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ABSTRACT 
 Research on design optimization has developed and 
demonstrated a variety of modeling techniques and solution 
methods, including techniques for multidisciplinary design 
optimization, and these approaches are beginning to migrate 
into product development practice.  Software tools are 
appearing to assist with the optimization task.  However, the 
complexity of the optimization problems being considered 
continues to increase because changing business strategies 
stress the importance of concurrent engineering and 
considering multiple disciplines simultaneously.  This paper 
presents a novel classification framework for design 
optimization problems.  The framework sorts design 
optimization problems based on the type of variables being 
considered and the objective functions being optimized.  It 
does not focus on the algorithms used to solve the problems.  
This classification framework provides a new perspective that 
can help design engineers use optimization in the most 
appropriate way. 
 
INTRODUCTION 

Product development has been a lively research area 
over the last few decades especially in system level design 
optimization.  Much work has been done to develop new 
techniques and frameworks to aid in solving complex 
optimization problems.  Increasing scope and problem 
complexity accented the major limitations of initial solution 
techniques thus driving researchers to find alternate 
approaches [1].  The growing complexity of optimization 
problems is forcing engineers to depend more on powerful 
software and computer technology, while improvements in 
computing technology allow engineers the opportunity to 
attempt complex problems.   

Advancements in computer capabilities and software 
have helped bridge the gap between research and industrial 
applications.  For example, software such as iSight, MAX, and 

Smart|Coupling can currently integrate several disciplines into 
one complete optimization [2, 3].  Third party analysis 
software such as computational fluid dynamics (CFD), finite 
element analysis (FEA), spreadsheet simulation, and in house 
code are currently being integrated through these programs to 
expand the scope of optimization capabilities.  New research 
in optimization and improvements in software have generated 
two major shifts in the scope of optimization techniques. 

First, a shift from single discipline optimization, e.g. 
structures, to multiple disciplines within the engineering 
domain, e.g. performance, structures, and aerodynamics, 
occurred.  As a result, several multidisciplinary design 
optimization (MDO) techniques such as all-at-once (AAO), 
individual-discipline feasible (IDF), and multi-discipline 
feasible (MDF) approaches were developed [4, 5].  Since then, 
other MDO solution methods including collaborative 
optimization (CO), concurrent subspace optimization (CSSO), 
and bi-level integrated system synthesis (BLISS) have been 
created and demonstrated in example problems [6].  MDO 
techniques apply various decomposition and coordination 
methods to facilitate communication between several 
disciplines while utilizing common optimization solvers to 
find a solution.  Sub-optimization functions can be contained 
within the subsystems with appropriate coupling variables 
linking all the systems and subsystems together to ensure a 
global objective is maintained. 

Collaborative optimization (CO) and analytical target 
cascading (ATC) are two common frameworks used in 
multidisciplinary optimization that have been demonstrated 
frequently in the last decade.  CO is a bi-level optimization 
method used for non-hierarchical systems [7-11].  The newer 
method of ATC, on the other hand, decomposes a hierarchical 
system into two or more levels [6, 14-17].  ATC is not directly 
a categorization of an MDO technique because it depends on 
how the problem is decomposed. 
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The second shift occurred as a result of the growing 
popularity of decision-based design (DBD).  Since Hazelrigg 
[18] introduced a DBD framework for engineering design, 
applications have evolved to include decision-making and 
uncertainty [19-22].  MDO techniques are being applied to the 
DBD framework in an attempt to handle the added variables 
from the marketing and manufacturing domains [6,11,16,17].  
Many approaches have been developed and tested on example 
problems; however, the majority of available literature 
detailing these example problems is organized around 
modeling techniques and solution methods. 

To the authors’ knowledge there have been only two 
classification schemes related to single product design 
optimization.  The first was a taxonomy for three MDO 
decomposition approaches developed by Cramer et al. [5] 
resulting in the AAO, IDF, and MDF approaches mentioned 
previously.  The second classification scheme, developed by 
Balling and Sobieszczanski-Sobieski [9], was a more general 
and versatile taxonomy for the six fundamental approaches of 
MDO decomposition.  The notation in this taxonomy 
distinguishes between single and multi-level optimization and 
whether the analysis is simultaneous or nested at the system 
and discipline levels.  Both of these classification schemes 
focus on the details of the techniques used to solve multi-
discipline problems. 

A classification scheme that helped generate ideas for 
the formulation proposed in this paper was created by Graham 
et al. in 1979 [12].  The three field α/β/γ notation classifies 
machine scheduling optimization problems based on various 
machine environments, job characteristics, and scheduling 
objectives, respectively [13].  

This paper presents a classification framework based 
on the examination of various design optimization problems 
from the perspective of information requirements and 
objectives.  We are not directly concerned with decomposition 
or modeling techniques nor do we limit our classification to 
MDO problems.  The generality of the proposed classification 
allows even the most basic optimization problems to be 
classified.   

Our goals when developing this classification 
framework included both scientific and practical ones.  First, 
this classification framework helps us to organize and 
understand design optimization problems, an important step in 
any scientific discipline.  While this classification framework 
is not the only conceivable scheme, we believe that it 
concisely captures the most important attributes while 
remaining open to including other attributes in the future if so 
desired.  Second, this classification framework provides 
practical help for design engineers considering design 
optimization.  Using this scheme, a design engineer can locate 
similar design optimization problems, which can be useful 
guides for formulating a new problem.  Moreover, the set of 
similar design optimization problems indicates the range of 
potential solution techniques.  Of course, the design engineer 
must still choose a problem formulation and a solution 
technique.  This classification framework does not replace 
modeling skill, but it does provide information that can help 
one develop it.   A related task (which the authors are 
undertaking) is to present examples of design optimization 

problems that have been solved using a variety of solution 
techniques and to discuss the tradeoffs involved when 
selecting a solution technique.
 The remainder of the paper proceeds as follows.  
After defining some key terms used in the paper, we present 
the classification framework and then use available examples 
to demonstrate it.  A summary concludes the paper. 
 
DEFINITIONS 

Many areas within a firm can influence the product 
development process.  Engineering is obviously the basis of 
design while manufacturing and marketing are a major part of 
concurrent engineering.  The engineering domain represents 
the perspective of design engineers and concerns about the 
product design and product performance.  The manufacturing 
domain represents the perspective of manufacturing personnel 
and concerns about the manufacturing process and the 
corresponding metrics.  The marketing domain represents the 
perspective of the product manager and concerns about 
finances, customer preferences, and demand. 

Design optimization problems have three primary 
features: variables, constraints, and objective functions.  Our 
classification framework will consider only variables and 
global objective functions.  Constraints are important because 
they can influence the choice of an optimization solver based 
on whether the constraints are linear, nonlinear, equality, or 
inequality constraints.  However, constraints are generally 
created during the modeling process.  Our classification 
framework is meant to describe the fundamental problem, not 
the model details. 

Due to the nonconformity of terminology in design 
research, the following definitions are given along with 
possible synonyms to avoid any confusion. 

 
Product Scope 
 The classification framework distinguishes between 
single product design optimization and product family 
optimization.  Definitions for each of the two product types 
are given for clarity, however, only single-product design 
problems are treated in this paper.  Future work will extend 
this classification scheme to product families. 

 
Single Product:  This is a product that is designed with no 
regard to similar products.  Component sharing and 
interconnection with other products do not influence the 
design decisions. 
 
Product Family [23]:   
1. A set of common elements, modules, or parts from 

which a stream of derivative products can be 
efficiently developed and launched. 

2. A collection of common elements, especially the 
underlying core technology, implemented across a 
range of products. 

3. A collection of assets (i.e., components, processes, 
knowledge, people and relationships) that are shared 
by a set of products. 
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Variables 
 Variables are sometimes referred to as parameters, 
design variables, and design parameters [24].  A designer must 
select the values for variables.  Optimization is used to help 
find appropriate values of variables.  The following three 
definitions refer to more specific types of variables. 

 
Engineering Variables:  These are variables specific to 
the product being designed.  Typical engineering 
variables include product geometry, features, and material 
selection. 
 
Manufacturing Variables:  These are variables specific to 
the manufacturing domain.  Every facility will have 
different manufacturing variables specific to the machine 
types and facility layout.  Examples include number of 
machines, time allotment per machine, number of 
operations per part, force and energy requirements, feed 
rate, and depth of cut. 
 
Price Variable:  This variable is the price of the product 
or system being designed. Pricing is a critical but complex 
issue.  For a new product, a successful pricing approach 
first determines the price that customers can be convinced 
to pay for the product concept, and then the firm designs a 
satisfactory product that can be manufactured profitably 
at the expected sales volume [25]. While the initial 
pricing strategy may be used to set a cost target for the 
product design, the product price will certainly change 
over time as the firm’s pricing strategy influences their 
response to market forces.  The product development 
team does not need to make pricing decisions that have 
not yet arrived.  However, optimizing product 
profitability at the design stage requires understanding 
what the firm is likely to do.  If alternative strategies are 
feasible (such as skim pricing or penetration pricing), the 
team may want to evaluate these strategies, since they 
control future prices. 

 
Objective Functions 

Design optimization (especially MDO) can include 
several sub-problems depending on the system being 
designed.  The classification framework considers only the 
global objective also known as the system level objective.  
The classification framework covers single objective as well 
as multi-objective optimization problems at the system level.  

 
Attribute-based:  These objective functions are related to 
product performance or product characteristics (i.e. 
attributes). For the purposes of this classification 
framework an attribute is a quantitative measure related to 
the object or system being designed. The objective is to 
maximize or minimize an attribute level, usually a 
performance measure, based on the product being 
designed.  Although uncommon, it is possible to utilize 
demand information in the attribute-based objective 
function but it is not a requirement.  Examples: minimize 
weight, minimize size, minimize stress, and maximize 

range.  Alternatively, the objective may be to minimize 
the deviation from a target attribute value. 
 
Cost-based:  These objective functions are related to the 
engineering and manufacturing domains.  The goal is to 
minimize the overall cost of the product based on one or 
more cost models.  Generally this type of optimization 
will be more complex than the attribute-based objective 
because cost models will be necessary along with the 
design models.  While one can consider a cost objective 
to be a performance measure equivalent to any attribute-
based objective, we treat cost separately because product 
performance and product cost are fundamentally different 
and very important objectives, as discussed by Smith and 
Reinertsen [26].  Therefore it is useful to the designer if a 
distinction is made between the two types of objectives.  
Similar to the attribute-based objective function this can 
include situations where the objective is to minimize the 
deviation from a cost target.  Demand can again be 
utilized as a weighting method in this objective but is not 
required. 
 
Profit-based: These objective functions are directly 
related to the marketing domain.  The goal of the 
optimization is to maximize the design value based on 
demand information.  Although not stated explicitly in the 
classification it can be assumed that any profit-based 
objective will require some type of demand model.  
Another step in complexity is seen through the profit-
based models in comparison to the attribute-based and 
cost-based because more model evaluations are required 
for this type of optimization.  Examples:  maximize 
revenue, maximize profit, maximize expected utility of 
profit, maximize net present value, and maximize return 
on investment. 

 
CLASSIFICATION FRAMEWORK 

Three main categories become apparent when 
considering design optimization problems.  Our classification 
framework sorts design optimization problems based on the 
following three characteristics: problem scope (i.e. single 
product versus product family), the variables that need to be 
decided (i.e. engineering, manufacturing, or price), and the 
primary objective function (or functions) of the optimization 
problem (i.e. attribute-based, cost-based, or profit-based). 

To explain the classification framework, we will 
begin with the most basic types of deterministic optimization 
problems involving only a single objective function.  
Subsequent paragraphs will discuss problems with multiple 
objectives.  After that we will present a modifier to the 
objective function to describe typical methods of dealing with 
uncertainty. 

The classification framework categorizes design 
problems using three fields corresponding to the three 
characteristics mentioned above.  The first field notes the 
number of products.  The second field notes the types of 
variables. The third field notes the type of objective function 
(or functions).  Designing a single product with a single 
system level objective can include twelve possible 
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optimization framework combinations.  Six of the twelve 
combinations are more likely to be used due to the relationship 
between the objective function and the variables considered.  
For example, if the design process includes only engineering 
variables, then maximizing profit would not be a typical 
objective function since maximizing profit or the expected 
utility of profit usually includes the price variable.  The twelve 
combinations for single objective optimization problems are 
shown in Table 1 with the six most logical in bold lettering. 

The product type entry in field one can be either 
single product (S) or product family (F). Variables present in 
the optimization, shown in field two, may include engineering 
variables (E), manufacturing variables (M), or a price variable 
(P). Field three displays the objective functions for each 
combination of variables, which include attribute-based 
objectives (A), cost-based objectives (C), and profit-based 
objectives (Π). 

 
Single Objective 

Field # 

1 2 3 
Product 

Type Variables Included System Objective 

S E A Single Eng. Attribute-based 
S E C Single Eng. Cost-based 
S E Π Single Eng. Profit-based 
S EM A Single Eng. & Mfg. Attribute-based 
S EM C Single Eng. & Mfg. Cost-based 
S EM Π Single Eng. & Mfg. Profit-based 
S EP A Single Eng. & Price Attribute-based 
S EP C Single Eng. & Price Cost-based 
S EP Π Single Eng. & Price Profit-based 
S EMP A Single Eng., Mfg. & Price Attribute-based 
S EMP C Single Eng., Mfg. & Price Cost-based 
S EMP Π Single Eng., Mfg. & Price Profit-based 

Table 1: Combinations of Single Product Optimization with a 
Single Objective. 

 
The above classification framework is easy to use 

and self-explanatory.  For instance, if a problem is classified 
as type S-E-A, one can immediately know that the 
optimization problem is for a single product, it has only 
engineering variables, and has an attribute-based objective.   

The classification framework also includes multi-
objective design optimization problems, resulting in eight 
more common combinations.  The third field of the 
classification is further divided into two subfields (i.e. 
positions within the third field).  The first subfield will always 
contain the entry “A” as can be seen in “AA,” “AC,” or “AΠ.”  
The second field on the other hand can be either “A”, “C”, or 
“Π” to distinguish what other objectives are present.   

The classification of an optimization problem with 
two or more attribute-based objectives would contain “AA” in 
the third field (e.g. S-E-AA or S-EM-AA).  If “AC” appears in 
the third field of the classification then there are two or more 
attribute-based and cost-based objectives.  Similarly, “AΠ” is 

used for the multi-objective case where attribute-based and 
profit-based objectives are present.  The latter case is common 
among multidisciplinary design optimization techniques such 
as ATC and CO when the multi-objective function is to 
minimize the deviation between attribute targets while 
maximizing profit [16,17].  Note the specific number of 
objectives is not specified in the multi-objective case.  The 
formulation of the objective function as well as the choice of 
optimization program may alter depending on the number of 
objectives (e.g., two versus four objectives) but from the 
perspective of the proposed classification scheme these 
differences are minor.  Distinguishing between a single 
objective optimization and a multi-objective optimization 
plays a much larger role in selecting a solution technique than 
the difference between two objectives and four objectives. 

A “CΠ” classification is unlikely because cost 
models are generally inputs to the profit model though this 
multi-objective problem is technically feasible.  The sixteen 
possible combinations are shown in Table 2 with the eight 
most typical combinations in bold. 

 
Multi-Objective 

Field # 
1 2 3 

Product 
Type Variables Included System Objective 

S E AA Single Eng. Attribute-based 

S E AC Single Eng. Att. & Cost-based 

S E CC Single Eng. Cost-based 

S EM AA Single Eng. & Mfg. Attribute-based 

S EM AC Single Eng. & Mfg. Att. & Cost-based 

S EM CC Single Eng. & Mfg. Cost-based 
S EP AA Single Eng. & Price Attribute-based 

S EP AC Single Eng. & Price Att. & Cost-based 

S EP AΠ Single Eng. & Price Att. & Profit-based 
S EP CC Single Eng. & Price Cost-based 

S EP CΠ Single Eng. & Price Cost & Profit-based 

S EMP AA Single Eng., Mfg. & Price Attribute-based 

S EMP AC Single Eng., Mfg. & Price Att. & Cost-based 

S EMP AΠ Single Eng., Mfg. & Price Att. & Profit-based 
S EMP CC Single Eng., Mfg. & Price Cost-based 

S EMP CΠ Single Eng., Mfg. & Price Cost & Profit-based 

Table 2: Combinations of Single Product Optimization with 
Multiple Objectives. 

 
Deterministic models are preferred by engineers due 

to the simplicity of formulating and solving them.  
Unfortunately, it is a well known fact that the real world is not 
deterministic.  Therefore, it is important to include uncertainty 
in the classification framework.  An objective function 
subclass, including five methods of dealing with uncertainty, 
categorizes and clarifies optimization problems further.  The 
first method of dealing with uncertainty is ignoring it, thus the 
problem is a deterministic optimization problem.  Four other 
common methods include expected value (EV), expected 
utility (EU), worst-case (WC), and probability of satisfaction 
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(PS).  Although there are variations to the methods mentioned 
above (such as the Hurwicz criteria and maximum likelihood 
criteria), we believe the most common forms are accounted 
for. 

The classification framework represents the 
uncertainty subclass using a subscript on the objective 
function terms in the third field.  Deterministic objective 
functions would have no subscript in the third field while the 
four common methods for dealing with uncertainty described 
above would include a subscript of EV, EU, WC, or PS 
respectively.  For example, the classification S-E-AWC is used 
for problems that address a single product, have engineering 
variables, and optimize the worst-case performance.   

The framework is deployed in the next section to 
classify available examples. Engineers will be able to use 
available examples to perform a case-based search and find 
design problems that are similar based on the three fields of 
the classification scheme and compare the different solution 
techniques previous designers used in solving the problem.   

 
EXAMPLES 
 Available examples of various optimization 
problems, including MDO problems, will be classified using 
the proposed framework.  The MDO problems used for 
demonstrating the framework were solved using either ATC or 
CO techniques.  

An S-E-A type optimization is the most basic 
because it involves only the engineering domain.  Therefore, 
the equations used to model this type of optimization rely only 
on principles of engineering science.  First a general 
optimization problem is discussed followed by another 
example that employs one of the afore-mentioned MDO 
techniques.   

A simple single discipline example of designing a 
fingernail clipper can be found in Otto and Wood [27].  In this 
example a model is formulated to represent finger force.  The 
variables included in this model are finger force, cutting force 
at the blade, length of lever arm, distance to the blades, nail 
thickness, shear strength of nail material, width of blade, and 
blade height.  The deterministic attribute-based objective 
chosen in designing the fingernail clipper is to minimize the 
finger force required subject to stress and dimension 
constraints.  It can easily be seen by looking at the variables 
involved that only engineering variables are included for the 
design of a single fingernail clipper.  Thus, this problem can 
be classified as type S-E-A.  Cost and manufacturing concerns 
are not present in the formulation although it is possible to 
extend this problem to include such domains. 

Kroo et al. [8] present a system level aircraft design 
problem.  The global objective function is to maximize range 
under the influence of an aerodynamics subsystem, a 
structures subsystem, and a performance subsystem.  Range is 
an attribute of the system to be designed, which corresponds to 
the “A” in the classification.  The variables in this problem are 
all related to the plane’s design and include wing geometry, 
wing weight, twist angle, aspect ratio, gust loading, and lift-to-
drag ratio, all of which affect range.  This is a deterministic S-
E-A problem because no distributions are applied to the input 

variables.  Figure 1 shows the CO framework applied to solve 
this aircraft design problem. 
 

 
Figure 1: CO Framework for Aircraft Design [8]. 

 
The CO framework in this example clearly shows 

what variables are present during the optimization as well as 
the disciplines influencing the system level design.  Notice the 
classification framework is not directly related to how the 
problem is divided or what disciplines within engineering are 
included.  Sobieski and Kroo [10], Kim et al. [14, 15], Otto 
and Wood [27], and McAllister and Simpson [28] demonstrate 
other examples of S-E-A type optimization problems. 

Although a fingernail clipper and aircraft design 
problem in the above examples intuitively seem very different, 
the difficulty in solving them is not all that different.  The 
fingernail clipper is a detailed design problem while the 
aircraft wing is more conceptual.  The aircraft design problem 
could have been formulated and solved as an AAO instead of 
using the collaborative optimization, in which case the two 
examples would appear to have a greater similarity.  When a 
problem can be decomposed and modeled in different ways, a 
design engineer would probably want to see examples of 
several different methods to find the most appropriate one.  
There is no specific cutoff based on the complexity of the 
problem to determine when an MDO technique is more 
effective than a distributed approach such as AAO, IDF, or 
MDF.  Therefore, multiple examples of techniques based on 
similar problems seem more useful especially when dealing 
with a somewhat complex design problem.  
 Next, an example of an S-EP-Π type optimization 
problem is examined.  Gu et al. [11] details an aircraft 
concept-sizing problem to maximize profit under the influence 
of engineering variables and a price variable.  The authors 
chose to assume the utility of profit to be profit itself thus 
treating it as a deterministic problem for calculation purposes.  
If uncertainty were accounted for through a utility function 
this problem would be classified as S-EP-ΠEU.  Figure 2 
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shows the general layout of the decision-based collaborative 
optimization approach. 
 

 
Figure 2: A General Decision-based CO Framework [11]. 

 
The engineering variables included in this single 

aircraft optimization example consist of aspect ratio, wing 
area, fuselage length, density of air at cruise altitude, cruise 
speed, and fuel weight.  The price variable is also part of the 
optimization problem.  In a profit-based optimization problem 
the cost models are present as inputs to a profit function but do 
not affect the classification framework because it is not a 
system level objective.  The cost model term is present in the 
classification framework only for systems with a cost-based 
objective.  Another example of a type S-EP-Π optimization 
can be found in Kumar et al. [6]. 

Next, an example is taken from Sues et al. [30] to 
demonstrate the uncertainty sub-class within the classification 
framework.  This shape optimization of an airplane wing 
includes seven engineering variables related to the wing 
geometry.  Values for aspect ratio, taper ratio, semispan 
wingtip incidence, structure skin thickness, structure span 
thickness, and wing sweep all need to be decided.  The global 
objective of this single wing shape optimization is to 
maximize expected cruise range.  Uncertainty appears through 
random distributions on all of the design variables to account 
for inconsistencies in the manufacturing processes.  This 
example can be classified as type S-E-AEV.  Several other 
examples dealing with uncertainty can be found in Sues et al. 
[30].  An example of type S-EP-ΠEU can be found in [29]. 

Finally, a multi-objective optimization example will 
be classified using the framework.  Azarm and Narayanan [31] 
discuss a multi-objective example regarding the design of a 
fleet of ships. The objectives of this example include 
minimizing construction and operating costs and maximizing 
the cargo capacity.  The engineering variables present in the 
model of this optimization include: breadth, depth, 
deadweight, length, number of ships, draft, utilization factor, 
speed, and displacement.  Due to the conceptual nature of this 
optimization problem, specific manufacturing construction 
variables were not considered.  Manufacturing costs, however, 
were accounted for in the cost models.  This problem can be 

classified as type S-E-AC.  The “A” denotes the presence of 
an attribute-based objective (maximize cargo capacity) while 
the “C” denotes the presence of a cost-base objective 
(minimize construction and operating costs).  Tappeta and 
Renaud [32] present an aircraft concept-sizing problem that 
can be classified as S-E-AA.  The problem has two attribute-
based objective functions: minimize mass and maximize 
range. 

 
CONCLUSIONS 
 A novel classification framework for design 
optimization problems has been presented.  The classification 
framework offers a new perspective on design optimization 
problems.  Several examples of design optimization problems 
(including multidisciplinary design optimization problems) 
were considered to show the versatility and usefulness of the 
classification framework.  Software and hardware capabilities 
make the deployment of optimization techniques more 
practical than ever.  Designers can use this classification 
framework and the reference examples as a starting point for 
considering the scope of the design optimization problem and 
reviewing relevant examples before working on the details of 
the problem formulation and programming the optimization 
software. 

The classification framework does not cover every 
characteristic of design optimization problems.  For instance, 
the classification framework does not cover qualitative but 
important measures such as safety and environmental impact 
unless a specific objective function can be found.  It does not 
consider important issues such as the linear (or nonlinear) 
nature of the constraints and objective functions.  It does not 
distinguish between optimization problems used in different 
phases of product design (e.g., conceptual design or detailed 
design). 

The first contribution of the classification framework 
is to begin organizing the ever-increasing variety of design 
optimization problems using characteristics that are relevant to 
design engineers.  Its second, related, contribution is to 
provide guidance to design engineers and product 
development teams who want to use design optimization. 

A set of design optimization problems that receive 
the same classification may cover a range of formulations, 
solved using a variety of techniques.  This diversity is useful 
since it provides a range of relevant examples so that the 
designer (or design team) can find one that is most appropriate 
for their situation and their abilities. 

In addition, the classification framework provokes 
the designer (or design team) to consider a broader perspective 
of the entire process.  Abstraction early in the design phase 
allows a designer to focus on the high level understanding of 
the problem at hand before getting immersed in the details.  
Second, a methodical review of what the major goals and 
decisions for the project are can clarify and guide the process. 

More generally, effectively incorporating design 
optimization into the product development process requires a 
solid understanding of the problem objectives and design 
variables.  A designer that understands the design problem 
well enough to classify it will likely understand it well enough 
to develop an appropriate problem formulation. 
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APPENDIX 
 

Classification Reference # Description 
S-E-A 1 Launch Vehicle Design 
S-E-A 2 Aircraft Engine 
S-E-A 8 Aircraft Design 
S-E-A 10 Aircraft Wing Design 
S-E-A 14 Chassis Design 
S-E-A 15 Chassis Design 
S-E-A 27 Finger Nail Clipper 
S-E-AEV 30 Airplane Wing 
S-E-C 1 Launch Vehicle Design 
S-E-C 2 Aircraft Engine 
S-EP-Π 11 Aircraft Concept Sizing 
S-EP-ΠEU 6 Suspension Design 
S-EP-ΠEU 29 Universal Motor Design 
S-E-AA 32 Aircraft Concept Sizing 
S-E-AC 31 Fleet of Ships 
S-EP-AΠ 16 Weight Scale 

Table A.1 Classified Examples from Reference Papers 
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