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Abstract 

In this paper, we consider the problem of scheduling tasks on unrelated parallel machines. Precedence constraints 
between the tasks form chains of tasks. We propose a number of heuristics in order to find near optimal solutions to the 
problem. Empirical results show that the heuristics are able to find very good approximate solutions. © 1997 Elsevier 
Science B.V. 
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1. Introduct ion 

We consider the following problem. A set of 
workers must perform a finite set of tasks, and 
certain tasks cannot begin until othcrs are completed. 
The time required to pcrform each task varies from 
worker to worker. We are interested in assigning the 
tasks to each worker and scheduling the tasks in such 
a way that the time needed to finish all of the work 
is minimized. In other words, wc wish to minimize 
the maximal task completion time, also called the 
makcspan. 

Such a problem typically occurs in an office or 
project management environment, where the re- 
sources are workers who have different skills. The 
problem is called the Office Scheduling Problem. 
Due to the various skills available in an office the 
time necessary to complete a task can vary greatly 
from worker to worker. The tasks are the work that 
needs to be done during a specific period (a day for 
instance). Minimizing the makespan ensures that all 
of the tasks are done as soon as possible (ideally 

before the end of the assigned period). Furthermore, 
reducing the makespan leads to working periods 
which are not too different from worker to worker. 

In general, the set of precedence constraints can 
be quite large. In this discussion, we assume that 
each task has at most one predecessor and at most 
one successor. Thus, the entire set of tasks includes 
chains of tasks. Completing a task enables the next 
task in the chain to begin. 

This problem is an unrelated machine scheduling 
problem. Even without precedence constraints, mini- 
mizing the makespan is a NP-complete problcm. 
However, a number of researchers have proposed 
and analyzed heuristics for this problem. 

Potts (1985) uses a linear programming relaxation 
of the assignment problem formulation. This prob- 
lem can be solved to assign most of the tasks to 
machines. However, the solution has up to m -  1 
tasks divided between m machines. Given the partial 
solution fiom the L P ,  the heuristic uses an exponen- 
tial time exhaustive scarch to determine the best 
assignment of these tasks. The worst case relative 
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performance of  the heuristic is 2. If m = 2, an O(n)  
heuristic is presented; this heuristic has worst case 
relative performance of 1.5. 

Ibarra and Kim (1977) present a number of greedy 
heuristics similar to list scheduling. The worst case 
relative performance of  these heuristics is m, but the 
heuristics are polynomial. If m = 2, the worst case 
relative performance is (V~- + 1) /2 .  

Davis and Jaffe (1981) order on each machine all 
of the tasks by their efficiency, which is defined as 
the minimum processing time for the task divided by 
the processing time of this worker. Their heuristic 
schedules on the next available machine the most 
efficient task until the efficiency for all remaining 
tasks on the machine is too low. The effort of the 
heuristic is O ( m n l o g n ) .  The worst case relative 
performance is 2.5,,/-ram. 

Lenstra et al. (1990) use a sequence of linear 
programs to find the smallest deadline for which the 
linear programming relaxation has a feasible sched- 
ule. In the second phase, a bipartite matching prob- 
lem is solved to assign the unscheduled jobs to 
machines. The worst case relative performance of 
this polynomial time heuristic is 2. 

Hariri and Ports (1991) compare a number of 
heuristics for the problem. They consider two phase 
heuristics which start with an LP relaxation and then 
apply a matching or the earliest completion time 
heuristic (EC'I') to assign the unscheduled jobs. They 
also consider the ECT procedure itself, proving that 
its worst case relative performance is 1 +21ogn. 
Finally, they consider reassignment and interchange 
heuristics to improve a schedule constructed by one 
of  the above heuristics. They conclude that the use of 
improvement techniques with the ECT heuristic gives 
satisfactory' solutions, though slightly better results 
can be achieved by using the two phase heuristics 
with the improvement techniques. 

Van de Velde (1993) uses a surrogate relaxation 
problem to derive a lower bound. The search for the 
best lower bound is an ascent direction algorithm. 
An approximation algorithm based on the dual prob- 
lem is presented and compared to solutions fl)und 
with a branch-and-bound and other heuristics. A 
branch-and-bound over the job assignment is able to 
solve some quite large problems using less than 
100 000 nodes. 

In conclusion, it appears that the ECT heuristic 

with improvements provides simple but good ap- 
proximation for the problem. If better solutions are 
required, the duality based algorithm would be pre- 
ferred, since it does not require an enumeration or a 
sequence of  linear programs. 

The research on problems with precedence con- 
straints has been restricted largely to identical paral- 
lel machines. Ullman (1975) proves that even if all 
the jobs have length one, the problem is NP-com- 
plete, although the problem can be solved in polyno- 
mial time if the precedence constraints form a tree 
(Hu, 1961). Graham (1966) considers the worst case 
performance of list scheduling in the presence of 
precedence constraints, which is 2 -  1 / m .  D u e t  al. 
(1991) show that the two machine problem with 
arbitrary processing times and tree precedence con- 
straints is strongly NP-complete. Cheng and Sin 
(1990) review a number of results on the worst case 
performance of list scheduling and highest-level-first 
approximation algorithms for minimizing makespan 
on identical parallel machines. Hoitmont et al. (1990) 
present a Lagrangian relaxation technique for the 
problem of minimizing total weighted quadratic tar- 
diness on identical machines with precedence con- 
straints. Outside of these approaches, however, few 
approximation algorithms have been proposed, and 
none consider nonidentical machines. 

In this paper, we address the lack of heuristics for 
parallel, unrelated machine scheduling with prece- 
dence constraints. Throughout the remainder of  the 
paper, we will use the term worker to describe a 
resource that can perform a task. 

The problem is presented in Section 2. In Section 
3, we propose a straightforward heuristic which as- 
signs tasks to workers and schedules the tasks simul- 
taneously. Section 4 is devoted to two heuristics that 
first assign tasks to workers, and then schedule the 
tasks, taking into account the precedence constraints. 
Two scheduling procedures are proposed. Section 5 
presents lower bounds. In Section 6, we propose 
several numerical examples and evaluate the perfor- 
mance of the proposed algorithms. Section 7 con- 
cludes the paper. 

2. Problem formulation 

The problem can be formulated as follows. There 
exists a set of m workers Wj, j -  1, . , . ,  m, and a 
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set E of  n tasks T/, i = l . . . . .  n. Task T,. requires 
time p;i  when performed by Wj. We denote by 
O(T/) the task, if any, which can be released only if 
T~ is completed.  In the rest of this paper, we refer to 
0(7]/) as the immediate  successor of T,, which does 
not mean that O(T,.) should start immediately when 
T i is completed.  O2(T / )=  O(O(T/)),  and Oq(T i )  is 
similarly defined for q > 2. Similarly, we denote by 
O-~(7}) the task, if  any, which is the immediate 
predecessor to T~, i.e. which should be completed 
before the starting time of  T~. In a feasible schedule, 
each task must be performed by someone, and each 
worker performs at most one task at a time. The 
worker who begins a task finishes it without a break. 
it~ begins at time S~ and completes at time C~. The 
goal is to find a feasible schedule that minimizes 

Cma x = max i ~ {i . . . . .  n}Ci • 

3 .  H e u r i s t i c  H 1  

Table 1 
Processing times 

T, T2 T3 T~ T5 7; T~ 
Wj 3 4 8 2 5 9 3 
W? 9 5 2 6 10 4 8 

Let T~. be the task to schedule next. 

i*  :Oi.  j ( i .  ) = max O~.xo, 
T~E f ~. 

,%. = t x ~ . . i ( ~ .  ) ,  

Ci"  = Si" + P i ' , j ( i ' ) ,  

Schedule I~.(~,) to begin T~. at time S;.. 
Repeat for k = 2 . . . . .  n. 
Let us consider the following example which 

concerns two workers and seven tasks. 

This heuristic assigns the tasks to the workers and 
defines the schedule simultaneously. The basic prin- 
ciple of this heuristic is very simple: it consists of 
scheduling at each iteration the task which could 
lead to a late schedule of  somc tasks in the future. 

Let k = 1. E k is the set of  unscheduled tasks at 
iteration k. Let E~ = E. F k is the set of tasks that 
could be scheduled: 

F k = { T . ~ E ~ ' O - ' ( T i )  = Q 3 v  O - ' ( ~ )  f ~ E k } .  

For each 1] in F k, apply the following algorithm: 
1. S ~ ' = C  k if O - ' ( T ~ ) = T k ;  S ° = 0 i f  O ~(7))=Q3. 
2. For j = 1 . . . . .  m: 

2.1. tzij  = min{t: t > S ° A worker W~ is idle dur- 

ing ( t ,  t + Pij)}" 
2.2. q = 1. S q = tx~j + p~j 
2.3. If Oq(T,) = O,  go to 2.7. Else, define r:T¢ = 

0"(7). 
2.4. For h =  1 . . . . .  m: 
2.4.1./.z,h = min{t: t > S q A worker W h is idle 

during (t, t +P~h)}. 
2.4.2.0¢~, = / x ~  + Prh 
2.5. S~" i == minh=~ . . . . . .  0~,. 
2.6. q = q + 1. Go to 2.3. 
2.7. Oi j=  S q. 

3. Pick j ( i ) :  Oii(i ) = m i n { O i j : j =  1 . . . . .  m}.  

Example .  The processing times are given in Table 1. 
Furthermore we have to consider the following 

partial order: 

o ( r t )  = 73, O ( T 3 )  = TT, 0 ( 7 " 2 )  = 76 . 

The solution to this problem is reached after 
seven iterations. The results obtained at each itera- 
tion are gathered in Table 2, where: 
• F k is the set of tasks in which the next task to be 

scheduled is selected, 
• Oi, .  Xi- ) is the earliest time when the last succes- 

sor of T,, can be completed if T~, is assigned to 

Wj( i . ), 
• 7],.. is the selected task, 

Table 2 
Summary of iterations 

k 1"~ Oi. j(i.) T,. Wj(i.) S,. C .  

I {T,, T 2, 1;,, T~} 8 T L Wj 0 3 
2 {T 2 ,T  3 ' T  a,7~} 9 7~ W 2 0 5 
3 {?"3, Ta, 7~, 7"6} 10 T 3 W 2 5 7 
4 {T.,, Ts, Tr, T 7} I1 T 6 W 2 7 I1 
5 {T,, 7~, T-,} 10 T 7 W, 7 10 
6 {T,, 7~1 15 7[~ w~ to 15 
7 {TL/ 5 T, W, 3 5 
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TI T4 T7 T~ 
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lo  i5 Time 
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s I0 15 Time 

Fig. 1. Schedule when applying H 1. 

• Wj(;,) is the processor which will perform T~.. 

4. Assignment heuristics 

This section presents two heuristics that begin by 
assigning the tasks to workers while ignoring the 
precedence constraints. Because the problem has few 
precedence constraints (at most n -  1), we expect 
that subsequently scheduling the tasks to satisfy these 
constraints will not significantly affect schedule 
quality. The first assignment heuristic applies a mod- 
ified form on H I  (see Section 3) to schedule the 
tasks. The second assignment heuristic improves a 
feasible schedule by reducing the critical path. Both 
heuristics use simulated annealing to improve the 
final solution. Section 4.1 presents the assignment 
procedure where both heuristics begin. Section 4.2 
discusses the two scheduling procedures. Section 4.3 
presents the simulated annealing procedure. 

4.1. Procedure A1." Assigning tasks to workers 

Both assignment heuristics begin with Procedure 
A1, a branch-and-bound search that assigns tasks to 
workers while ignoring the precedence constraints. 
Procedure AI is a breadth first search that constructs 
partial assignments. Each level of the search tree 
corresponds to a task, and each node represents a 
specific assignment. The procedure orders the tasks 
by their average processing times. That is, the task 
order is 7~), T/2 . . . . .  T/,: 

E Pi~) >- ] ) i 2 j  ~-- " " " ~ P i , , j "  
j = l  j = l  j = l  

The corresponding tree is shown in Fig. 2. The 
optimal assignment {(T i, WXO): i =  1 . . . . .  n} mini- 
mizes the maximum total processing time for all 
workers. 

At each node, Procedure A1 generates a lower 
bound and two upper bounds. Section 4.1.1 describes 
the lower bound. Section 4.1.2 discusses the two 
upper bounds. 

Procedure A1 leads to thc optimal assignment 
problem, that is to the minimal makespan when 
relaxing the precedence constraints. This algorithm is 
time consuming. To reduce the computation time, we 
developed procedure A2 which is the same as AI,  
except that it stops when UPo < Albo, where upo is 
the smallest upper bound, lb o is the smallest lower 
bound and h is a real greater than 1. 

Indeed, A2 does not lead to the optimal solution 
but to a good solution, and the computation time 
decreases drastically compared to the computation 
time of  A1. As a consequence, the size of  the 
problems which can be solved is much greater, as 
shown in Section 6. 

4.1.1. The lower bound 
Consider a node at level a. Tasks 7",.1 . . . . .  T 

have been assigned to workers Wj.(,) . . . . .  Wj(;,). Let 
/zj be the total processing time of  the tasks assigned 
to Wj, j = 1 . . . . .  m. Let E be the set of  unassigned 
tasks. The lower bound is the solution to the follow- 
ing linear program: 

rain z : 

z>__~j+ ~ x;jp;~, V j = l  . . . . .  m, (1) 
T,~£ 

]~ x,~ = 1, VT~ e/ ; ,  (2) 
j =~  

x;j>_0,  V T j ~ E , j =  1 . . . . .  m. (3) 

x;i represents the fraction of T~ assigned to W i. 
The right-hand side of constraint (1) measures the 

leve~ 0 

. . . . . .  ~ level i 

~ ~ V ~  level 2 

\ 

Fig. 2. The branch-and-bound tree. 
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total processing time of the tasks assigned to W i. 
constraint (2) insures that the task is performed 
completely,  z is the makespan. Note that constraint 
(3) relaxes the 0 -  1 constraints of  the assignment 
problem. 

4.1.2. The upper bounds 
Procedure A1 calculates two upper bounds at 

each node. First, A I constructs an integer solution to 
the above linear relaxation. Second, it constructs an 
assignment using a modified form of heuristic H1.  
Both constructions are polynomial  time algorithms. 

4.1.2.1. Upper bound 1. Let x~) be an optimal 
solution to the above linear program. In general, 
some x,'/ will be between 0 and I. For each 71 ~ E, 

pick J{i): x i~]( i )=max{x i ' j : j  = 1 . . . . .  m}. l,et zli 
= 1 if j = j ( i ) ,  0 otherwise. The first upper bound 
is: 

z.,. / 
] = 1  . . . . .  m ]; E/:." 

4.1.2.2. Upper bound 2. Let k = 1. E k is the set of 
unassigned tasks at the beginning of  the kth itera- 
tion. E I = E. For each T~ ~ Ek, apply the following 
algorithm: 
1. For j = 1, . . . ,  m, set 0~i = / z j  + Pij, 
2. Pick ~ i ) :  Oii(i ) = min {Oi:: j = 1 . . . . .  m}. 

Pick i*:  O i . j ( i .  ) = m a x  {Oi)(i):'I]~E }. Add 
Pi*j(i.) tO IZ](i,). Ek+ I = Ek\{ ' /}-  }. Add 1 to k and 
repeat until E~ = ~ .  The second upper bound is 
max {/,t i: j = 1 . . . . .  m}. This construction attempts 
to minimize the effect of  large tasks by assigning 
them to the best workers first. 

Let k = 1. E~ = E. E k is the set of  unscheduled 
tasks at the beginning of  iteration k. Fk is the set of  
tasks that could be scheduled: 

F~ = {r,. ~ Ek: o - ' ( r 3  = ~ v 0 - '  ( r , )  ~ E~}. 

For each T/ in Fk; apply the following algorithm: 
I. S ° = C k if O -  '(T~) = Tk; S ° = 0 if O -  '(T,.) = ~i, 

2. ixii(i)= min {t: t >  S[', A worker Wxi ) is idle 
during (t, t + Pii(i))}, 

3. q = 1. S q =/z;j(~) + p~.~), 
4. If Oq(Ti)= Q3, go to 8. Else, define r: T , =  

O q ( T / ) ,  

5. P'ri(~) = min {t: t >  Si q A worker Wj(~) is idle 
during ( t,t + p~/(~))}, 

6. S q+ ~ = I, Zrj(r) -1- Prj(r), 
7. Add 1 to q. Go to 4, 

8. Oij(i ) = S q. 
Let 7 I .  be the task to schedule next. 

= max {0 i ~i)}, i" " Oi..j(i, ) T~F~ " 

S i . = ]d~i. j ( i . ) ,  

Ci" = Si" + Pi ' . j( i ' ) ,  

Schedule W](i,) to begin T,.~ at time Si , .  
Repeat for k = 2 . . . .  , n. 

4.2.2. Procedure CP 
Procedure CP randomly generates a feasible 

schedule that respects the assignments made by pro- 
cedure A1 and then repeatedly improves the sched- 
ule by reducing the critical path. At each iteration, 
the procedure must calculate the slack for each task 
and interchange two tasks. 

4.2. Procedures H2 and CP: Scheduling the tasks 

The two assignment heuristics use different 
scheduling procedures. Procedure H2  applies a mod- 
ified lbrm of H I  to schedule the assigned tasks. 
Procedure CP randomly generates a feasible sched- 
ule and improves it by reducing the critical path. 

4.2.1. Procedure H2 
This scheduling procedure gives priority to the 

tasks which could delay future tasks. I.et W~i) be the 
worker that performs task T,. 

4.2.2.1. Step 1: Generating a feasible schedule. Let 
k = 1. E~ = E. E~ is the set of unscheduled tasks at 
the beginning of iteration k. F k is the set of tasks 
that could be scheduled: 

F k = { ' I ; ~ E ~ : O - ' ( L ) = f g V  O - ' ( L ) ~ E ~ } .  

Select at random some T~ in f~; apply the follow- 
ing algorithm: 
1. S 0 = C k  if O ' ( r , . ) = L ;  S 0 = = 0 i f  O - ' ( r ~ ) = ® ,  
2. /xi./(i) == rain {t: t > S/° A worker W~i ) is idle dur- 

ing (t , t  + Pij(i))}, 
Si : Uij(i);  Ci = Si q- Pij(i);  lSk+ I = Ek • {Ti}- 
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Schedule Wj(i) to begin T i at time S i. Repeat  for 
k = 2  . . . . .  n. 

4.2.2.2. Step 2: Compute the slack for each task. 
Define i + as the task T/+ that worker W;(i) performs 
after T v If  T,. is the last task, T~ + does not exist. 
T~(~) = O(T~) if  the successor exists. Let D(i) be the 
slack of  T v Delaying T/ by an amount d < D(i) does 
not increase the schedule makespan. 

D ( i )  = min{Cma x - C i, D ( i ( 1 ) )  + Si( i)-  Ci, 

D ( i  +) + Si+-Ci}.  

The second term vanishes if O(T/) does not exist. 
The third term vanishes if T~- does not exist. 

The critical path is a sequence of s tasks T,.~ . . . . .  
T/~. such that Sil=O, Sik =Cik_l ( k = 2  . . . . .  s), 
and Ci~ = Cm~ ~. TO reduce the makespan of  the 
schedule, it is necessary (though not sufficient) to 
reduce the length of  the critical path. 

4.2.2.3. Step 3: Interchange two tasks. Select a criti- 
cal path for the schedule and consider this sequence 
of tasks. Unless one worker  performs the entire 
sequence, construct a set F of critical tasks using the 
below algorithm. Performing a task in F earlier may 
improve the schedule. 

For each critical task 7],. = T, k (k > 1) perform the 
following steps; when the algorithm stops, repeat  for 
the next critical task. 
1. Verify that the same worker also performs the 

previous task T h = T/,_ i- If j ( h )  4: 3(i), stop. Else, 
let j = j ( i ) .  

2. Verify that the previous task is not its predeces- 
sor. If O - l ( T i ) = O ,  let S [ ' = 0 ;  go to 3. If  T h =  
O- ' (7~ . ) ,  stop. Else, let S°=Cp  where Tp= 
o-'(~). 

3. Determine the time that the worker is available: 
Let T r be the task that Wj performs before /h 
(T~ + = Th). If no such T~ exists, let p.j = 0; else 
p~j = C~. 

4. Dctermine the time that the previous task is avail- 
able. If O - ~ ( T  h) = 0 ,  let S~' = 0. Else, let S~' = 
Cq where T,t = O -  l(Th). 

5. Calculate the earliest completion time of  T,. after 
interchanging T i and Th: 0 i = max (S  °, Ixj) + Pij. 

6. Calculate the earliest completion time of  T h after 
interchanging 7], and Th: 0 h = max (S~,, Oi) + Phi" 

7. Verify that this interchange will not delay the 
next task that worker  Wj performs. If  T~ + exists 
and 0 h > S(,.~) +D(i+  ), stop. 

8. Verify that this interchange will not delay the 
previous task 's  successor. If  T, = O(T h) exists 

and O h > S s + D(s ) ,  stop. 
9. Let Ai=min{S(i÷,) + D(i÷),S, + D( s)} - O h and 

add T/ to F.  If Ti + does not exist, the first term 
vanishes. If  T~ does not exist (O(T h) = 0 ) ,  the 
second term vanishes. 
If F = O,  then we cannot improve this critical 

path. Procedure CP stops. If  more than one such 
task exists, select i *: A i. = max { Ai: T i ~ F} .  Inter- 
change T~, and the task T h that immediately pre- 
cedes it. Recalculate the completion times for all 
tasks and return to Step 2. 

4.3. Procedure SA: Refining the final solution 

Both assignment heuristics use this simulated an- 
nealing procedure to improve the solutions that 
heuristics H 2  and CP construct. The procedure be- 
gins with the heuristic solution and searches for 
better schedules by iteratively constructing new solu- 
tions that are similar to the current solution. 

Initially, the current schedule is the one that the 
scheduling heuristic generates. If the current sched- 
ule S1 has makespan z~, Procedure SA performs the 
following steps to find a neighbor $2: 
1. Randomly choose a worker W). 
2. Randomly choose two tasks T i and T r that Wj 

performs. 
3. Let T~ . . . . .  T~s be the sequence of  tasks that Wj 

performs: Ti~ = 7~. and 1]., = T .  
4. Determine if any task is a successor to T~: If there 

exist 1 < k < s and q >_ 1: T,. k = Oq(Ti), then re- 
turn to 1. 

5. Determinc if any task is a predecessor to Tr: If 
there exist l _ < k < s  and q>_ l: T r = O q ( T i k ) ,  
then return to 1. 

6. Interchange 7 I. and T r and construct the corre- 
sponding feasible schedule $2. Let z2 be the 
makespan. 

7. If z2 <-z~, unconditionally accept $2 as the cur- 
rent schedule. Otherwise; accept $2 with proba- 
bility p, where l n p =  - - ( z 2 - z l ) / T  and T is 
the current annealing temperature. 
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The procedure continues in this manner, con- 
structing a neighbor of  the current solution by inter- 
changing two tasks, accepting a better solution, and 
occasionally accepting a slightly worse solution to 
diversify the search. The initial temperature is T o = 
100. After SA accepts 50 solutions at temperature T k 
or rejects 50 solutions at temperature T~, the temper- 
ature is reduced to Tk+l = 0.98T k. Procedure SA 
stops when T~+ i < 0.01 (k = 457) or when it con- 
structs a solution that achieves a lower bound. 

5. l ,ower  bounds  

5.1. Lower bound LBI 

This lower bound is given by: 

L B r =  max / } -~. min,,,,Pi(q),i , (4) 
i / I ,  e F  ~ q = 0  j~-{1 . . . .  

where F = {T,. ~ E / O  l ( T ~ )  = Q}, the set of tasks 
with no predecessors, i (0 )=  i, i ( q )  is such that 
T / (q)=Oq(T/ )  if q>_ 1, and N i is the number of 
successors of T,. ~ F. 

LB1 is a good lower bound if one chain of tasks 
dominates the other chains. 

5.2. Lower bound LB2 

We use two criteria to evaluate the heuristics: 
computation time and solution quality. Because we 
cannot find (in reasonable time) the optimal solu- 
tions, we compare the approximate solutions that the 
heuristic generates to lower bounds on the optimal 
objective function value. We use three different lower 
bounds: LB1, LB2, and LB3. LB3, however, re- 
quires the task assignments that Procedure AI gener- 
ates. 

This lower bound is given by: 

min 
L B 2 =  i 0Jc{l . . . . . .  I pi ' j  (5) 

m 

LB2 distributes the sum of the minimal process- 
ing times among the workers. Note that this lower 
bound is never greater than the makespan obtained 
by applying Procedure AI.  But LB2 is useful when 

Table 3 

Small-s ized numerical  examples  (n -<2 30) 

Example  # 1 2 3 4 5 6 7 8 9 l0  II 

n 14 28 16 17 27 16 12 I I 19 15 29 

m 8 7 8 4 4 5 6 4 6 6 4 

NC 5 8 6 7 1 7 2 3 7 7 7 

H 1 M 23 37 22 54 92 32 26 40 43 34 88 

CT I" 3" I" 1" 2" O" 0" 0" 1" 1" 2" 

A1 M W  16 23 12 43 53 23 15 32 28 19 63 
CT 17" 1' 16" 9" 30" 1'42" 16" 7" 2" (43"  6" 18" 

A1, H 2  M 30 27 20 56 54 25 19 40 51 42 73 

CI" 0" 0" 0'" 0" 0" 0" 0" 0" 0" O" 0" 

A 1, H 2 M 30 23 17 54 53 25 19 40 51 42 63 

SA CT 0" 0" 1" 21" 0" 0" 0" 0" 0" 0" I" 

A 1, C P  M 30 23 17 54 53 26 19 44 51 42 63 
(.'7" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 

A 1, C P  M 30 23 17 54 53 25 19 40 51 42 63 
SA CT 0" 0" 0" 2 l" 0" I" 0" 0" 0" 0" 0" 

LB l 16 17 17 40 22 25 19 32 43 34 

1.B2 9.25 20 9.25 38.25 49 19.4 10.33 26 22.67 15.5 

LB3 30 19 17 43 22 25 19 40 51 42 

30 
57.75 

34 
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Table 4 
Medium-sized numerical examples (n < 50) 

535 

Example # 12 13 14 15 16 17 18 19 20 21 22 

n 35 28 32 35 37 27 29 36 50 44 26 
m 6 9 6 10 8 7 10 6 9 9 7 
NC 10 6 2 8 7 11 13 14 16 15 6 

H1 M 51 23 48 27 45 36 30 57 43 45 31 
CT ~' ~' 4" 6" 5" 2" ~' 4" 10" 7" 2" 

AI MW 36 16 30 18 26 26 14 35 28 26 21 
CT 6'32" 18'05" 3'10" 2h52'20" 32'02" 1h0~22" 47'5~' 3'12" 2h25'4~' lh01'41" 2'03" 

A1, H2  M 46 17 30 20 28 34 40 40 33 32 28 
CT 0" 0" 0" 0" 0" 0" 0" 1" 0" 0" 0" 

AI,  t12  M 36 17 30 18 26 34 40 35 28 27 21 
SA CT 10" 23" if' 25" 22" if' 0" 25" 30" 27" 22" 

A1, CI" M 38 24 30 25 29 34 ~1 36 38 30 22 
CT 0" 0" 0" 0" 0" O" 0" 0" O" O" 0" 

A1, CP M 36 17 30 18 26 34 40 35 28 28 21 
SA CT 7" 23" 0" 11" 7" 0" 0" 7 ° 15" 26" 6" 

LB1 21 12 14 16 18 33 30 22 24 18 17 
LB2 32.5 12.44 27 14.2 23.75 22.43 11 31.33 25.11 23.89 18.43 
LB3 23 17 14 18 19 34 40 30 24 18 17 

t h e  s i z e  o f  t h e  p r o b l e m  is too  l a r g e  to a p p l y  P r o c e -  

d u r e  A1 .  

5.3 .  L o w e r  b o u n d  L B 3  

W e  u s e  th i s  l o w e r  b o u n d  to e v a l u a t e  t he  p e r f o r -  

m a n c e  o f  P r o c e d u r e s  H 2  a n d  C P ,  g i v e n  t he  a s s i g n -  

m e n t s  g e n e r a t e d  by  P r o c e d u r e  A1 .  R e c a l l  t ha t  7]. is 

a s s i g n e d  to Wj~i). L B 3  is g i v e n  by:  

/ / L B 3  = m a x  ~ Pi~u},~i~q)l • ( 6 )  
T,~.F q=0  

Table 5 
Medium-sized numerical examples with procedure A2 

Example # 12 13 14 15 16 17 18 19 20 21 22 

A2 MW 38 17 31 20 28 28 15 37 29 30 24 
CT 2" 22" 2" 12'52" 4" 2" 19'05" 2" 5" 5" 5" 

A2, H2  M 41 22 31 24 29 43 38 38 33 36 28 
CT O" 0" O" O" 0" 0" 0" 0" I" 0" 1" 

A2, H2 M 38 17 31 20 28 40 38 37 29 30 24 
SA CT 6" 0" 0" 12" I" I" 0" 9" 13" 1 I" 0" 

A2, CP M 38 24 31 27 28 40 38 37 38 34 24 
CT 0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 

A 2, CP M 38 17 31 20 28 40 38 37 29 30 24 
SA CT 0" 0" 0" 9" 0" 0" 0" 0" 13" 1 I" O" 

LB3 26 17 16 19 19 40 38 28 24 18 21 
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6. Empirical results 

Several numerical examples are given in the fol- 
lowing tables. NC is the number of precedence 
constraints, SA denotes the simulated annealing, M 
is the makespan, MW is the makespan obtained by 
relaxing the precedence constraints, and CT is the 
computation time. The other notations are those used 
in the previous sections. Numerical results are pre- 
sented in Tables 3-6.  

The values in bold characters are optimal 
makespans. We know that a value obtained using an 
heuristic algorithm is optimal when it is equal to the 
greatest lower bound, i.e. when it is equal to max(al ,  
LBI, LB2), where al is the value provided by 
algorithm A 1. 

As we can see, heuristic H1 is very fast and 
sometimes provides the optimal makespan. Further- 
more, H1 can be applied whatever the size of the 
problem. Unfortunately, in some circumstances, the 
solution provided by H1 is far away from the opti- 
mal one. 

The most time consuming algorithm is the 
branch-and-bound algorithm A l, the goal of which 

is to reduce the makespan after relaxing the prece- 
dence constraints. This algorithm is completed by 
H2 or by CP. The computation times given in the 
rows related to H2 and CP in Tables 3 -6  concern 
only H2 and CP. These times are negligible. 

In Tables 3 and 4, both algorithms (A1 + H 2 )  
and (A1 + CP) are refined using simulated anneal- 
ing. This refinement step stops either when the crite- 
rion reaches max (a l ,  LBI, LB2, LB3), or when the 
temperature of the simulated annealing becomes less 
than a threshold given by the user. The computation 
times provided in the rows related to SA concern the 
simulated annealing only. 

In Table 5, we provide the solutions of the same 
examples as the ones presented in Table 4. The only 
difference is that we replaced procedure A1 by 
procedure A2 with A = 1.2 (see Section 4.1). 

As wc can see, when using A1, the computation 
times are much better, and the values of the criterion 
are close, and sometimes better, than those obtained 
in Table 4. Furthermore, these results are, in most of 
the cases, much better than those obtained using 
procedure H 1. 

Finally, we present in Table 6 much larger exam- 

Table 6 
Large-sized numerical examples (n > 50) 

Example # 23 24 25 26 27 28 29 30 31 32 33 

n 66 65 57 74 54 74 51 59 58 68 57 
m 16 ]4 12 18 16 19 17 15 13 12 13 
NC 18 4 16 18 17 10 24 19 22 4 15 

H i M 23 30 30 22 20 22 21 26 27 37 28 
CT 11" 11" 7" 16" 7" 18" 6" 9" 7" 10" 7" 

A~ MW 17 20 21 18 16 14 12 18 20 23 19 
CT 23" 5"04" 10" 2"06" 1"30" 32"42" 59" 17" 13" 16" 13" 

A z, H~ M 21 20 26 20 24 16 21 20 22 23 21 
CT 0" 0" 0" 0" 0" O" 0" O" 0" 0" 0" 

A 2, H z M 18 20 21 18 20 14 21 19 21 23 19 
SA CT 38" 0" 18" 18" 37" 20" 0" 19" 42" 0" 13" 

A 2 , CP M 19 20 23 20 20 16 21 22 26 23 21 
CT 0" O" if' 0" O" 1" 0" O" O" 0" 0" 

A 2 , CP M 18 20 21 18 20 14 21 19 22 23 19 
SA CT 39" 0" 17" 21" 3T' 16" 0" 29" 41" 0" 18" 

LBI 11 12 21 17 15 6 21 17 20 12 14 
LB2 13.81 15.5 17.25 13.94 10.S] 11.21 9.71 14.53 17 19.25 15.92 
LB3 11 15 21 17 18 13 21 19 20 15 14 
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pies per formed us ing procedure A2. Most  of  the 
tests lead to a good, and somet imes  opt imal ,  solut ion 
in a reasonable  amoun t  of  time. 

7. Conclusions 

The office schedul ing problem requires one to 
perform chains  of tasks with workers  that have dif- 
ferent skills. To  solve this problem we developed an 
intui t ive heurist ic that constructs  a feasible schedule 
directly and two ass ignment  heurist ics that first as- 
s ign the tasks to workers and then schedule the tasks 
to satisfy the precedence constraints .  Because the 
n u m b e r  of precedence constraints  is l imited, this 
second step does not  s ignif icant ly degrade schedule 
performance.  Final ly,  we use a s imulated annea l ing  
procedure to improve the final solution.  Al though the 
office schedul ing problem is a computa t ional ly  diffi- 
cult  quest ion,  these heuristics are able to construct  
high quali ty solut ions in reasonable  time. 
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