
EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

ELSEVIER European Journal of Operational Research 102 (1997) 528-537

T h e o r y a n d M e t h o d o l o g y

Heuristics for unrelated machine scheduling with precedence
constraints

J e f f r e y H e r r m a n n a, J e a n - M a r i e P r o t h a,b, N a t h a l i e S a u e r u

a Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
b INRIA-Lorraine, Technop~le Metz 2000, 4 rue Marconi, F-57070 Metz, France

Received 20 February 1996; accepted 2 July 1996

Abstract

In this paper, we consider the problem of scheduling tasks on unrelated parallel machines. Precedence constraints
between the tasks form chains of tasks. We propose a number of heuristics in order to find near optimal solutions to the
problem. Empirical results show that the heuristics are able to find very good approximate solutions. © 1997 Elsevier
Science B.V.

Keywords: Scheduling; Parallel resources; Makespan

1. Introduct ion

We consider the following problem. A set of
workers must perform a finite set of tasks, and
certain tasks cannot begin until othcrs are completed.
The time required to pcrform each task varies from
worker to worker. We are interested in assigning the
tasks to each worker and scheduling the tasks in such
a way that the time needed to finish all of the work
is minimized. In other words, wc wish to minimize
the maximal task completion time, also called the
makcspan.

Such a problem typically occurs in an office or
project management environment, where the re-
sources are workers who have different skills. The
problem is called the Office Scheduling Problem.
Due to the various skills available in an office the
time necessary to complete a task can vary greatly
from worker to worker. The tasks are the work that
needs to be done during a specific period (a day for
instance). Minimizing the makespan ensures that all
of the tasks are done as soon as possible (ideally

before the end of the assigned period). Furthermore,
reducing the makespan leads to working periods
which are not too different from worker to worker.

In general, the set of precedence constraints can
be quite large. In this discussion, we assume that
each task has at most one predecessor and at most
one successor. Thus, the entire set of tasks includes
chains of tasks. Completing a task enables the next
task in the chain to begin.

This problem is an unrelated machine scheduling
problem. Even without precedence constraints, mini-
mizing the makespan is a NP-complete problcm.
However, a number of researchers have proposed
and analyzed heuristics for this problem.

Potts (1985) uses a linear programming relaxation
of the assignment problem formulation. This prob-
lem can be solved to assign most of the tasks to
machines. However, the solution has up to m - 1
tasks divided between m machines. Given the partial
solution fiom the L P , the heuristic uses an exponen-
tial time exhaustive scarch to determine the best
assignment of these tasks. The worst case relative

0377-2217/97/$17.00 f.c) 1997 El~vier Science B.V. All rights rese~'ed.
PII S03 77-2217(96)00247-0

J. Herrmann et al. / European Journal of Operational Research 102 (1997) 528-537 529

performance of the heuristic is 2. If m = 2, an O(n)
heuristic is presented; this heuristic has worst case
relative performance of 1.5.

Ibarra and Kim (1977) present a number of greedy
heuristics similar to list scheduling. The worst case
relative performance of these heuristics is m, but the
heuristics are polynomial. If m = 2, the worst case
relative performance is (V~- + 1) /2 .

Davis and Jaffe (1981) order on each machine all
of the tasks by their efficiency, which is defined as
the minimum processing time for the task divided by
the processing time of this worker. Their heuristic
schedules on the next available machine the most
efficient task until the efficiency for all remaining
tasks on the machine is too low. The effort of the
heuristic is O (m n l o g n) . The worst case relative
performance is 2.5,,/-ram.

Lenstra et al. (1990) use a sequence of linear
programs to find the smallest deadline for which the
linear programming relaxation has a feasible sched-
ule. In the second phase, a bipartite matching prob-
lem is solved to assign the unscheduled jobs to
machines. The worst case relative performance of
this polynomial time heuristic is 2.

Hariri and Ports (1991) compare a number of
heuristics for the problem. They consider two phase
heuristics which start with an LP relaxation and then
apply a matching or the earliest completion time
heuristic (EC'I') to assign the unscheduled jobs. They
also consider the ECT procedure itself, proving that
its worst case relative performance is 1 +21ogn.
Finally, they consider reassignment and interchange
heuristics to improve a schedule constructed by one
of the above heuristics. They conclude that the use of
improvement techniques with the ECT heuristic gives
satisfactory' solutions, though slightly better results
can be achieved by using the two phase heuristics
with the improvement techniques.

Van de Velde (1993) uses a surrogate relaxation
problem to derive a lower bound. The search for the
best lower bound is an ascent direction algorithm.
An approximation algorithm based on the dual prob-
lem is presented and compared to solutions fl)und
with a branch-and-bound and other heuristics. A
branch-and-bound over the job assignment is able to
solve some quite large problems using less than
100 000 nodes.

In conclusion, it appears that the ECT heuristic

with improvements provides simple but good ap-
proximation for the problem. If better solutions are
required, the duality based algorithm would be pre-
ferred, since it does not require an enumeration or a
sequence of linear programs.

The research on problems with precedence con-
straints has been restricted largely to identical paral-
lel machines. Ullman (1975) proves that even if all
the jobs have length one, the problem is NP-com-
plete, although the problem can be solved in polyno-
mial time if the precedence constraints form a tree
(Hu, 1961). Graham (1966) considers the worst case
performance of list scheduling in the presence of
precedence constraints, which is 2 - 1 / m . D u e t al.
(1991) show that the two machine problem with
arbitrary processing times and tree precedence con-
straints is strongly NP-complete. Cheng and Sin
(1990) review a number of results on the worst case
performance of list scheduling and highest-level-first
approximation algorithms for minimizing makespan
on identical parallel machines. Hoitmont et al. (1990)
present a Lagrangian relaxation technique for the
problem of minimizing total weighted quadratic tar-
diness on identical machines with precedence con-
straints. Outside of these approaches, however, few
approximation algorithms have been proposed, and
none consider nonidentical machines.

In this paper, we address the lack of heuristics for
parallel, unrelated machine scheduling with prece-
dence constraints. Throughout the remainder of the
paper, we will use the term worker to describe a
resource that can perform a task.

The problem is presented in Section 2. In Section
3, we propose a straightforward heuristic which as-
signs tasks to workers and schedules the tasks simul-
taneously. Section 4 is devoted to two heuristics that
first assign tasks to workers, and then schedule the
tasks, taking into account the precedence constraints.
Two scheduling procedures are proposed. Section 5
presents lower bounds. In Section 6, we propose
several numerical examples and evaluate the perfor-
mance of the proposed algorithms. Section 7 con-
cludes the paper.

2. Problem formulation

The problem can be formulated as follows. There
exists a set of m workers Wj, j - 1, . , . , m, and a

530 J. Herrmann et a l . /E urop ea n Journal o f Operational Research 102 (1997) 5 2 8 - 5 3 7

set E of n tasks T/, i = l n. Task T,. requires
time p;i when performed by Wj. We denote by
O(T/) the task, if any, which can be released only if
T~ is completed. In the rest of this paper, we refer to
0(7]/) as the immediate successor of T,, which does
not mean that O(T,.) should start immediately when
T i is completed. O2(T /)= O(O(T/)), and Oq(T i) is
similarly defined for q > 2. Similarly, we denote by
O-~(7}) the task, if any, which is the immediate
predecessor to T~, i.e. which should be completed
before the starting time of T~. In a feasible schedule,
each task must be performed by someone, and each
worker performs at most one task at a time. The
worker who begins a task finishes it without a break.
it~ begins at time S~ and completes at time C~. The
goal is to find a feasible schedule that minimizes

Cma x = max i ~ {i n}Ci •

3 . H e u r i s t i c H 1

Table 1
Processing times

T, T2 T3 T~ T5 7; T~
Wj 3 4 8 2 5 9 3
W? 9 5 2 6 10 4 8

Let T~. be the task to schedule next.

i* :Oi. j (i .) = max O~.xo,
T~E f ~.

,%. = t x ~ . . i (~ .) ,

Ci" = Si" + P i ' , j (i ') ,

Schedule I~.(~,) to begin T~. at time S;..
Repeat for k = 2 n.
Let us consider the following example which

concerns two workers and seven tasks.

This heuristic assigns the tasks to the workers and
defines the schedule simultaneously. The basic prin-
ciple of this heuristic is very simple: it consists of
scheduling at each iteration the task which could
lead to a late schedule of somc tasks in the future.

Let k = 1. E k is the set of unscheduled tasks at
iteration k. Let E~ = E. F k is the set of tasks that
could be scheduled:

F k = { T . ~ E ~ ' O - ' (T i) = Q 3 v O - ' (~) f ~ E k } .

For each 1] in F k, apply the following algorithm:
1. S ~ ' = C k if O - ' (T ~) = T k ; S ° = 0 i f O ~(7))=Q3.
2. For j = 1 m:

2.1. tzij = min{t: t > S ° A worker W~ is idle dur-

ing (t , t + Pij)}"
2.2. q = 1. S q = tx~j + p~j
2.3. If Oq(T,) = O, go to 2.7. Else, define r:T¢ =

0"(7).
2.4. For h = 1 m:
2.4.1./.z,h = min{t: t > S q A worker W h is idle

during (t, t +P~h)}.
2.4.2.0¢~, = / x ~ + Prh
2.5. S~" i == minh=~ 0~,.
2.6. q = q + 1. Go to 2.3.
2.7. Oi j= S q.

3. Pick j (i) : Oii(i) = m i n { O i j : j = 1 m}.

Example . The processing times are given in Table 1.
Furthermore we have to consider the following

partial order:

o (r t) = 73, O (T 3) = TT, 0 (7 " 2) = 76 .

The solution to this problem is reached after
seven iterations. The results obtained at each itera-
tion are gathered in Table 2, where:
• F k is the set of tasks in which the next task to be

scheduled is selected,
• Oi, . Xi-) is the earliest time when the last succes-

sor of T,, can be completed if T~, is assigned to

Wj(i .),
• 7],.. is the selected task,

Table 2
Summary of iterations

k 1"~ Oi. j(i.) T,. Wj(i.) S,. C .

I {T,, T 2, 1;,, T~} 8 T L Wj 0 3
2 {T 2 ,T 3 ' T a,7~} 9 7~ W 2 0 5
3 {?"3, Ta, 7~, 7"6} 10 T 3 W 2 5 7
4 {T.,, Ts, Tr, T 7} I1 T 6 W 2 7 I1
5 {T,, 7~, T-,} 10 T 7 W, 7 10
6 {T,, 7~1 15 7[~ w~ to 15
7 {TL/ 5 T, W, 3 5

J. Herrmann et al. / European Journal of Operational Research 102 (1997) 528--537 531

TI T4 T7 T~
w , r - - V - I I I 1

lo i5 Time

T2 T3 T 6

s I0 15 Time

Fig. 1. Schedule when applying H 1.

• Wj(;,) is the processor which will perform T~..

4. Assignment heuristics

This section presents two heuristics that begin by
assigning the tasks to workers while ignoring the
precedence constraints. Because the problem has few
precedence constraints (at most n - 1), we expect
that subsequently scheduling the tasks to satisfy these
constraints will not significantly affect schedule
quality. The first assignment heuristic applies a mod-
ified form on H I (see Section 3) to schedule the
tasks. The second assignment heuristic improves a
feasible schedule by reducing the critical path. Both
heuristics use simulated annealing to improve the
final solution. Section 4.1 presents the assignment
procedure where both heuristics begin. Section 4.2
discusses the two scheduling procedures. Section 4.3
presents the simulated annealing procedure.

4.1. Procedure A1." Assigning tasks to workers

Both assignment heuristics begin with Procedure
A1, a branch-and-bound search that assigns tasks to
workers while ignoring the precedence constraints.
Procedure AI is a breadth first search that constructs
partial assignments. Each level of the search tree
corresponds to a task, and each node represents a
specific assignment. The procedure orders the tasks
by their average processing times. That is, the task
order is 7~), T/2 T/,:

E Pi~) >-]) i 2 j ~-- " " " ~ P i , , j "
j = l j = l j = l

The corresponding tree is shown in Fig. 2. The
optimal assignment {(T i, WXO): i = 1 n} mini-
mizes the maximum total processing time for all
workers.

At each node, Procedure A1 generates a lower
bound and two upper bounds. Section 4.1.1 describes
the lower bound. Section 4.1.2 discusses the two
upper bounds.

Procedure A1 leads to thc optimal assignment
problem, that is to the minimal makespan when
relaxing the precedence constraints. This algorithm is
time consuming. To reduce the computation time, we
developed procedure A2 which is the same as AI,
except that it stops when UPo < Albo, where upo is
the smallest upper bound, lb o is the smallest lower
bound and h is a real greater than 1.

Indeed, A2 does not lead to the optimal solution
but to a good solution, and the computation time
decreases drastically compared to the computation
time of A1. As a consequence, the size of the
problems which can be solved is much greater, as
shown in Section 6.

4.1.1. The lower bound
Consider a node at level a. Tasks 7",.1 T

have been assigned to workers Wj.(,) Wj(;,). Let
/zj be the total processing time of the tasks assigned
to Wj, j = 1 m. Let E be the set of unassigned
tasks. The lower bound is the solution to the follow-
ing linear program:

rain z :

z>__~j+ ~ x;jp;~, V j = l m, (1)
T,~£

]~ x,~ = 1, VT~ e/ ; , (2)
j =~

x;j>_0, V T j ~ E , j = 1 m. (3)

x;i represents the fraction of T~ assigned to W i.
The right-hand side of constraint (1) measures the

leve~ 0

. ~ level i

~ ~ V ~ level 2

\

Fig. 2. The branch-and-bound tree.

532 J. Herrmann et a l . / European Journal o f Operational Research 102 (1997) 528-537

total processing time of the tasks assigned to W i.
constraint (2) insures that the task is performed
completely, z is the makespan. Note that constraint
(3) relaxes the 0 - 1 constraints of the assignment
problem.

4.1.2. The upper bounds
Procedure A1 calculates two upper bounds at

each node. First, A I constructs an integer solution to
the above linear relaxation. Second, it constructs an
assignment using a modified form of heuristic H1.
Both constructions are polynomial time algorithms.

4.1.2.1. Upper bound 1. Let x~) be an optimal
solution to the above linear program. In general,
some x,'/ will be between 0 and I. For each 71 ~ E,

pick J{i): x i~](i)=max{x i ' j : j = 1 m}. l,et zli
= 1 if j = j (i) , 0 otherwise. The first upper bound
is:

z.,. /
] = 1 m]; E/:."

4.1.2.2. Upper bound 2. Let k = 1. E k is the set of
unassigned tasks at the beginning of the kth itera-
tion. E I = E. For each T~ ~ Ek, apply the following
algorithm:
1. For j = 1, . . . , m, set 0~i = / z j + Pij,
2. Pick ~ i) : Oii(i) = min {Oi:: j = 1 m}.

Pick i*: O i . j (i .) = m a x {Oi)(i):'I]~E }. Add
Pi*j(i.) tO IZ](i,). Ek+ I = Ek\{ ' /}- }. Add 1 to k and
repeat until E~ = ~ . The second upper bound is
max {/,t i: j = 1 m}. This construction attempts
to minimize the effect of large tasks by assigning
them to the best workers first.

Let k = 1. E~ = E. E k is the set of unscheduled
tasks at the beginning of iteration k. Fk is the set of
tasks that could be scheduled:

F~ = {r,. ~ Ek: o - ' (r 3 = ~ v 0 - ' (r ,) ~ E~}.

For each T/ in Fk; apply the following algorithm:
I. S ° = C k if O - '(T~) = Tk; S ° = 0 if O - '(T,.) = ~i,

2. ixii(i)= min {t: t > S[', A worker Wxi) is idle
during (t, t + Pii(i))},

3. q = 1. S q =/z;j(~) + p~.~),
4. If Oq(Ti)= Q3, go to 8. Else, define r: T , =

O q (T /) ,

5. P'ri(~) = min {t: t > Si q A worker Wj(~) is idle
during (t,t + p~/(~))},

6. S q+ ~ = I, Zrj(r) -1- Prj(r),
7. Add 1 to q. Go to 4,

8. Oij(i) = S q.
Let 7 I . be the task to schedule next.

= max {0 i ~i)}, i" " Oi..j(i,) T~F~ "

S i . =]d~i. j (i .) ,

Ci" = Si" + Pi ' . j(i ') ,

Schedule W](i,) to begin T,.~ at time Si , .
Repeat for k = 2 , n.

4.2.2. Procedure CP
Procedure CP randomly generates a feasible

schedule that respects the assignments made by pro-
cedure A1 and then repeatedly improves the sched-
ule by reducing the critical path. At each iteration,
the procedure must calculate the slack for each task
and interchange two tasks.

4.2. Procedures H2 and CP: Scheduling the tasks

The two assignment heuristics use different
scheduling procedures. Procedure H2 applies a mod-
ified lbrm of H I to schedule the assigned tasks.
Procedure CP randomly generates a feasible sched-
ule and improves it by reducing the critical path.

4.2.1. Procedure H2
This scheduling procedure gives priority to the

tasks which could delay future tasks. I.et W~i) be the
worker that performs task T,.

4.2.2.1. Step 1: Generating a feasible schedule. Let
k = 1. E~ = E. E~ is the set of unscheduled tasks at
the beginning of iteration k. F k is the set of tasks
that could be scheduled:

F k = { ' I ; ~ E ~ : O - ' (L) = f g V O - ' (L) ~ E ~ } .

Select at random some T~ in f~; apply the follow-
ing algorithm:
1. S 0 = C k if O ' (r , .) = L ; S 0 = = 0 i f O - ' (r ~) = ® ,
2. /xi./(i) == rain {t: t > S/° A worker W~i) is idle dur-

ing (t , t + Pij(i))},
Si : Uij(i); Ci = Si q- Pij(i); lSk+ I = Ek • {Ti}-

J. Herrmann et al./ European Journal of Operational Research 102 (1997) 528-537 533

Schedule Wj(i) to begin T i at time S i. Repeat for
k = 2 n.

4.2.2.2. Step 2: Compute the slack for each task.
Define i + as the task T/+ that worker W;(i) performs
after T v If T,. is the last task, T~ + does not exist.
T~(~) = O(T~) if the successor exists. Let D(i) be the
slack of T v Delaying T/ by an amount d < D(i) does
not increase the schedule makespan.

D (i) = min{Cma x - C i, D (i (1)) + Si(i)- Ci,

D (i +) + Si+-Ci}.

The second term vanishes if O(T/) does not exist.
The third term vanishes if T~- does not exist.

The critical path is a sequence of s tasks T,.~
T/~. such that Sil=O, Sik =Cik_l (k = 2 s),
and Ci~ = Cm~ ~. TO reduce the makespan of the
schedule, it is necessary (though not sufficient) to
reduce the length of the critical path.

4.2.2.3. Step 3: Interchange two tasks. Select a criti-
cal path for the schedule and consider this sequence
of tasks. Unless one worker performs the entire
sequence, construct a set F of critical tasks using the
below algorithm. Performing a task in F earlier may
improve the schedule.

For each critical task 7],. = T, k (k > 1) perform the
following steps; when the algorithm stops, repeat for
the next critical task.
1. Verify that the same worker also performs the

previous task T h = T/,_ i- If j (h) 4: 3(i), stop. Else,
let j = j (i) .

2. Verify that the previous task is not its predeces-
sor. If O - l (T i) = O , let S [' = 0 ; go to 3. If T h =
O- ' (7~ .) , stop. Else, let S°=Cp where Tp=
o-'(~).

3. Determine the time that the worker is available:
Let T r be the task that Wj performs before /h
(T~ + = Th). If no such T~ exists, let p.j = 0; else
p~j = C~.

4. Dctermine the time that the previous task is avail-
able. If O - ~ (T h) = 0 , let S~' = 0. Else, let S~' =
Cq where T,t = O - l(Th).

5. Calculate the earliest completion time of T,. after
interchanging T i and Th: 0 i = max (S °, Ixj) + Pij.

6. Calculate the earliest completion time of T h after
interchanging 7], and Th: 0 h = max (S~,, Oi) + Phi"

7. Verify that this interchange will not delay the
next task that worker Wj performs. If T~ + exists
and 0 h > S(,.~) +D(i+), stop.

8. Verify that this interchange will not delay the
previous task 's successor. If T, = O(T h) exists

and O h > S s + D(s) , stop.
9. Let Ai=min{S(i÷,) + D(i÷),S, + D(s)} - O h and

add T/ to F. If Ti + does not exist, the first term
vanishes. If T~ does not exist (O(T h) = 0) , the
second term vanishes.
If F = O, then we cannot improve this critical

path. Procedure CP stops. If more than one such
task exists, select i *: A i. = max { Ai: T i ~ F} . Inter-
change T~, and the task T h that immediately pre-
cedes it. Recalculate the completion times for all
tasks and return to Step 2.

4.3. Procedure SA: Refining the final solution

Both assignment heuristics use this simulated an-
nealing procedure to improve the solutions that
heuristics H 2 and CP construct. The procedure be-
gins with the heuristic solution and searches for
better schedules by iteratively constructing new solu-
tions that are similar to the current solution.

Initially, the current schedule is the one that the
scheduling heuristic generates. If the current sched-
ule S1 has makespan z~, Procedure SA performs the
following steps to find a neighbor $2:
1. Randomly choose a worker W).
2. Randomly choose two tasks T i and T r that Wj

performs.
3. Let T~ T~s be the sequence of tasks that Wj

performs: Ti~ = 7~. and 1]., = T .
4. Determine if any task is a successor to T~: If there

exist 1 < k < s and q >_ 1: T,. k = Oq(Ti), then re-
turn to 1.

5. Determinc if any task is a predecessor to Tr: If
there exist l _ < k < s and q>_ l: T r = O q (T i k) ,
then return to 1.

6. Interchange 7 I. and T r and construct the corre-
sponding feasible schedule $2. Let z2 be the
makespan.

7. If z2 <-z~, unconditionally accept $2 as the cur-
rent schedule. Otherwise; accept $2 with proba-
bility p, where l n p = - - (z 2 - z l) / T and T is
the current annealing temperature.

534 J. Herrmann et al. / European Journal o f Operational Research 102 (1997) 528-537

The procedure continues in this manner, con-
structing a neighbor of the current solution by inter-
changing two tasks, accepting a better solution, and
occasionally accepting a slightly worse solution to
diversify the search. The initial temperature is T o =
100. After SA accepts 50 solutions at temperature T k
or rejects 50 solutions at temperature T~, the temper-
ature is reduced to Tk+l = 0.98T k. Procedure SA
stops when T~+ i < 0.01 (k = 457) or when it con-
structs a solution that achieves a lower bound.

5. l ,ower bounds

5.1. Lower bound LBI

This lower bound is given by:

L B r = max / } -~. min,,,,Pi(q),i , (4)
i / I , e F ~ q = 0 j~-{1

where F = {T,. ~ E / O l (T ~) = Q}, the set of tasks
with no predecessors, i (0)= i, i (q) is such that
T / (q)=Oq(T/) if q>_ 1, and N i is the number of
successors of T,. ~ F.

LB1 is a good lower bound if one chain of tasks
dominates the other chains.

5.2. Lower bound LB2

We use two criteria to evaluate the heuristics:
computation time and solution quality. Because we
cannot find (in reasonable time) the optimal solu-
tions, we compare the approximate solutions that the
heuristic generates to lower bounds on the optimal
objective function value. We use three different lower
bounds: LB1, LB2, and LB3. LB3, however, re-
quires the task assignments that Procedure AI gener-
ates.

This lower bound is given by:

min
L B 2 = i 0Jc{l I pi ' j (5)

m

LB2 distributes the sum of the minimal process-
ing times among the workers. Note that this lower
bound is never greater than the makespan obtained
by applying Procedure AI. But LB2 is useful when

Table 3

Small-s ized numerical examples (n -<2 30)

Example # 1 2 3 4 5 6 7 8 9 l0 II

n 14 28 16 17 27 16 12 I I 19 15 29

m 8 7 8 4 4 5 6 4 6 6 4

NC 5 8 6 7 1 7 2 3 7 7 7

H 1 M 23 37 22 54 92 32 26 40 43 34 88

CT I" 3" I" 1" 2" O" 0" 0" 1" 1" 2"

A1 M W 16 23 12 43 53 23 15 32 28 19 63
CT 17" 1' 16" 9" 30" 1'42" 16" 7" 2" (43" 6" 18"

A1, H 2 M 30 27 20 56 54 25 19 40 51 42 73

CI" 0" 0" 0'" 0" 0" 0" 0" 0" 0" O" 0"

A 1, H 2 M 30 23 17 54 53 25 19 40 51 42 63

SA CT 0" 0" 1" 21" 0" 0" 0" 0" 0" 0" I"

A 1, C P M 30 23 17 54 53 26 19 44 51 42 63
(.'7" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0"

A 1, C P M 30 23 17 54 53 25 19 40 51 42 63
SA CT 0" 0" 0" 2 l" 0" I" 0" 0" 0" 0" 0"

LB l 16 17 17 40 22 25 19 32 43 34

1.B2 9.25 20 9.25 38.25 49 19.4 10.33 26 22.67 15.5

LB3 30 19 17 43 22 25 19 40 51 42

30
57.75

34

J. Herrmann et a l . / European Journal o f Operational Research 102 (19971528-.537

Table 4
Medium-sized numerical examples (n < 50)

535

Example # 12 13 14 15 16 17 18 19 20 21 22

n 35 28 32 35 37 27 29 36 50 44 26
m 6 9 6 10 8 7 10 6 9 9 7
NC 10 6 2 8 7 11 13 14 16 15 6

H1 M 51 23 48 27 45 36 30 57 43 45 31
CT ~' ~' 4" 6" 5" 2" ~' 4" 10" 7" 2"

AI MW 36 16 30 18 26 26 14 35 28 26 21
CT 6'32" 18'05" 3'10" 2h52'20" 32'02" 1h0~22" 47'5~' 3'12" 2h25'4~' lh01'41" 2'03"

A1, H2 M 46 17 30 20 28 34 40 40 33 32 28
CT 0" 0" 0" 0" 0" 0" 0" 1" 0" 0" 0"

AI, t12 M 36 17 30 18 26 34 40 35 28 27 21
SA CT 10" 23" if' 25" 22" if' 0" 25" 30" 27" 22"

A1, CI" M 38 24 30 25 29 34 ~1 36 38 30 22
CT 0" 0" 0" 0" 0" O" 0" 0" O" O" 0"

A1, CP M 36 17 30 18 26 34 40 35 28 28 21
SA CT 7" 23" 0" 11" 7" 0" 0" 7 ° 15" 26" 6"

LB1 21 12 14 16 18 33 30 22 24 18 17
LB2 32.5 12.44 27 14.2 23.75 22.43 11 31.33 25.11 23.89 18.43
LB3 23 17 14 18 19 34 40 30 24 18 17

t h e s i z e o f t h e p r o b l e m is too l a r g e to a p p l y P r o c e -

d u r e A1 .

5.3 . L o w e r b o u n d L B 3

W e u s e th i s l o w e r b o u n d to e v a l u a t e t he p e r f o r -

m a n c e o f P r o c e d u r e s H 2 a n d C P , g i v e n t he a s s i g n -

m e n t s g e n e r a t e d by P r o c e d u r e A1 . R e c a l l t ha t 7]. is

a s s i g n e d to Wj~i). L B 3 is g i v e n by:

/ / L B 3 = m a x ~ Pi~u},~i~q)l • (6)
T,~.F q=0

Table 5
Medium-sized numerical examples with procedure A2

Example # 12 13 14 15 16 17 18 19 20 21 22

A2 MW 38 17 31 20 28 28 15 37 29 30 24
CT 2" 22" 2" 12'52" 4" 2" 19'05" 2" 5" 5" 5"

A2, H2 M 41 22 31 24 29 43 38 38 33 36 28
CT O" 0" O" O" 0" 0" 0" 0" I" 0" 1"

A2, H2 M 38 17 31 20 28 40 38 37 29 30 24
SA CT 6" 0" 0" 12" I" I" 0" 9" 13" 1 I" 0"

A2, CP M 38 24 31 27 28 40 38 37 38 34 24
CT 0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0"

A 2, CP M 38 17 31 20 28 40 38 37 29 30 24
SA CT 0" 0" 0" 9" 0" 0" 0" 0" 13" 1 I" O"

LB3 26 17 16 19 19 40 38 28 24 18 21

536 J. Herrmann et al. / European Journal o f Operational Research 102 (1997) 528-537

6. Empirical results

Several numerical examples are given in the fol-
lowing tables. NC is the number of precedence
constraints, SA denotes the simulated annealing, M
is the makespan, MW is the makespan obtained by
relaxing the precedence constraints, and CT is the
computation time. The other notations are those used
in the previous sections. Numerical results are pre-
sented in Tables 3-6.

The values in bold characters are optimal
makespans. We know that a value obtained using an
heuristic algorithm is optimal when it is equal to the
greatest lower bound, i.e. when it is equal to max(al ,
LBI, LB2), where al is the value provided by
algorithm A 1.

As we can see, heuristic H1 is very fast and
sometimes provides the optimal makespan. Further-
more, H1 can be applied whatever the size of the
problem. Unfortunately, in some circumstances, the
solution provided by H1 is far away from the opti-
mal one.

The most time consuming algorithm is the
branch-and-bound algorithm A l, the goal of which

is to reduce the makespan after relaxing the prece-
dence constraints. This algorithm is completed by
H2 or by CP. The computation times given in the
rows related to H2 and CP in Tables 3 -6 concern
only H2 and CP. These times are negligible.

In Tables 3 and 4, both algorithms (A1 + H 2)
and (A1 + CP) are refined using simulated anneal-
ing. This refinement step stops either when the crite-
rion reaches max (a l , LBI, LB2, LB3), or when the
temperature of the simulated annealing becomes less
than a threshold given by the user. The computation
times provided in the rows related to SA concern the
simulated annealing only.

In Table 5, we provide the solutions of the same
examples as the ones presented in Table 4. The only
difference is that we replaced procedure A1 by
procedure A2 with A = 1.2 (see Section 4.1).

As wc can see, when using A1, the computation
times are much better, and the values of the criterion
are close, and sometimes better, than those obtained
in Table 4. Furthermore, these results are, in most of
the cases, much better than those obtained using
procedure H 1.

Finally, we present in Table 6 much larger exam-

Table 6
Large-sized numerical examples (n > 50)

Example # 23 24 25 26 27 28 29 30 31 32 33

n 66 65 57 74 54 74 51 59 58 68 57
m 16]4 12 18 16 19 17 15 13 12 13
NC 18 4 16 18 17 10 24 19 22 4 15

H i M 23 30 30 22 20 22 21 26 27 37 28
CT 11" 11" 7" 16" 7" 18" 6" 9" 7" 10" 7"

A~ MW 17 20 21 18 16 14 12 18 20 23 19
CT 23" 5"04" 10" 2"06" 1"30" 32"42" 59" 17" 13" 16" 13"

A z, H~ M 21 20 26 20 24 16 21 20 22 23 21
CT 0" 0" 0" 0" 0" O" 0" O" 0" 0" 0"

A 2, H z M 18 20 21 18 20 14 21 19 21 23 19
SA CT 38" 0" 18" 18" 37" 20" 0" 19" 42" 0" 13"

A 2 , CP M 19 20 23 20 20 16 21 22 26 23 21
CT 0" O" if' 0" O" 1" 0" O" O" 0" 0"

A 2 , CP M 18 20 21 18 20 14 21 19 22 23 19
SA CT 39" 0" 17" 21" 3T' 16" 0" 29" 41" 0" 18"

LBI 11 12 21 17 15 6 21 17 20 12 14
LB2 13.81 15.5 17.25 13.94 10.S] 11.21 9.71 14.53 17 19.25 15.92
LB3 11 15 21 17 18 13 21 19 20 15 14

J. Herrmann et a l . / European Journal of Operational Research 102 (1997) 528-537 537

pies per formed us ing procedure A2. Most of the
tests lead to a good, and somet imes opt imal , solut ion
in a reasonable amoun t of time.

7. Conclusions

The office schedul ing problem requires one to
perform chains of tasks with workers that have dif-
ferent skills. To solve this problem we developed an
intui t ive heurist ic that constructs a feasible schedule
directly and two ass ignment heurist ics that first as-
s ign the tasks to workers and then schedule the tasks
to satisfy the precedence constraints . Because the
n u m b e r of precedence constraints is l imited, this
second step does not s ignif icant ly degrade schedule
performance. Final ly, we use a s imulated annea l ing
procedure to improve the final solution. Al though the
office schedul ing problem is a computa t ional ly diffi-
cult quest ion, these heuristics are able to construct
high quali ty solut ions in reasonable time.

References

UNLINKED
Cheng, T.C.E., and Sin, C.C.S. (1990), "A state-of-the-art review

of parallel machine scheduling research", European Journal
of Operational Research 47, 271-292.

Darema, F., Kirkpatrick, S., and Norton, V.A. (1987), "Parallel
algorithms for chip placement by simulated annealing", IBM
Journal of Research and Development, 31(3), 391-402.

Davis, E., and Jaffe, J.M. (1981), "Algorithm for scheduling tasks
on unrelated processors", Journal of the Association for
Computing Machinery, 28(4), 721-736.

Du, J., Leung, J.Y.-T., and Young, G.H. (1991), "Scheduling
chain structured tasks to minimize makespan and mean flow
time", Information and Computation 92, 219-236.

Graham, R.L. (1966), "Bound on certain multiprocessing anoma-
lies", Bell System Technical Journal 45, 1563-1581.

Hariri, A.M.A., and Potts, C.N. (1991), "Heuristics for schedul-
ing unrelated parallel machines", Computers and Operations
Research 18(3), 323-331.

Hoitmont, D.J., Luh, P.B., Max, E., and Pattipati, K.R. (1990),
"Scheduling jobs with simple precedence constraints on paral-
lel machines", IEEE Control Systems Magazine, 10(2), 34-40.

Ibarra, O.H., and Kim, C.E. (1977), "Heuristic algorithms for
scheduling independent tasks on nonidentical processors",
Journal of the Association for Computing Machinery, 24(2),
280-289.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., and Schevon, C.
(1989), "Optimization by simulated annealing: An experimen-
tal evaluation; Part 1: Graph partitioning", Operations Re-
search, 37(6), 865-892.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983), "Optimi-
zation by simulated annealing", Science, 220, 4598.

Lenstra, J.K., Shmoys, D.B., and Tardos, E. (1990), "Approxima-
tion algorithms for scheduling unrelated parallel machines",
Mathematical Programming, 46, 259-271.

Potts, C.N., 1985. "Analysis of a linear programming heuristic for
scheduling unrelated parallel machines", Discrete Applied
Mathematics, 10, 155-164.

Ullman, J.D., "NP-complete scheduling problems", Journal of
Computing Systems Science, 10, 384-395.

Van de Velde, S.L., "'Duality based algorithms for scheduling
unrelated parallel machines", ORSA Journal on Computing,
5(2), 192-205.

