3 = 13(03 + 13, } (52)
13 =J3(w2 + a’)

From (3.5) and (3.6), the equations of motion
are: S

L Ay L’
iy = m1m3,<i ~ l),+ Lm, ,
T\ L I (5.3)
) 1 1
ms_m1m2<1—2~l_l)’
L=u

Choose u = kaym,;m, where

o (i-1)

Theorem 5.1. Wlth u= kalm,mz the equations
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(5.3) reduce to the equations
. 1 -kym;— msm
= )

g () NI
. . L A o

ms = asm;ms,

which are Hamiltonian on so(2)* with'respect
to the wusual Lie—Poisson structure with
Hamiltonian . : :
il (mym, A bmop))
2\A A -k
1 p* .
+————— 5.5

where p is a constant.

‘Proof. First note that'p = l; — km is conserved.

Eliminating /5 gives rise to equations (5.3) which
are checked to be Hamiltonian with respect to
the standard bracket {f, g}(u) = —m - (Vf X Vg)
and the given H.

Remark. When k =0, we get the equations ‘for

the free rotor, We get the dual spin case J;& =0,

when Kklioo = lowor from (4.9), or in this case

k=J3/A;. One can check that for this 'k,
=(1— k)&, a multiple of d.

We can now use the energy-Casimir method to
prove:

Theorem 5.2. For k>1—L/A, (and p =0) the
system (5.4) is stabilized about the middle axis,
i.e. about the relative equilibrium (0, M, 0).

Proof Consider the energy-Cas1m1r functlon
H+ C where C = @(m?), and m*=mi+mj+
m3. The first vana_tmn 1‘sA

m, én, + m, om,

S(H+C) = :
MO T
1= k)ms—p
+( ym; p6m3
L
+ @'(m*)(m,; dm, + m, dm, + ms 6ms).
x . (5.6)
This is zero if '
m, ,
71'+ 2 m1f0,
2y ¢p'm,=0, 6.7
. Az
1-k -
( yms P+ @'ms=0

Then we compute

S*(H+C)
_(6m)? | (dmy)® (1= k)(Sms)?
I T

+ @' (m?)((Sm) + (5my)* + (9ma)?)
"+ @"(m)(m, dm, + my Omy + my Oms)>.
(5.8)
If p=0, i.e. Iy=km;, (0, M,0) is a relative

equilibrium and (5.7) are satisfied if @'=
—(1/4,). In that case,

1
H+C)=(6 2(———)
6%( ) =(6m,) PR
-k 1
+ (6m3)2<— - —) + @"(5my)>.
L A
Now
1 1 k-4
A A A, '

for ,>L>1I. Clearly for k>1-L/L, (1-
k)/L, — (1/A;) <0, so if we choose @” <0 we get
negative definiteness and hence stability. (Note
that for k =0 the second variation- is indefinite,
as it should be. ) ’

Note that we do not get precnsely the gas jet
equations as we do in Section 3, but we achieve
the same effect—for k greater than a certain
value we achieve stability about the middle axis.
Also, we are using a much simpler feedback than
in Theorem 3.1 of Section 3, as we need not
“cancel” the /3 dynamics. Note also that while
the Hamiltonian here is. indefinite for k
sufficiently large, the conserved momentum here
is the usual definite momentum, in contrast to
the possibly indefinite “momentum” of the gas
jet case in Section 2.

. Corresponding to the Hamlltoman (5 5) there
is a Lagrangian found using --the inverse
Legendre transformation

™
1. 'Al »
AT 5.9
o (-k)ms—p
(03,— B . >
L
= _-Kms—p p
-0 (0-bk

Note that @;, @, and'cb3 are the angular
velocities w,, ®,, and w5 for the free system,
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but that & is not equal to &.-In fact,.

@  kms
(1-k) (=k%

Thus the equation on the tangent bundle
TSO(3) determined by (5.9) are the Euler-
Lagrange equations for a Lagrangian quadratic
in the velocities; so the equations can be
regarded as geodesic equations. The torques can
be thought of as residing in the velocity shift
(5.10). Using the free Lagrangian, the torques
appear as generalized forces on the right hand
side of the Euler-Lagrange equations. Thus, the
d’Alembert principle can be used to describe the
Euler-Lagrange equations with the generalized
forces. However, this latter approach hides the
useful fact that the equations are actually
derivable from a Lagrangian (and hence a
Hamiltonian) in velocity shifted variables. Also,
for problems like the driven rotor, one might
think that this is a velocity constraint and should
be treated by using constraint theory. Again for
the particular problem at -hand, this can be
circumvented and standard methods are in fact
applicable, as we have demonstrated. For a
more systematic approach to the Lagrangian side
of the story, with emphasis on the variational
principles, -and for the: geometry of gyroscopic
systems, see Krishnaprasad and Wang (1992)
and-Marsden and’ Scheurle (1991)

&=

(5.10)

" 6. PHASE SHIFTS ‘

In this final section we discuss an attitude drift
that can occur in the system and a method for
‘correctmg it. ‘

If the system (4.12) is perturbed from a stable
equilibrium, "and the perturbation is not too
large, the closed loop-system executes a perlodlc
motion on a levél ‘surface (momentum sphere) of
the Casimir “function |ime+'E])? in" the body—
rotor feedback system. This leads to an attitude
drift-which can" be thought’of as a Totation ‘about
the (constant) spatial angular momentum vector.

We will calculate the amount of this fotation.
This can be done- followmg a method developed
by Montgomery (1991) for calculating the phase
shift for the single rigid body. Other pertinent
work’ on phases may be found in Marsden et al.
(1990) and Krishnaprasad (1990). '

Recall that the equatlons of motion for the
rigid body—rotor system w1th feedback law (4.3)
may be written (see 4. 12) as ’

mb_(mb+§)x\D mb
: —VCXVH 5 (6.1)

wheré  my=m-+(1-k)(km —1) and E=

—(1-k)"!(km —1) and o
=3 |lmy+ &%, (6.2)
H=3imy-J"'m,. (6.3)

Here H is the conserved Hamiltonian and
C = constant determines a momentum sphere in
the reduced phase centered at £ € R®>=s0 (3)*.

The attitude equation for the rigid body—rotor
system is

A=AQ,
where, in the presence of the feedback law (4.3),
Q= (Dock = lrotor) ~'(m = 1) |
= (lock = lrotor) ~'(m — km + p)
C =0T m—-E)=d0"'m,.
Therefore the attitude equation may be written-
A=AU"'my)", ©(6.4)

where " denotes the canonical map from vectors
in R to elements of so(3),

vy |7 0 -vs v,
v, | =| vs 0 —U |,
U3 _U2 Ul 0

and A is the attitude matrix, A € SO(3).
The net spatial (constant) angular momentum
vector is now given by

p=A(my+ ). (6.5)

Then we have the following.

Theorem 6.1. Suppose that the solution of
my = (my, + &) X J7'my,, (6.6)

sweeps out a periodic orbit of period T on the
momentum sphere, ||my, + &||* = [|u]|?, enclosing
a solid angle <I>S(,,,d Let Q,, denote the average
value of the body" angular velocity over this -
period. Let E denote thé constant value of the
Hamiltonian and let |||l denote the magnitude
of the angular momentum veéctor. Then the body
undergoes a net rotation A6 about the spatial
angular momentum vector u given by the
formula

_2E T

Tl i € 20 F P 67)

Proof. Consider the reduced phase space (the
momentum sphere)

P, = {my| o+ EIP= ]}, (6.8)

for: u fixed. Suppose we have a periodic orbit in
P, of period T. We then compute how A(r)
changes Now

my(to + T) = my(ty), (6.9)
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and from momentum conservation
u=A(T +1to)(me(T + tp) + &)

= A(to) (my(to) + §). (6.10)
Hence ° L SR '
U AT H A = n
Thus A(T + tO)A(t(;)_ijiis"an element of 'GM,' the
subgroup of the group of rotations that fixes g,

S0
A(T + tO)A(t(,‘);"1 = exp (A6m> (6.11)
for some A6, which we wish to determine.
Consider a phase' trajectory of our system

z(t) = (A(®), mo(1)), z(to) =20, (6.12)

with A(t,) =1 and my(ty) = u — &, the body thus
being in the reference configuration at't = t(,
The two curves in phase’ space

{z(t) fhsSt<ty+ T} 4
(the dynamrcal evolutlon from z,),

and

C» {exp(f)n—ll)zo 0<0<A9} .

‘intersect at t =T.

Thus C=C,—C, is a closed curve in phase
space and from Stokes’ theorem we have,

LI pdg— Lp dg = f f d(p dg). (6.13)

where pdg= E Di dq, and where g; and p; are
}

RN i=1
conﬁguratron space var1ables and conjugate
momenta in the phase space and = 1s a, surface
enclosed. by the curve C.

Evaluating each of these integrals will grve the
formula for Af. To see this, first consider the
dynamical evolutron along C,. Lefting o be the
spatial angular velocity; we get

dq
t~,l w= A(J]Q+§) - AQ

. p d
‘ =JQ+ 5) Q
, =JQ-Q+E-Q o 1 (6.14)
Hence ' : S
f  dg . a
dg = -—dt '
C1p 7 Crp dt A

T } Les. T a
=J JlQ-QdHf E-Qdr.
0 0

=2ET + (£ - Q)T (6.15)

since the Hamiltonian is conserved along orbits.
Similarly, along C, we have,

| f gcldl‘—J dt
Cip dt B CZM . @ R
. dé- u
TN
L a
=l a0 = jullae. (616

where we substrtuted the spatlal angular veloc1ty
along C,.

Finally we note that the map m, from the set
of points in phase space with angular momentum
u to P, satisfies

f f d(p dg) = f f dA = illull B o

. (2)

(6.17)

where dA is the area form on the two-sphere and
m,(2) is the spatlal cap bounded by the perrodrc

orbit
{mb(t) | tOSt<t0+ T} CP

From (6.15), (6.16) and (6. 17) we have the
result. ,
Remark 6.2. (a) When §=0,.(6.7) reduces to
Montgomery’s formula (1991). (b) This theorem
may be viewed- as a special case of a scenario
that is useful for other systems, such as rigid
bodies with flexible appendages. Phases are
usually viewed as occurring in the reconstruction
process, which lrfts the dynamics from P, to
J"l(u) “where J:P-5g* is the momentum map
for a mechanical system with symmetry and
P,=J 1(u)/G is the reduced space; see
Marsden et al. .(1990). The cotangent bundle
reduction theorem states that P, itself is a bundle
over T*S, where S=Q/G is'shape' space. The
fiber of this bundle is O,, the coadjoint orbit
through y. For a rigid body with three mternal
rotors, S is the three. torus T parametrlzed by
the rotor angles. Controllmg them by a feedback
or other control and using other conserved
quantities associated with the rotors as we have
done, leaves one with ‘dynamics on the “rigid
variables” 0,“ the. momentum sphere in our
case. Then the problem reduces to that of lifting
the dynam1cs on O, to J7'(u) with the T*S
dynamics given. For G= SO(3) this “reducés”
the problem to that for geometrrc phases for the
rigid body given by Montgomery (1991)

Finally, following Krishnaprasad (1990) we
show that in the zero total angular momentum
case one can compensate for thls drift usmg two
rotors.”’
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The total spatial angular momentum 1f one has
only two rotors is of the form

f= Al @ + by + bad),  (6.18)

where the scalars &, and &, represent the rotor
velocities relative to the body frame The
attitude matrix A satisfies ‘ o

A=AG, (6‘19)

as above. If =0, then from (6 18) ‘and (6.19)
we get,

A= "A(([llockbl)Aa’l + (Hlocka)Aa/2) (6.20)

It is well known (see for instance Brockett
(1973) or Crouch (1986)) that if 'we treat the &,
i=1, 2 as controls, then attitude. controllablhty
holds iff '

(ﬂ;;lkbl)A and (nlocka) S
generate so(3) (6.21a)

or equivalently, iff the vectors
loab: and [Lokb, : o
are linearly independent. " (6.21b)

Moreover, one can write the attltude matrix as a
reverse path- ordered exponentlal

A(t) =A(0) - P exp [ j {(I],ockbl) a'l(o)

‘ + ([It;ékbzl)/\'dz(o)} do]- I A) (6.22)

A key observation is that the right-hand side of
(6.22) depends only on the path travérsed in'the
space , 1]'2 of rotor angles (a;, ;) and not on the
history of velocities. &;. This can be easily
checked- by carrying out ‘a "time  rescaling
t— B(t). Hence the formula (6.22) should be
interpreted as a “geometric phase”. Further-
more, - the controllabrhty condition can " be
interpreted "as a curvature condition on thé
principal ~ connection on the bundleé . T*X
SO(3)—>T* defined’ by the: so(3)-valued
differential 1-form, R

0(‘1’1; “2) ; : BRTN
((ﬂmckbl)A da’l + (ﬂlockbz)A daz) (6. 23)

For' further details ‘on th1s geometric picture of
multlbody interaction see Krrshnaprasad (1990)
and Krlshnaprasad and Wang (1992) '

7. CONCLUSIONS
Natural mechanical' systéms subjéct to ex-
ogenous forces determined by suitable classes of
feedback laws can sometimes. be modeled as
Hamiltonian systems Often the Hamrltoman
structures  so derlved may be v1ewed as

v

deformations., (by feedback gains). of  the
Hamiltonian structure governing the open loop
unforced system. The methods. of geometnc
mechanics such as reduction’ phases energy-
Casimir and energy—momentum .algorithms for
stability analysis, prove to be naturally ap-
plicable to such feedback systems. The present
paper illustrates this via a careful study of the
problem of rigid body control using external
torques (as implemented by gas jets) and
internal torques -(via reaction wheels/rotors),
and the relationships between these two methods
of control. We reveal a. Hamiltonian structure
for the controlled system that involves a velocity
shift (or a gyroscopic term), a technique that
should be of general utility. We especially note
that we find a non-obvious but rich Hamiltonian
structure for the controlled system desplte the
presence of controlling torques.

One of the main accomplishments of the
present work is the stabilization analysis of these
examples as the feedback parameter is in-
creased. We also calculate the geometric phase
(the attitude drift) in the presence of this control
when one is executing a periodic motion in the
carrier body angular momentum phase space.

"A general  theory ‘for feedback systems of
gyroscopic type appears in the recent thesis of
Wang. We note however that, in-the examples of
the present paper, we go on to’ consider
feedback laws that also 'effectively alter ‘the
metric structure underlying a simple mechanical
system. The introduction of geometric phases (a
subject of great current interest to physicists) in
the analysis of attitude drift due to perturbations
from relative equilibria is' one 'of the novel
features of the paper. The methods we use for
both the phase and stability calculations should
be applicable to* more complex ‘many-body
systems such as those 1ncorporat1ng flexible
elements

" In work under way, we are also considering
problems of instability in feedback systems. We
establish instability theorems based-on second
variation criteria analogous to the classic work of
Kelvin and Chetaev, Details will appear in a
forthcoming paper. : :

R
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