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Abstract: In this paper, we consider a single-machine scheduling problem where all jobs have a common
due date. The problem is to minimize the sum of earliness and tardiness penalties and the delivery costs
of the tardy jobs, where the tardy jobs are delivered in batches with a fixed cost per batch. Our approach
is to use a pseudo-polynomial dynamic programming algorithm to solve the problem. We also discuss
some special cases that are solvable in polynomial time and show that for a given schedule of tardy jobs,
the problem of scheduling the batch deliveries is equivalent to the dynamic lot sizing problem. We
describe how the general problem is much more difficult. Finally, we present the results of empirical
testing of the dynamic program and a number of heuristics developed.

Keywords: Single-machine scheduling; Batch delivery; Common due date

1. Introduction

The importance of just-in-time (JIT) manufacturing to industry has led to the investigation of
scheduling problems that include both earliness and tardiness penalties. Customers operating in a JIT
environment do not want their orders delivered early, and thus a shop that finishes a job early must store
the completed material until the due date, incurring holding costs as an earliness penalty. However, jobs
delivered after the due data incur some tardiness cost dictated by the customer or associated with the
loss of customer goodwill. This type of earliness—tardiness scheduling is different from traditional
scheduling problems and has attracted much attention in the last decade.

For a survey of the literature on earliness-tardiness problems, see Baker and Scudder (1990). Recent
papers in the field include Hall and Posner (1991), Hall, Kubiak and Sethi (1991), Liman and Lee (1992),
and Federgruen and Mosheiov (1991). Most researchers have ignored shipping costs as either zero or
irrelevant. However, it is well known in industry that shipping costs are a significant factor in the
inventory operating cost. A more realistic production model should include both the sequencing of the
jobs and the scheduling of the deliveries.

Cheng and Kahlbacher (1991) study an earliness problem with job batching and batch delivery costs.
Lee, Danusaputro and Lin (1991) study the problem where jobs that finish early incur a holding cost until
delivered at the common due date and jobs that finish tardy have a linear tardiness penalty and a fixed
cost for each tardy job. This fixed cost includes not only a set tardy penalty cost but also a shipping cost.
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Early jobs are delivered on-time for a cost that is independent of the number of early jobs and thus can
be ignored. The authors implicitly assume that a tardy job is always delivered as soon as it is completed.

This paper investigates a single-machine, deterministic, common due date scheduling problem with
the sum of earliness penalties, tardiness penalties, and shipping costs as the objective function. We
assume that the cost per tardy delivery is fixed, that is, independent of the jobs delivered at this time.
Hence it may be cheaper to delay shipping a job until the delivery time of a following job, since this delay
saves a delivery charge, although it incurs additional holding (earliness) and tardiness costs. Namely, a
job that finishes tardy may incur both earliness and tardiness penalties in order to avoid a shipping cost.
Hence the problem involves the sequencing of the jobs as well as the scheduling of the deliveries. The
problem of scheduling these deliveries can be considered as a batch-flow problem. Such batching
processes have been studied by Dobson, Karmarkar and Rummel (1987) with the assumption that the
work is continuously divisible.

In this paper, we formulate the general problem and introduce notation, derive some basic results,
and present a dynamic programming approach to solve the problem. In addition, we discuss two special
cases that can be solved in polynomial time and describe how the problem is similar to a dynamic lot
sizing model. We consider the general problem in order to show how much more difficult it is. We
present the results of empirical tests of the dynamic program and discuss a number of simple heuristics
developed for the problem.

2. Notation and some properties

We will first introduce some notation: For each job J;, j=1,...,n, the following data are given:
p; = Processing time.
a,;= Earliness penalty rate.
B,;= Tardiness penalty rate.
K = Batch delivery cost.
d = The given common due date.
We assume that d is a given parameter and restrictive, d <p,; + - - - +p,. Thus this due date restricts
the set of jobs that can be delivered on-time.
For a given schedule with tardy batch deliveries, let
C; = The completion time of J;.
D; = The delivery date of J;, where D;>C; and D;=d if C; < d.
T, = The tardiness of J;=D; —d.
E; = The earliness of J; =D, — C,.
It can be shown easily that if J; completes after the due date (Cj > d), we should deliver J; either at its
completion time C; (D; = C,) or at the completion time C; of some other job J; (D; = C;, where C; > C)).
Hence we can formulate the general problem as

Min ) (o,E; + B;T; + Ky;)
where y;=1if D;=C;>d and 0 otherwise.

Note that even if K=0 and «;=g; for all J;, the problem is NP-complete, as proved by Hall and
Posner (1991). Hence our general problem is NP-complete. It is unlikely that there exists an efficient
polynomial algorithm to solve the problem optimally, and the use of a pseudo-polynomial algorithm can
be justified.

Before we provide a pseudo-polynomial dynamic programming to solve the problem, first note that if
the tardy batch delivery cost K is small enough, then, as the following theorem shows, each tardy job
should be delivered as it completes. Hence the problem can be solved by the algorithm in Lee,
Danusaputro and Lin (1991) if the jobs have agreeable ratios, that is p,;/a; <p;/a; implies p;/B; <p;/B;.
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Theorem 1. If K <a,p; + B;p; forall J; and J;, then for all tardy jobs, the optimal policy is to ship each one
as it finishes.

Proof. Consider a sequence where a tardy batch has more than one job. Let 4 be the jobs in one such
tardy batch and J; the last job in the batch. Now, remove J; from A and schedule J; (with a new
delivery) before A’ (the jobs that remain from A). The added cost due to the new delivery for J;is K.
The savings due to reduced tardiness of J; is B, p(A’), where p(A’) is the sum of processing times of the
jobs in A’. The savings due to reduced earliness of jobs in A’ is a(A')p;, where a(A’) is the sum of the
unit earliness penalties of the jobs in A4'. Let J, be any job in A'. Then, p(A4') > p, and a(A4') > Q.
The total cost change is K—8,p(A4") —a(A4")p; <K - B;p, —a, p;. This quantity, by the given, is
negative. Thus, we can reduce the total cost by removing a job from a multi-job batch and delivering it
separately. O

Although we will return to it later, for now we will set aside the general (weighted) problem and
consider the simpler, equally-weighted case. We will concentrate on the problem where a;=a and
Bij=pB forall j=1,...,n, and @ < B. The assumption «a < B seems reasonable since tardiness affects the
customer, who should be more important. This problem is NP-complete since Hall, Kubiak and Sethi
(1991) prove that the special case where K=0, a =1, and 8 =1, is NP-complete. This provides the
justification for developing a pseudo-polynomial algorithm to solve the problem. In the following section
we describe the dynamic programming algorithm we developed.

3. Dynamic programming algorithm

Before we develop a dynamic program to solve the problem, we first discuss a number of properties
about optimal schedules for our problem.

For previously-studied common due date earliness—tardiness problems without shipping costs, the
properties of an optimal schedule are known:

I. The schedule is continuous (there exists no inserted idle time).
II. The schedule is V-shaped: the early jobs are arranged by longest processing time first (LPT), the
tardy jobs by shortest processing time first (SPT).
III. Either there exists a job in the schedule that ends at the due date, or the schedule starts at time
Zero.

The first two properties are well-known; see Hall and Posner (1991), for instance. Hall, Kubiak and
Sethi (1991) prove the third property, a combination of the properties for the restrictive and unrestrictive
cases.

For the problem studied in this paper, properties I and III will hold (the proof of I is trivial, and the
proof of III is the same as that in Hall, Kubiak and Sethi), although property II will not. This is due to
the fact that the delivery time of a job is not necessarily its completion time.

An optimal feasible schedule for the problem consists of a number of early jobs that are delivered at
the common due date. Following the early jobs are those jobs that finish tardy and are delivered in
batches. Each batch is a set of consecutive jobs and it is easy to see that the delivery of a batch should
occur at the completion time of the last job in the batch. Now, note that the jobs in a batch all have the
same tardiness because they are delivered together. They also incur earliness costs waiting for the later
jobs in the batch to finish. Thus, the set of jobs in a batch should be ordered by LPT to minimize that
waiting cost.

Let us define S, as the set of tardy jobs delivered at the k-th tardy delivery.

Lemma 1. In an optimal schedule, for any k, the jobs in S « are ordered by LPT.
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Proof. Suppose not. Then there exists J;, J;, and S, : J; immediately precedes J;, p; <p;, and both J; and
J; are in §,. If we interchange J; and Jj, their tardiness penalties stay the same. The earliness of J
decreases by p; and that of J; increases by p,. The net change in cost is therefore a(p; — pj)‘ This change
is negative, and thus our new schedule is better than our optimal schedule, which is a contradiction. O

In the problem without shipping costs, the tardy jobs would be sequenced in SPT order. It is
interesting to see that in our problem the tardy batches may maintain some form of this SPT property.

Lemma 2. There exists an optimal schedule such that for all k > 0, if J; isin S and J; isin S, .|, p; <p;. We
call this property batch-SPT.

Proof. Because of Lemma 1, the condition of Lemma 2 is true for an optimal schedule if and only if, for
all k, p; <p; where J; is the first job of §, and J; is the last job of S, ;. Call this statement T. Now,
suppose that there exists an optimal schedule such that for some k and appropriate J; and J;s p; > p;. Let
B be the number of jobs in S, and let A be the number of jobs preceding J; in S, ;. Thus S, has a
total of A + 1 jobs (see figure 1).

If 4 <B, swap J; and J;. The earliness and tardiness penalties of all jobs not in S, or S, ; are
unchanged. The tardiness of each of the A4 jobs in S, ; before J; is the same, but the earliness of each
job is increased by p; — p;. J; takes up the tardiness J; lost. For the jobs now in S, the earliness of each
job is the same and J; now has the earliness J; lost. The tardiness of each of the B jobs now in S, is
decreased by p; — p;. The net change in cost is 4a(p; — p;) — BB(p; — p;) = (Aa — BBX p; — p;). Because
a <pB and A <B, Aa < B, and the net change is negative.

If 4 > B, place J; in the last position of S, (see Figure 2). Again, the earliness and tardiness penalties
of all jobs not in S, or S, are unchanged. Let P be the sum of the processing times of the A + 1 jobs
that were in S, ;. For Sy, each of the B jobs has its earliness increased by p; and its tardiness increased
by p;. The job J; gains no earliness but does lose P — p; in tardiness. Each of the A remaining jobs in
Si+1 lose p; in earliness. The total change in cost is Bp(a + B) — B(P —p,) —Aap;. Now, note that by
LPT, J; is the shortest job in S, ; and thus P> (4 + 1) p;. Thus the change in cost is bounded above by
Bp(a + B) — BAp; — Aap;, which equals (B —A)p{a + B). Because A > B, this term is less than or
equal to zero, and our net change is not positive.

After the interchange, rearrange the jobs within each of S, and S, ., by LPT, which cannot increase
the objective function (by Lemma 1). Repeat these steps until statement T is true. Then, we have a
schedule that is no worse than our original and is thus also optimal. O

We now know that there exists an optimal schedule for our problem with the following three
properties (note that Property II’ replaces the Property II that holds for the problem without delivery
Costs):

I. The schedule is continuous (there exists no inserted idle time).

IT". The early jobs and the jobs in any batch are sequenced by LPT, and the tardy jobs are in batch-SPT
order

Figure 2
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III. Either there exists a job in the schedule that ends at the due date, or the schedule starts at time
Zero.

In order to cover the two cases mentioned in Property III, we now present two dynamic programs to
solve this problem. The first dynamic program (Algorithm 1a) solves the case where a job finishes at the
common due date; the second dynamic program (Algorithm 1b) solves the case where the first job must
start at time zero. Both dynamic programs make use of the orderings implied by Property II'. The
solution to the problem is the best of the two solutions obtained from the dynamic programs.

Algorithm 1a. Renumber the jobs such that p, <p,,, forall i. Let P,=p, +p,+ - +p,. Let c(i, j, s, t)
be the minimum cost of scheduling the i shortest jobs with j jobs in the last tardy batch where those jobs
have a combined processing time of s and the combined processing times of the early jobs is . (All jobs
are pushed to the due date. See Figure 3.)i=0,...,n. j=0,...,n.5=0,...,P,. t=0,...,d.
Initial values: (0, 0, 0, 0) = 0.

c(0, j, s, t) = infinity otherwise.

c(i, j, s, t) = infinity for j <0, s <0, or ¢ <0.
Iteration:
if j#1ors#p,

C(l_ 1’ ja S, t—pt) + (t_pi)a’

Sl s 55 1) =“‘m{c(i— Li=1,s—pp 1) + (B— )8+ (j = )pB+ (s —p)es,

if j=1and s=p,

. . . C(i—17 j7 s7t_pi)+(t_pi)a7
c(i, j, s, t)=min .
c*(i—1,t)+(P,—t)B+K,
where ¢*(i — 1, t) = min{c(i — 1, j, s, t) for all j, s}.
Update c*(i, t) if necessary.
Answer: minimum c¢(#n, j, s, t) over all j, s, t.
Complexity: O(n?P,d).

Justification. If j # 1 or s # p,, the i-th job (which is longer than those already scheduled) may be placed
before the other early jobs (by LPT), where it is early by ¢ — p;, or the job may be placed first (by LPT) in
the last tardy batch (by Lemma 2), where it becomes tardy by P, — ¢, increases the tardiness of the j — 1
other jobs in the batch by p;, and is early itself by s —p,. If j =1 and s = p;, the job may be placed early,
or it may form the last tardy batch (by Lemma 2), where it is still tardy by P, — ¢ and incurs a new delivery
cost. The complexity of the algorithm is proportional to the number of function values to be computed,
since each computation requires a constant effort. The value of ¢*(i—1, ) was computed as the
algorithm progressed through the previous stage and thus does not add to the complexity. Some effort
may be saved by being more sophisticated with which c(i, j, s, t) are computed (since some are obviously
infeasible), but the upper bound on the complexity is O(n2P,d).

Algorithm 1b. Renumber the jobs such that p, > p,,, forall i. Let P,=p, +p,+ - +p,. Let f(i, j, s, t)
be the minimum cost of scheduling the i longest jobs with j jobs in the first tardy batch where those jobs
have a combined processing time of s and the combined processing times of the early jobs is ¢. (All jobs
pushed to the beginning or end. See Figure 4.) i=0,...,n. j=0,...,n. s=0,...,P,. t=0,...,d.
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Initial values: f(0, 0, 0, 0) = 0.

f(0, j, s, t) = infinity otherwise.

f@, j, s, ) = infinity if j <0, s <0, or ¢ <0.
Iteration:
if j#1or s#p,,

f(i—1,j,s,t—p;)+(d—1t)a,

f(E, d s, t)zmm{f(i—l,j—l,s—pi, £)+(P,—P+t+s—d)+(ji—1)pa,

if j=1and s=p,,

e ) mi fli—1; . 5, £ —pp) + (d —t)w,
O s s ) =My o3y 4 (P~ P4t 45— d)B+K,
where f*(i—1, t)=minf(i — 1, j, s, ¢) for all j, s}.
Update f*(i, t) if necessary.
Answer: minimum f(n, j, s, ¢t) over all j, s, ¢.
Complexity: O(n’P,d).

Justification. If j # 1 or s # p;, the i-th job (which is smaller than those already placed) may (by Lemma
2) be placed early or be inserted into the first tardy set. If early, the job goes after (by LPT) the other
early jobs, where it is early by d —¢. In the first tardy set, it is last (by LPT), where it is tardy by
P, — P,+t+s—d and it increases the earliness of the j — 1 other jobs by p,. If j =1 and s = p;, the job
may be placed early, or it may form a tardy batch, where it is tardy by the amount P, — P, + ¢ +s —d and
adds a delivery cost. The complexity analysis is the same as that for Algorithm 1la.

The final answer to the problem is the minimum of the answers to Algorithms 1a and 1b.

4. Polynomially-solvable special cases

For some special cases, additional assumptions lead to problems that may be solved in strictly
polynomial time. One such assumption is that all jobs have the same processing time. Another is that the
unit earliness penalty is zero.

4.1. A special case where all of the processing times are equal

Suppose that all of the jobs have the same processing time, that is, p; =p for all j. This case might
occur in a single-item facility. Because all of the jobs are the same, only the timing of the deliveries and
the starting time of the first job need to be determined. From Property III, we know that either the first
job will start at time zero or that a job will finish at the due date d.

In Algorithm 2a, we consider schedules where a job finishes at the due date d. We first calculate the
best way to deliver the tardy jobs and then add the cost of completing jobs early.

Define k as [d/p], where [x] is the greatest integer less than or equal to x. The quantity k is the
maximum number of jobs that could finish before the due date. Likewise, n — k is the minimum number
of jobs that must be tardy.
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Algorithm 2a. Let f(j) be the minimum cost incurred by j tardy jobs. Let f(0)=0 and define the
triangular number 7, =1+ --- +m. For j=1,...,n, compute f(;j) as follows:

f(i) =min{f(i) + (j—i)jpB+T,_;_pa+K:i=0,...,j—1}.

Then, let A(j) be the minimum cost of scheduling all 7 jobs if j jobs are delivered tardy. Let A(n) = f(n)
and A(n — 1) =f(n—1). For n —k <j <n — 2, compute k(j):

h(j) =f(j) + T, ;_,pa.

The minimum cost to schedule all n jobs, with one ending at the due date d, is h,, = min{h(j):j=n
—k,...,n}

Justification. The formulation of f(;) is similar to the dynamic lot sizing model. If i jobs have already
been delivered, j —i must be delivered now. See Figure 5. These jobs are tardy by an amount jp (the
tardiness of the last job in the batch), and the unit penalty is 8. The earliness of the last job in the batch
is 0, the next to last job has earliness p, the job before that earliness 2p and so on to the first job in the
batch, which must wait for j —i — 1 jobs to complete and thus has earliness (j — i — 1)p. Thus, the total
earlinessis p+ -+ +(j—i—Dp= T._;,_,p, and the unit penalty is «. Finally, there is the cost K for
delivering this batch.

The computation of /(j) depends upon the fact that the cost of the early jobs is independent of how
the tardy jobs are delivered. Thus, if j jobs are delivered tardy, n —j jobs form a batch that is delivered
on time. As before, the total earliness for this batch is p+ -+ +(n —j— Dp = T,_;,_,p, with a unit
earliness penalty of a.

We now move to the case of starting the first job at time zero.

Algorithm 2b. Let h,, be the minimum cost of a schedule that starts at time zero. Let & =d — kp.
Compute £, as follows:

hyw=h(n—k)—(n—k)oB +kda.

Justification. Note that by the definition of &, a schedule that starts at zero will have k early jobs and
n — k tardy jobs. If we look at a schedule with n — k tardy jobs that has a job ending at the due date d,
and 6 =d — kp, & is the starting time of the first job. See Figure 6. By the definition of k, kp <d <(k+
Dp, implying & < p, so shifting a schedule to the left by § does not make any tardy job early. Thus, there
is no change in the delivery schedule. Moreover, the change in cost does not depend upon the delivery
schedule. The tardy jobs are now less tardy by &, and the early jobs are now more early by 8. Thus, the
change in cost is the reduced tardiness penalties of the n — k tardy jobs and the increased earliness
penalties of k jobs. From this, we can deduce that the optimal scheme developed in Algorithm 2a for
n — k tardy jobs will yield an optimal shifted schedule. Thus, the minimum cost of starting at time zero is
the minimum cost of a schedule with n —k tardy jobs, that is A(n — k), plus this fixed change
kéa — (n—k)éB.
The minimum cost for this problem is the minimum of 4,, and ..

[ DT T Txle] [ [mfo]

0 d-kp d d+p

Figure 6
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Complexity. If all 7; are calculated beforehand, which takes O(n) time, the complexity of Algorithm 2a is
O(n) for each computation of f(;j), and the computation of 4(j) is constant. Thus, the total complexity is
0O(n?). Algorithm 2b has constant effort.

4.2. A special case with no earliness penalty

We now take up the problem where the earliness penalty is zero, that is, @ = 0. We know that after
the first job starts, there is no inserted idle time. We can prove that there exists an optimal schedule that
starts at time zero under the SPT ordering. Starting at zero is optimal because starting jobs earlier
decreases any tardiness and, with the earliness penalty equal to zero, does not change any earliness costs.
By using SPT, we finish as many jobs as possible early; the use of LPT for the early jobs is not important
because there is no earliness penalty. Likewise, the LPT order in tardy batches is not necessary, although
we keep the batch-SPT property that we had before.

Because the sequence of the jobs is already determined, only the timing of the deliveries remains to be
found. From the above reasoning, we know that the first job will start at time zero. Thus, to solve the
problem, we must calculate the best way to deliver the tardy jobs. This will done with a dynamic program
similar to that in Section 5.1.

Theorem 2. There exists an optimal schedule for this problem where the jobs are ordered by SPT.

Proof. Suppose there exists an optimal schedule such that there exists J; followed by J; where p; > p;.

Interchange these two jobs. Note that the completion times of all other jobs are unaffected by this, and J;

now finishes when J; did. If we can prove that, in all cases, interchanging J; and J; does not increase the

cost of the schedule, then repeated interchanges will yield an SPT schedule whose objective function
value is no worse and is thus optimal. These two jobs must fall into one of the following cases:

A. Both jobs are early. The tardiness cost is zero. After interchanging the jobs, both still finish before
the common due date, and the tardiness is still zero.

B. Both jobs start after the due date and are in the same tardy batch. Each job had the same fixed
tardiness cost, which depended upon the completion time of the last job in the batch, which was
unchanged by the interchange. Thus, the new tardiness costs are the same, and the change in costs is
Zero.

C. Both jobs start after the due date and are in different tardy batches. Thus, J; was the last job in one
batch, and J; the first in the next. After the interchange, J; assumes the tardiness of J,. J; now
finishes earlier than J; did, and the delivery time of the each job in the first batch is reduced by
p; — p;. Thus, the tardiness costs decrease, with no change in the number of deliveries.

D. J; finishes early (on or before the due date) and J; finishes tardy. After the interchange, J; finishes
before J; did and is thus early, while J; finishes when J; did and is delivered when J; was, thus
incurring the tardiness of J;. Therefore, there is no change in the costs.

E. J, starts before the due date and finishes after. Subcase 1: after the interchange, J; now finishes early.
While J; inherits the finish time, delivery date, and thus tardiness costs of J;, the tardiness of J; is
erased. Thus, the costs decrease. Subcase 2: after the interchange, J; is tardy. This case is the same as
case B or case C, depending on whether the jobs were in the same batch before.

Therefore, in all cases, the cost is not increased by the interchange. O

Now, we can sequence the jobs by SPT and renumber. Since the first job starts at time zero, the
completion time of J, is p, + - +p,, for k=1,...,n. Hence the lateness F(k)=p;+ -+ +p, —d.
Let i be the minimum k such that F(k) > 0. Thus J, is the first tardy job. We will now use a dynamic
program to find the minimum cost of delivering the tardy jobs.
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Figure 7

Algorithm 3. For j=1i,...,n, define f(j) as the minimum cost incurred by the first j jobs, with the last
delivery at J,. Define f(i — 1) =0. For j=1,...,n, compute f(j) as follows:

f(j)=min{f(k)+(j—k)F(j)B+K:k=i—-1,...,j—1}.

The answer to the problem is f(n).

Justification. The formulation of f(j) is similar to the dynamic lot sizing model. If k& jobs have already
been delivered, j — k jobs must be delivered now. See Figure 7. These jobs are tardy by an amount F(j)
(the lateness of the last job in the batch, J;), and the unit penalty is B. There exists no earliness costs.
Finally, there is the cost K for delivering this batch.

Complexity. The sorting takes O(n log n) time; the F(j) are calculated in O(n) time; finally, there are
O(n) steps in the algorithm, and the complexity is O(n) for each computation of f(j). Thus, the total
complexity of Algorithm 3 is O(n?).

5. An improved method for determining tardy deliveries

Given that the schedule of tardy jobs is fixed by some dominance property, as in our special cases, it
remains only to determine the times of the tardy deliveries. Due to the nature of the delivery cost, it is
known that these deliveries should occur only at the completion time of some tardy job and that all jobs
completed and undelivered should be delivered then. It is possible to formulate a simple dynamic
program to solve this problem in O(n?) time as we did in the above algorithms. However, we show here
that this problem can also be transformed into a special dynamic lot sizing problem that is solvable in
linear time.

The N-period dynamic lot size model can be formulated as follows (see, for example, Wagelmans, Van
Hoesel and Kolen, 1992, and Chen and Lee, 1991):

Min Y. (c,x,+k,,)
st.  xy+ - +x,>2D, forall t<N,
X, + + +xy=Dy,
0<x,<My, forallt,
where, for period ¢, x, is the production, ¢, is the modified unit production cost, k, is the setup cost, D,
is the cumulative demand, y, = 1 if there is production in the period and 0 otherwise, and M is some
large number.
Our tardy delivery problem for the N tardy jobs (we can ignore the early jobs at this point) with
earliness and tardiness penalties and common due date d is as follows:
Min Y («E,;+ BT, +Ky,)
where y; =1 if D,= C; and 0 otherwise.
Note that C;, the completion time of J,, is fixed and that the delivery time is D; =d + T,. Thus, we can
substitute E, =D, — C;,=d + T, — C; into the problem:
Min ) ((B+a)T,+Ky,+a(d—-C)))
where y;=1if D; = C; and 0 otherwise.
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Now, define x; as the number of jobs delivered when J; completes, and let T:* be the tardiness of job
J; if it is delivered at its completion time, a known quantity. The tardiness of a job is the tardiness of its
delivery date, which is the completion time of some later job. The total tardiness of the jobs delivered
when J, completes is given by x,T;*. Thus, we can rewrite our problem:

Min Y ((B+a)x,T* + Ky, +a(d-C,))
st. x4+ - +x,<t forallz¢,

X;+ - +xy=N,

0<x; <Ny,

y;=0or1.

The first constraint is the limitation on the number of jobs available to be delivered at any completion
time, x, <t —x, — -+ —x,_;. Define ¢; = (B + a)T;* and note that these increase as i increases. Then,
drop the Za(d — C;) (a constant).

Now, in order to complete the transformation into the dynamic lot size problem, renumber the c;, x;
and y, with j =N+ 1 —i and define the cumulative demand D; =j. This yields

Min ) (c¢;x; +Ky;)

st. x;+ - +x,=D, forall k<N,
X+ o txy=Dy,
OsxjsNyj,
y;=0or1.

This is now exactly in the dynamic lot size model. Because of the renumbering, j is counting from the
last tardy job toward the common due date. Thus, x; + - -+ +x, is the total number of jobs delivered
during the last k tardy job completions. This total must include these last k jobs and thus is at least
D,=k.

Furthermore, the ¢; now decrease as j increases, and due to the recent development of efficient
algorithms for the dynamic lot size model, the problem can be solved in linear time. See Aggarwal and
Park (1990), Chen and Lee (1991), Federgruen and Tzur (1991), and Wagelmans, Van Hoesel and Kolen
(1992). Also, note that the transformation, which consists of calculating the ¢; and D,, takes linear time.
Thus, the original tardy delivery problem can be solved in linear time.

Also, note that the property that no completed jobs are left undelivered after a delivery is a result of
the exact requirements property of an optimal solution. That is, production is started only when the
inventory has dropped to zero: I,x,,, =0 for all t. I,=x, + --- +x,—D,, where D, is the cumulative
demand to period ¢. In our formulation D;=j. With the renumbering, I; is the number of already-com-
pleted jobs still waiting for delivery when J; is started. (One way to see this is to note that I, =N — (x i1
+ o +xy) —j=(N—j)—(x;,, + * - +xy), which is the number of jobs already completed minus the
number of jobs already delivered.) If x,,, >0, i.e., if jobs were delivered after J;, ; (which is processed
before Jj), then, in an optimal schedule, I; =0, implying no jobs can still be waiting after the delivery.
Thus, that delivery must have been of all jobs available.

6. The general case

If we consider the general problem, that is, the problem with arbitrary unit earliness and unit
tardiness penalties, we are confronting a more terrible monster. Although the property concerning
ordering within a batch can be extended to the longest weighted processing time (LWPT) rule, the more
significant result that there exists an optimal schedule where the jobs are in batch-SPT order cannot be
stretched to fit this problem. This property allowed us to create a dynamic program that needed
pseudo-polynomial effort to find an optimal solution. For the general problem, however, we can find no
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such efficient algorithm. We would need to use a branch-and-bound scheme or some exponentially
difficult dynamic program to find an optimal solution.

In this section, we will state the extension of Lemma 1 and present two counter-examples that
contradict the extension of Lemma 2 we would like to have. We use the term weight to refer to a unit
earliness or tardiness penalty.

Lemma 3. In an optimal schedule, the jobs within any batch are ordered by the longest weighted processing
time (LWPT) rule. That is, p,/a; > p;/a; for all J; that are in the same batch as and follow J;.

Proof. A simple interchange argument shows that if a schedule has a batch in which jobs are not in
LWPT order, it cannot be optimal. O

This lemma allows us to optimally order the jobs in each batch. This includes the set of jobs that are
delivered on-time and each batch of tardy jobs. Thus, we can find the optimal solution given a set of
early jobs and the different tardy batches. The question of partitioning the tardy jobs into batches is the
problem that will ruin our hopes of solving this problem efficiently, that is, in pseudo-polynomial time.

The earliness-tardiness problem with arbitrary unit earliness and tardiness penalties is a difficult
question even without delivery costs. While known to be an NP-hard problem, it is still an open question
whether the general earliness-tardiness problem is strongly NP-hard. The most general problem that can
be solved in pseudo-polynomial time is the case of agreeable ratios (Lee et al., 1991). The jobs to be
scheduled have agreeable ratios if p;/a; <p;/a; implies that p,/B, <p;/B; for all jobs J;, J;.

When considering the problem with delivery costs, equal unit earliness penalties, and equal unit
tardiness penalties, we were able to order the jobs by SPT and consider the jobs one at a time, based on
that list. In the more general problem, we have two weighted processing time lists: one using the
earliness weights and one using the tardiness weights. If we have agreeable ratios, then these two lists
can be used to form one ordering. That is, there exists an ordering of the jobs such that the quantities
p;/a; and p;/B; are non-decreasing as we consider the jobs in order: p,/a; < -+ <p,/a, and
p./B; <+ <p,/B, Thus, we have something equivalent to the single SPT ordering we used in the
restricted problem. At this point we will assume that the jobs have agreeable ratios. Our problem with
delivery costs is still too complex, however. The primary issue is whether the following property holds:

Property 1. If the jobs to be scheduled have agreeable ratios, then there exists an optimal schedule such
that for all consecutive tardy batches S, and S, ,, if J; isin §; and J; isin S, ., then p;/a; <p,/a; and

D:/B: <p;/B;-

If this property holds, then we may consider the jobs in the ordering given by the agreeable ratios and
use a dynamic program to find an optimal solution in a manner similar to that of the restricted problem.
Property 1 limits the partitioning of tardy jobs we need to do to find an optimal schedule, while Lemma 3
orders the jobs in each batch.

However, Property 1 does not necessarily hold in problems with agreeable ratios. Moreover, it is not
necessarily true even if a;=g; for all J;. It also may not hold if B;=p for all J. The examples we
present show that the optimal scheduling of a set of tardy jobs does not necessarily follow Property 1.
The identification and scheduling of the early jobs is not presented, and the tardy jobs are numbered in
the order imposed by the agreeable ratios. Also, without loss of generality, it is assumed that the first
tardy job begins at the common due date.

Example (set of tardy jobs): K = 20.
J p e B
1 1 5 5

2 10 6 6
3 2 1 1
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In this example, we have a; = g; for all J;. The only optimal scheduling of the tardy jobs, with a batch
delivery cost of 20, is [J3J,; J,], where J, and J, form the first tardy batch and J, the second. The total
cost of earliness, tardiness, and delivery is 137. Note that Jj is in an earlier batch than that of J, but that
J, has a shorter weighted processing time than J, (10/6 < 2/1). This statement proves that Property 1 is
not true. This conclusion is supported by the next example also.

Example (set of tardy jobs): K = 20.

S
(SIS
— NN R

In this example, we have g = B; for all J,. The only optimal scheduling of the tardy jobs, with a batch
delivery cost of 20, is again [J;J,; J,], where J; and J; form the first tardy batch and J, the second. The
total cost of earliness, tardiness, and delivery is 96. Again, J, has a shorter weighted processing time
than J; (2/2 <2/1) and is in a later batch than that of J;.

So, Property 1 is not true. While is it possible to write a dynamic program to solve this problem, the
algorithm would have to include state variables for every possible tardy batch, and the maximum number
of tardy batches is equal to the total number of jobs. Thus, the algorithm would need an exponential
amount of space and effort. Due the difficulty of finding exact solutions to the general problem, we have
concentrated in this paper on the cases we can solve with polynomial or pseudo-polynomial effort. We
leave the general problem and its arbitrary unit earliness and tardiness penalties for future research.

7. Empirical results

In addition to examining the theoretical complexity of the dynamic programming algorithm, we have
experimented with a Pascal implementation of the algorithm. We were able to solve problems with up to
50 jobs in about three minutes of CPU time, and the amount of computer processing time needed to
solve a problem was proportional to a polynomial function of the number of jobs, the due date, and the
total processing time. Due to the large amount of time necessary to process larger problems, we later
developed and tested a number of simple heuristics, described in Section 8.

In order to estimate how efficiently dynamic programming solved this problem, we ran a Pascal
implementation of the algorithm under the VMS operating system on a Vax 6320. The goal of these tests
was to sample the computer processing time required to solve different-sized problems and to compare
the actual computational effort to the theoretical O(nP,d) limit on the effort.

With the dynamic program we solved 17 sample problems that ranged in size from 10 to 50 jobs. We
created these sample problems by hand with varying due dates, processing times, and other job
characteristics. We solved each problem by finding the answer to both dynamic programming algorithms
(one around the due date and one starting at time zero). The computational effort required was
measured and plotted versus the theoretical effort. This showed that the computational effort was not
proportional to the quantity n?P,d. The problems with larger d required less effort than expected. This,
as we will now show, is due to the details of the dynamic programming iteration.

On a given step of the implemented version of Algorithm 1a (or Algorithm 1b), the i-th job is being
added. The loops in this iteration are for j=0,...,i, t =0,...,min{d, P;} and s =0,..., P, — t. Focusing
on the loops over s and ¢, we can see that if d is greater than or equal to P, the effort on these loops is
1P?. If d is small, ¢ is bounded above by d and s can range to nearly P;. Thus, the effort is close to P.d,
which was used in computing the theoretical limit.
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Table 1

Computational time versus theoretical effort

J.W. Herrmann, C.-Y. Lee / Earliness—tardiness and batch delivery costs

Problem No. Jobs Due date Makespan CPU time Effort n*(P,d —3d*)
1 10 20 55 3.0 90000
2 10 20 55 3.0 90000
3 20 10 40 5.0 140000
4 20 20 40 8.1 240000
5 20 40 40 9.0 320000
6 20 40 60 '18.3 640000
7 20 40 100 39.5 1280000
8 20 40 100 40.0 1280000
9 20 40 108 45.0 1408000

10 20 84 84 40.0 1411200

11 20 84 84 40.3 1411200

12 30 70 70 572 2205000

13 30 70 70 52.8 2205000

14 30 50 100 103.0 3375000

15 40 30 100 127.7 4080000

16 40 50 100 176.2 6000000

17 50 30 100 199.9 6375000

However, a little bit more analysis reveals that the effort over ¢ and s is always P, min{d, P;}
— 1 min{P, d}*. Using the last iteration as an upper bound for the rest, with min{d, P,} =d, since a
problem with d > P, can be solved by letting d = P, and then shifting the optimal schedule to meet the
original due date, the effort of the implemented algorithm should be O[n*(P,d — 1d?)]. Plotting the
processing time versus the new effort shows that the processing time is indeed nearly proportional to this

quantity.

The results of this sampling can be found in Table 1 and Figure 8. Table 1 lists the problems that were
studied, the problem sizes, the CPU time required to solve each problem in seconds, and the
n*(P,d — 1d?) effort. Figure 8 plots the CPU time in seconds versus the effort in thousands, clearly

showing the correlation over these sample problems.

Processing Time vs. Effort

Time

100 L

20 L

500

Figure 8. Plot of CPU time in seconds versus effort in thousands

T

2500 3500
Effort (thousands)

5500
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8. Heuristics

It is often useful to have a number of heuristics that can be used to find good solutions to a complex
problem. Heuristics differ from exact methods in that they do not always find an optimal solution and
they are often simpler, appealing to intuitive or basic properties. The quality of a heuristic varies,
depending on the instance or class of instances that need to be solved. Still, if it performs well on average
over a range problems, the heuristic can be a useful tool for finding good solutions quickly.

We can solve our earliness—tardiness problem (if all a; =« and B; =) with the exact dynamic
programming procedure described above. Due to the pseudo-polynomial nature of its complexity,
however, the algorithm may require more computational effort or memory than the person wishing to
solve the problem has. Thus, we developed a class of heuristics that are intuitively simple and tried
measure how well they perform over a range of different problems. As we will see, the ability of the
heuristics to find good solutions varies over the different classes of problem instances.

One intuitive approach to the earliness—tardiness problem we are studying is to divide the jobs to be
scheduled into two sets, those to be early and those to be tardy, and schedule each set optimally.

Each heuristic performs the second step by scheduling the early jobs by LPT to end at the common
due date and by using a quadratic dynamic program to determine the deliveries of the tardy jobs, starting
at the common due date. Additionally, if there is a gap before the start of the first early job, each
heuristic shifts the schedule to the left to create a schedule that starts at time zero. (This can be done
only if no tardy job is made early by the shift.) This shift may improve the quality of the solution by some
small amount, especially if many jobs are tardy or the unit tardiness penalty is large.

The key to finding the optimal solution to a common due date earliness—tardiness problem is the
division of the jobs into the early and tardy sets. If there are no delivery costs and the due date is large
enough, it is optimal to divide the jobs based on positional weights. The largest jobs are scheduled as the
most early and most tardy, and the smallest jobs go around the due date. With a restrictive due date,
however, the number of early jobs and their sizes are constrained (since a schedule must start no earlier
than time zero). Moreover, in the presence of delivery costs, the positional weights for tardy jobs cannot
be determined beforehand.

In dividing the jobs into two sets, the heuristics we developed ignore the batch deliveries and the
associated increases in earliness and tardiness penalties. Only one of the heuristics is explicitly concerned
with the weights (the unit earliness and tardiness penalties). All, however, are concerned with the
restrictiveness of the due date, since that date is crucial in creating sets that will yield a feasible schedule.
If too many jobs are placed into the set of early jobs, no feasible schedule can be created.

Split 1: Order the jobs by LPT. Create positional weights, and allocate jobs to these weights by matching
the longest unscheduled job to smallest unused weight. If a job will not fit into the early set, make it
tardy.

Split 2: Order by SPT. Starting with the early set, allocate jobs by alternating between the two sets. If a
job will not fit into the early set, make it and all subsequent jobs tardy.

Split 3: Order by LPT. Starting with the early set, allocate jobs by alternating between the two sets. If a
job will not fit into the early set, place it into the tardy set. (The opposite of Split 2, this is also a simpler
version of Split 1.)

Split 4: Order by LPT. Starting with the early set, allocate jobs by alternating between the two sets. If a
job will not fit into the early set, make it tardy. In addition, if the tardy set is too large (see below), place
the job in the early set. (An extension of Split 3.)

Split 5: If it will fit, place the largest job into the early set. Order the remaining jobs by SPT, and allocate
jobs to the early set until no more will fit. The set of unscheduled jobs becomes the tardy set.
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Table 2

Problem sets created for testing

Set Jobs Times ? e B K d/LP
ETA15 15 [1,10] 1 2 20 3
ETBI15 ‘ 15 [1,30] 1 2 20 3
ETC15 15 (10, 20] 1 1 5 3
ETD15 15 [1, 20] 1 2 100 1
ETEI1S 15 [1,20] 1 2 200 i
ETA30 30 [1,20] 1 2 100 1

a Processing times sampled from a uniform distribution with the given range.

As mentioned before, the schedule created around the due date can be shifted to start at time zero if
this shift makes no tardy job on-time. With a large common due date, some of the splits will create an
early set that does not fill the space between zero and the due date, implying that the tardy set is large.
When the schedule is shifted, one or more of the excessive jobs in the tardy set may become early. Splits
4 and 5 alleviate this problem in different ways. Split 4 explicitly limits the size of the tardy set to ensure
that no job could complete before the due date when the schedule is shifted. That is, if the current size
of the tardy set is larger than or equal to the difference between the total processing time and the
common due date, no jobs can be added to the set.

Split 5 limits the size of the tardy set by filling the early set to capacity first. While Split 1 works from
what positional weights can be assigned, Split 5 simply places the largest job early, where it contributes to
no job’s earliness or tardiness but instead reduces the number of jobs that can be made early. The split
then compensates for that by placing as many jobs early as possible.

In order to test the effectiveness of the heuristics, we created six sets of random problems, with five
problems in each set. The due date was set at a fraction of the sum of the processing times. Each
processing time was chosen from a uniform distribution, while the other problem characteristics were
given pre-selected values. The optimal solutions were found using the dynamic program. While two
different schedules (the one around the due date and the one shifted to start at time zero) could be
created by a heuristic, the best of these two was selected as the output of the heuristic.

The performance of the heuristics is mixed over the problem sets. However, the average performance
of Split 5 is usually good. On the second problem set, both Split 1 and Split 4 perform well. In this set the
problems have large common due dates, implying that there is plenty of room to place early jobs, which
are desirable due to the larger tardiness penalty. On the third problem set, the two simple splits work
well since the unit earliness and tardiness penalties are equal, the due date is large, and the delivery cost
is small, implying that very little batching occurs. Also, we note that each heuristic runs very quickly,
since it only needs to sort the jobs, which takes O(n log n) effort, and then consider the jobs in that
order.

Table 3

Performance of heuristics on problem sets ?

Set Jobs Split 1 Split 2 Split 4 Split 5
ETA15 15 24.2 19.1 13.3 49
ETB15 15 25 22.5 1.8 43
ETC15 15 0.0 0.0 13.7 19.3
ETD15 15 24.3 229 13.8 6.2
ETE15 15 26.7 18.0 16.9 8.7
ETA30 30 214 6.4 9.1 45

2 Performance is mean deviation from optimal on five problems.
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9. Concluding notes

In this paper we have studied a scheduling problem that extends the earliness—tardiness problems
previously investigated. We considered a delivery cost for each batch of tardy jobs, a cost which adds a
considerable amount of difficulty to even the simplest earliness—tardiness problems. We spent most of
our time in this paper looking at the equally-weighted case, where all of the unit earliness penalties are
equal and all of the unit tardiness penalties are equal. We were able to solve this problem with a
pseudo-polynomial dynamic program, and we were able to implement it to solve problems with up to 50
jobs. We investigated a number of simple heuristics that can find good solutions to different classes of
instances for the problem. Additionally, we considered both a pair of special cases that could be solved in
polynomial time and the general problem (where the jobs have different weights) for which no efficient
algorithm could be found.

We have assumed that the common due date d is given and restrictive. It is an open question whether
the problem is NP-complete if d is unrestrictive in the standard sense or if d is a decision variable. If the
batch delivery cost K is zero, the problem is polynomial because positional weights can be assigned and
the problem solved by matching the largest weights with the shortest jobs. However, with the batch-flow
problem, the positional weights depend upon the delivery schedule, which cannot be determined without
the job information. If d is indeed a decision variable, at worst the problem can be solved in
pseudo-polynomial time by letting d = P, and using Algorithm 1a to find the optimal solutions. Then, d
can be set to a value of ¢ that is in an optimal solution.

This paper leaves a number of areas open for further research. More analysis of the general problem
is necessary in order to determine properties or cases that could lead to efficient solution techniques or
good heuristic solutions. Also, as in Liman and Lee (1992), work could be done on developing error
bounds for the heuristics that we did develop for our problem.

Acknowledgements

This material is based upon work supported under a National Science Foundation Graduate
Fellowship. Part of this research was undertaken while the second author was a visiting scholar at the
Department of Actuarial and Management Sciences, University of Manitoba, Canada. This author is
thankful to Professor T.C.E. Cheng for his helpful comments and invitation to visit the University of
Manitoba. We would also like to thank the Editor, Dr. Jatinder N.D. Gupta, and two anonymous
referees for their helpful comments.

Bibliography

Aggarwal, A., and Park, J.K. (1990), “Improved algorithms for economic lot-size problem”, Working Paper, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York.

Baker, K.R., and Scudder, G.D. (1990), “Sequencing with earliness and tardiness penalties: A review”, Operations Research 38 /1,
22-36.

Chen, H.D., and Lee, C.-Y. (1991), “A simple algorithm for the error bound of the dynamic lot size model allowing speculative
motive”, Research Report 91-5, Dept. of Industrial and Systems Engineering, University of Florida, Gainesville, FL.

Cheng, T.C.E., and Kahlbacher, H.G. (1991), “Scheduling with delivery and earliness penalties”, Working paper, Dept. of
Actuarial and Management Sciences, University of Manitoba, Canada.

Dobson, G., Karmarkar, U.S., and Rummel, J.L. (1987), “Batching to minimize flow times on one machine”, Management Science
33/6, 784-799.

Federgruen, A., Mosheiov, G. (1991), “Efficient algorithms for scheduling problems with general earliness and tardiness cost
structures”, Graduate School of Business, Columbia University.

Federgruen, A., and Tzur, M. (1991), “A simple forward algorithm to solve general dynamic lot sizing models with n period in
O(n log n) or O(n) time”, Management Science 37 /8, 909-925.

Hall, N.G., and Posner, M.E. (1991), “Earliness—tardiness scheduling problems, I: Weighted deviation of completion times about a
common due date”, Operations Research 39 /5, 836-846.



288 J.W. Herrmann, C.-Y. Lee / Earliness—tardiness and batch delivery costs

Hall, N.G., Kubiak, W., and Sethi, S.P. (1991), “Earliness—tardiness scheduling problems, II: Deviation of completion times about
a restrictive common due date”, Operations Research 39/5, 847-856.

Lee, C.-Y., Danusaputro, S.L., and Lin, C.S. (1991), “Minimizing weighted number of tardy jobs and weighted earliness—tardiness
penalties about a common due date”, Computers & Operations Research 18, 379-389.

Liman, S.D., and Lee, C.-Y. (1992), “Error bound for a heuristic on the common due-date scheduling problem”, accepted by
ORSA Journal of Computing.

Wagelmans, A., Van Hoesel, S., and Kolen, A. (1992), “Economic lot-sizing: an O(n log n) algorithm that runs in linear time in the
Wagner—Whitin case”, Operations Research 40, $145-S156.



