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ABSTRACT

Resource-constrained electronic systems are present in
many semi- and fully-autonomous systems and are tasked with
computationally heavy tasks such as neural network image pro-
cessing. Without sufficient cooling, these tasks often increase de-
vice temperature up to a predetermined maximum, beyond which
the task is slowed by the device firmware to maintain the maxi-
mum. This is done to avoid decreased processor lifespan due to
thermal fatigue or catastrophic processor failure due to thermal
overstress. This paper describes a study that evaluated how well
metareasoning can manage a Raspberry Pi 4B’s central process-
ing unit (CPU) temperature while it is performing image pro-
cessing (object detection and classification) on the Common Ob-
jects in Context (COCO) dataset. We developed and tested two
metareasoning approaches: the first maintains constant image
throughput, and the second maintains constant expected detec-
tion accuracy. The first approach switched between the Incep-
tionV2 and MobileNetV2 image classification networks with a
Single Shot Multibox Detector (SSD) attached. The second ap-
proach was tested on each network for a range of parameter val-
ues. The study also considered cases that used the system’s built-
in throttling method to control the temperature. Both metarea-
soning approaches were able to stabilize the device temperature
without relying on throttling. Keywords: Neural networks;
controls; thermodynamics

1 INTRODUCTION
Many autonomous systems rely on image processing for ob-

ject detection. Tesla autopilot, for example, uses video feeds
from cameras around the vehicle to recognize people, stop signs,
and other objects critical to the driving experience [1]. Quickly
processing images using neural networks, which require millions
of computations, increases the processor’s temperature [2].

Normally, the processor’s temperature will fluctuate as the
computational load varies, but when a computationally heavy
task such as image processing is performed continuously, the
temperature may increase enough to damage the processor [3].

Thus, it is important to have a thermal management ap-
proach that can maintain the processor’s temperature in an ac-
ceptable range. This paper describes a study that considered
both a traditional throttling approach and a new metareasoning
approach. Metareasoning can monitor the device temperature
in order to control the image processing procedure by switching
between different neural networks and adjusting the processing
frequency to adapt to changes in both the ambient and device
temperatures.

Section 2 details background information about the prob-
lem of thermal management, reviews related studies, and em-
phasizes why this study was performed. Section 3 describes the
experimental apparatus on which the study was performed, the
design of the algorithm that managed the apparatus’ tempera-
ture, and the variations in parameters between experiments. Sec-
tion 4 provides key results determined from the performed exper-
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iments. Section 5 discusses the differences between notable tests
and highlights the effect of test parameters on the corresponding
results. Section 6 summarizes the nature of this study and draws
relevant conclusions from the results.

2 BACKGROUND
2.1 Thermal Management

The fundamental problem of thermal management arises
from two conflicting characteristics of a processing unit: (i) when
active, the device generates heat at a rate that is proportional to
the rate of performed computations (which increases its temper-
ature), but (ii) the device lifetime is inversely correlated with the
mean operating temperature. This has led to the development of
thermal throttling strategies as processing units are pushed to-
wards ever-higher computation rates. These strategies fall into
two main categories depending on what actuator they are using
to control the temperature.

2.1.1 Internal Management Internally-managed sys-
tems rely on changes to the input to the processing unit to lower
the number of computations performed, thereby lowering the op-
erating temperature. A popular strategy for achieving this is dy-
namic voltage and frequency scaling (DVFS) [4]. This method
adjusts the input frequency to the processing unit to slow compu-
tation frequency. The slower computation frequency also leads
to a lower operating temperature and power consumption.

Das et al. proposed a reinforcement learning strategy for dis-
tributing computational workload across cores via threads while
also modifying CPU frequency to thermally throttle electronic
devices [5]. They were able to achieve a 100 to 200% increase in
mean time to failure (MTTF) by controlling the device tempera-
ture.

2.1.2 External Management Alternatively, the tem-
perature of the processor can be controlled by changing the envi-
ronment in which it operates. Typically, this is done by provid-
ing increased cooling through increased conductive or convective
heat transfer.

Convection can be increased passively by increasing the sur-
face area of the processor through fins, or actively by increasing
the convection coefficient through increased mass flow. Benoit-
Cattin et al. [6] showed that dynamic active cooling can increase
the efficiency of image processing on a Raspberry Pi. Their ap-
proach, which used an external fan that was controlled by the
Raspberry Pi 4B, increased the image processing throughput.

2.2 Metareasoning
Metareasoning is a higher-level form of programmatic think-

ing that can lead to improved performance in autonomous agents.

Metareasoning achieves this by monitoring the agent and its
decision-making environment to determine how to approach its
current decision [7], [8].

We are unaware of any work explicitly detailing metarea-
soning as a method for thermal management. There is, however,
some use of metareasoning in related areas - particularly, image
processing.

Nguyen et al. [9] used “frame skipping” to achieve a de-
sired output video quality. Given a set input frame rate, their sys-
tem was designed to discard certain images if a consistent output
frame rate was not maintainable due to limited computational
resources on the client-side of the gaming system. Although
this was not explicitly considered metareasoning by the authors,
their implementation involved a ”decision engine” which would
”decide the optimal frame rate given the current system status.”
Thus, this is a type of metareasoning.

Although DVFS is a proven methodology for power and
thermal management, it does not perform optimally with tasks
that require short bursts of high CPU utilization [10]. Das et al.’s
methodology is a welcome improvement, but it is not application
specific and is therefore unable to make more context sensitive
trade-offs, such as object detection accuracy. Additionally, not
all devices can be cooled externally, so the work by Benoit-Cattin
et al. cannot be applied to systems that rely only on passive cool-
ing. Finally, the approach used by Nguyen et al. is designed to
maintain a desired frame rate, but it does not account for temper-
ature.

Thus, the study described here sought to determine whether
a metareasoning approach would be able to control a processor’s
temperature, which would be useful in situations where other
techniques are infeasible or expensive.

3 EXPERIMENTAL SETUP
Our experimental apparatus performed a range of tests on

a set of two algorithms designed to implement a metareasoning
approach for managing the temperature of a processor.

3.1 Hardware
We tested the metareasoning approaches on a Raspberry Pi

4B. This device was chosen because of its low price, popularity,
and our familiarity with the default operating system, Raspbian.
The device was flashed with the 2021-05-07 release of the 32-bit
version Raspberry Pi OS firmware.

The Raspberry Pi uses a Broadcom BCM2711 system on a
chip (SoC), which contains a quad-core Cortex-A72 processor
[11]. All four course of the processor are used during testing.
The model variant with 2 GB of random access memory (RAM)
was used. The SoC features an internal temperature sensor from
which data was collected [11]. The device was powered by a 5.1
volt, 3.5 amp USB-C power supply.
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FIGURE 1. RASPBERRY PI 4B IN ITS CASE WITH FAN.

A 3D-printed case was created for the device [12]. A small
5V fan was installed in the case and controlled with the GPIO
Python package [13]. The fan vented air out of the case. The
final setup is shown in Fig. 1.

3.2 Algorithms
Image processing was performed with openCV based on

a real-time object detection program written by Adrian Rose-
brock [14, 15]. The neural networks used for image processing
were trained on the COCO dataset using the Tensorflow object
detection API [16,17]. These networks were then adapted for use
with the openCV deep neural network module by the openCV
team [18]. The COCO images were resized to 300 x 300 pixels
for input into the neural networks.

We used two neural networks that combine object classifica-
tion and object detection:

1. MobileNetV2 with Single Shot Multibox Detector (SSD)
[19, 20]

2. InceptionV2 [2] with SSD

Object detectors are typically rated by the proportion of ob-
jects they correctly identify. The detectors provide multiple clas-
sifications of an object with probabilities assigned to each. “Top-
1 accuracy” is the proportion of objects for which the detector as-
signed the highest probability the correct classification. By this
definition, the InceptionV2 network has an Top-1 accuracy of
73.9% on the ImageNet database [17]. Testing of MobileNetV2
on the same database resulted in a measured Top-1 accuracy
71.81% [21].

There is a known trade-off between classification accuracy
and speed in object detector research [17]. Accordingly, image
classifications using InceptionV2 require more time than using
MobileNetV2. Trials on the Raspberry Pi demonstrated a time of
approximately 1.8 seconds for InceptionV2 to process an image.
MobileNetV2 processed the same image in approximately 0.8
seconds. Image throughput is the inverse of processing speed.
Therefore, MobileNetV2 has a throughput of 1.25 frames per
second (FPS), while InceptionV2 has a throughput of approxi-
mately 0.55 FPS.

To alleviate computational load, the computational rate must
be decreased. Our proposed method does this on a “macro” level
by inserting a pause of varying duration during an image process-
ing loop. While paused, the device idles at a low CPU load. On
average, this decreases the computational frequency, therefore
lowering the SoC heat output and the measured temperature.

We created and tested two metareasoning algorithms. The
first method, Algorithm 1, inserts a pause with a duration propor-
tional to the overshoot of the desired temperature. Because only
one network is used, average accuracy remains constant while
throughput drops over time to maintain a constant temperature.
Here, metareasoning manifests as dynamic parameter adjustment
during each test. The second method, Algorithm 2, switches be-
tween InceptionV2 and MobileNetV2. If the measured tempera-
ture is too high, the algorithm switches from InceptionV2 to Mo-
bileNetV2. To maintain constant throughput, a one second pause
is inserted after MobileNetV2 processes an image. Therefore, a
small accuracy trade-off is made to preserve constant tempera-
ture and throughput. In this algorithm, metareasoning manifests
as both parameter adjustment and algorithm switching.

Note that, if the device were processing incoming video, in-
coming frames would be dropped when the image processing
loop was too long to keep up with the incoming video.

3.3 Design of Experiments
For Algorithm 1, we performed multiple experiments with

different values for the pause adjustment coefficient, pa, and the
initial pause duration, pd . Because these tests depend on the tem-
perature of the SoC, it was important that all tests began at the
same temperature and have similar ambient thermodynamic en-
vironments. While idle, the temperature of the SoC in a 22◦C
room and without active cooling is approximately 57◦C. Be-
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Algorithm 1 Pause Duration Adjustment
Require: T ≤ 50◦C

t0← 0s ▷ Set test start time
ts← 300s ▷ Set test duration
Td ← 75◦C ▷ Set desired temperature
pd ← pd ▷ Initialize pause duration
pa← pa ▷ Set pause adjustment coef.
while t < ts do ▷ t is the program time

Process image
Record Nd ▷ The processing duration
Record T ▷ The current temperature
pd ← pd + pa× (T −Td)
if pd < 0s then

pd ← 0s
end if
Wait pd seconds
Record Ld ▷ The loop duration
Record T

end while

Algorithm 2 Network Switching
Require: T ≤ 50◦C

t0← 0s
ts← 300s
Td ← 75◦C
pd ← 0s
Network← InceptionV2
while t < ts do

Process image using Network
Record Nd
Record T
Wait pd seconds
if T > Td then

Network←MobileNetV2
pd ← 1s

else
Network← InceptionV2
pd ← 0s

end if
Record Ld
Record T

end while

tween tests, the device was cooled via convective heat transfer
by the 5V fan attached to the case. The cooling cycle, which
ran before each test if the temperature was greater than the set
starting temperature, activated the fan until a specific tempera-
ture was reached. So this cycle was activated even if the device
was near its idle temperature, the starting temperature was cho-
sen to be 50◦C, which is below the idle temperature. The fan was

TABLE 1. VARIANTS OF PD AND PA USED TO CREATE EACH
SET OF 25 TESTS.

pd [s] pa [s/◦C]

0 0

0.5 0.050

1.0 0.100

1.5 0.150

2.0 0.200

not active during tests.
We performed 25 tests for each network. We incremented

the values of both pa and pd to create the set of tests, shown in
Tab. 1.

We tracked multiple variables during each test, measured
once after the image was processed and again after the pause
was inserted. The most important of these were SoC tempera-
ture, SoC CPU use, loop length, and loop length goal.

For each value of pd , we performed a test where pa was zero.
This represents a program where the loop length is static and
metareasoning is inactive. In these tests the temperature reaches
a maximum of approximately 82◦C.

This occurs because, whenever the temperature of the Rasp-
berry Pi 4B is above 75◦C, the CPU operating speed is lowered
via DVFS [22]. In practice, the observed throttling temperature
is 82◦C, seen in Fig. 2.

For Algorithm 2, fewer tests need to be performed. In these
tests, pa was not varied because it were not used in the program,
while pd was not varied between tests because a static value was
assigned to each network. Additionally, only the switch from In-
ceptionV2 to MobileNetV2 needs to be tested. Switching from
MobileNetV2 to InceptionV2 would have an effect opposite to
what is intended. Therefore, only one test is performed for Al-
gorithm 2.

4 RESULTS
4.1 Algorithm 1

When metareasoning was active (pa > 0), the SoC temper-
ature stabilized around the desired temperature Td , as shown in
Fig. 3. For each network, only tests 1, 5, 21, and 25 are shown
for visual clarity.

In Tests 5 and 25, pa = 0.2 s/◦C. In both tests, the SoC tem-
perature successfully stabilized around Td . Figure 4 shows the
corresponding loop length and pause length in matching colors.
Although Tests 1 and 21 have a constant set loop length, the loop
length in Test 1 began to increase once the temperature reached
approximately 82 ◦C, corresponding with the Raspberry Pi 4B’s
thermal throttling temperature. In Tests 5 and 25, the loop length
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FIGURE 2. EXAMPLE OF RASPBERRY PI 4B SELF THERMAL
THROTTLING VIA DVFS WHEN METAREASONING IS INAC-
TIVE.

initially increased linearly to maintain the desired temperature.
Figure 5 shows the CPU usage for all four tests. Tests 1 and 21
had a constant CPU usage, but, in Tests 5 and 25, the CPU usage
decayed when the loop length was adjusted to maintain Td .

The results for the program using Inception V2 with the
SSD object detector demonstrated a faster rate of temperature
increase, as well as a rapid increase in pause duration once the
the temperature was greater than Td , as seen in Fig. 6 and 7. Ad-
ditionally, the CPU usage decreased asymptotically, as seen in
Fig. 8.

4.2 Algorithm 2
Algorithm 2 was able to stabilize the temperature of the CPU

as seen in Fig. 9. Additionally, the loop duration remained in a
0.2 second range of the 1.8 duration of InceptionV2, as seen by
the consistent loop length shown in Fig. 10. The CPU utilization
shown in Fig. 11 portrays a similar trend to Algorithm 1. Finally,
the network switching is visualized in Fig. 12.

5 DISCUSSION
5.1 Algorithm 1

When metareasoning was not active (pa = 0), the longer-
than-needed loops continued, and the temperature remained

FIGURE 3. COMPARISON OF MEASURED TEMPERATURE BE-
FORE METAREASONING FOR ACTIVE AND INACTIVE METAR-
EASONING FOR TWO VALUES OF PD.

low. When metareasoning was active (pa = 0.2), metareason-
ing quickly reduced the loop length and maintained that until
the temperature increased. At that point, metareasoning inserted
pauses to maintain the temperature at the desired level.

The results with the InceptionV2 network were much dif-
ferent: because it required approximately 1.8 seconds, tests in
which the loop length goal was 1.5 seconds led to running the
network as quickly as possible. Although metareasoning inserted
pauses to maintain the temperature when it increased, the tem-
perature overshot the desired value. Because the loop length
and pause length are adjusted only once per loop and the In-
ceptionV2 processing time was much greater, the pause length
changed more slowly than it did with the other networks.

5.1.1 Operational Cases In testing for Algorithm 1,
four use operational cases become apparent, as shown in Tab.
2. In the table, “metareasoning” is shortened to “MR.” Each
test where metareasoning was inactive falls entirely into one of
two categories depending on the value of the pause duration, pd .
When pd , pa = 0, thermal throttling occurs. This is the control
test. When pa = 0, pd > 0, there is a static pause and no adjust-
ments to the pause duration are made. When pa > 0, pd = 0, the
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FIGURE 4. COMPARISON OF LOOP AND PAUSE DURATION
FOR ACTIVE AND INACTIVE METAREASONING FOR TWO
VALUES OF PD.

pause duration starts at zero and only increases once the temper-
ature is higher than Td . Finally, when pa, pd > 0, the pause dura-
tion is decreased to zero, then increases once the temperature is
greater than Td .

5.1.2 Adjustment Coefficient Effect The pause du-
ration adjustment coefficient, had different affects on the tem-
perature trajectory depending on its value, pa, and the neural
network processing duration, Nd . Generally, larger values of pa
resulted in faster convergence of the temperature towards the de-
sired value, Td . Additionally, because the pause duration was
only adjusted once per loop, the pause duration was updated
less frequently for InceptionV2 then for MobileNetV2. There-
fore, despite using the same value for pa, the temperatures for
the InceptionV2 tests with active metareasoning in Fig. 6 show
a slight overshoot at approximately 70 seconds. In contrast,
the MobileNetV2 temperature for the same test cases in Fig. 3
has no visible overshoot. Values of pa which are greater than
those tested would likely cause overshooting oscillatory behav-

FIGURE 5. COMPARISON OF 20-SECOND MOVING AVERAGE
OF CPU USAGE FOR ACTIVE AND INACTIVE METAREASON-
ING FOR TWO VALUES OF PD USING ALGORITHM 1. NOTE
THAT THE LOOP DURATIONS ARE SHOWN IN SATURATED
COLORS, WHILE THE PAUSE DURATIONS ARE SHOWN IN
MATCHING FADED COLORS.

TABLE 2. COMPARISON OF THE FOUR OPERATIONAL CASES
WHICH OCCUR IN TESTING.

Condition No MR (pa = 0) MR (pa > 0)

pd = 0

The network runs as
fast as possible, the

temperature
increases, and

thermal throttling
occurs.

The network runs as
fast as possible, the

temperature
increases to Td , and

MR increases pd
such that Ld ≥ Nd .

pd > 0

The network runs
slowly and the

temperature
increases slowly.

MR reduces pd until
the network runs as
fast as possible, and
when Td is reached,

MR increases pd
such that Ld ≥ Nd .

ior. Therefore, there is an ideal value of pa for each network and
thermal environment.
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FIGURE 6. COMPARISON OF MEASURED TEMPERATURE
PRIOR TO PAUSING FOR ACTIVE AND INACTIVE METAREA-
SONING FOR TWO VALUES OF PD.

5.2 Algorithm 2
Figure 12 shows how InceptionV2 is used in 100% of loops

at the beginning of the program, but this precentage decreases
until MobileNetV2 becomes used in nearly 100% of the process-
ing loops. It is notable that this transition follows a similar, in-
verted trend as the temperature in Fig. 2. This is likely because
the temperature increases towards an asymptote representing the
CPU’s equilibrium temperature. Therefore, while switching to
MobileNetV2 is not advantageous in the beginning of the test,
it becomes increasingly advantageous as the test progresses be-
cause the processor is idling for more than half of each loop.

These results demonstrate that, because the temperature is
controlled via software, the system can be designed to a reliabil-
ity standard independent of the hardware. To achieve a longer
mean time to failure (MTTF), the desired temperature can be
lowered to 75 or 70◦C [3].

This approach may be useful for managing the temperature
on devices besides the Raspberry Pi 4B. A desired temperature
can be set to below the device thermal throttling threshold, and
the program will maintain the desired temperature.

Although these results demonstrate successful completion
of their goal, the implementation of metareasoning has a small

FIGURE 7. COMPARISON OF LOOP LENGTH AND PAUSE DU-
RATION FOR ACTIVE AND INACTIVE METAREASONING FOR
TWO VALUES OF PD.

negative effect on performance. There is a small amount of time,
no more than approximately 70 milliseconds, added to each pro-
gram loop. This accounts for no more than approximately 4% of
processing time for InceptionV2, or 8% for MobileNetV2. Dur-
ing this time, image processing is not occurring, so the overall
throughput achieved by either algorithm is inherently lower than
an algorithm without metareasoning using the same neural net-
work.

6 CONCLUSION
This paper described a study that evaluated metareasoning

algorithms for managing the temperature of a Raspberry Pi 4B
by dynamically inserting pauses and switching neural networks
in the image processing loop. The SoC’s temperature was suc-
cessfully stabilized around a desired reference using metareason-
ing regardless of the starting loop duration.

Inserting pauses of varying duration via metareasoning was
shown to have a stabilizing effect on temperature, with increasing
values of pa providing a more robust solution by quickly stabi-
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FIGURE 8. COMPARISON OF 20-SECOND MOVING AVERAGE
OF CPU USAGE FOR ACTIVE AND INACTIVE METAREASON-
ING FOR TWO VALUES OF PD USING ALGORITHM 1. NOTE
THAT THE LOOP DURATIONS ARE SHOWN IN SATURATED
COLORS, WHILE THE PAUSE DURATIONS ARE SHOWN IN
MATCHING FADED COLORS.

lizing SoC temperature for MobileNetV2 and InceptionV2.
Switching between neural networks with differing process-

ing times and corresponding pause lengths to maintain a constant
throughput also proved effective in stabilizing the SoC temper-
ature. In this process, the expected average accuracy decreases
over the course of the algorithm from that of InceptionV2 to that
of MobileNetV2.

This work demonstrates the utility of metareasoning as a
software-based approach for thermal management that can be
used on other hardware platforms with minimal changes. Addi-
tional work is needed to consider how well this approach would
work when the processor is performing other tasks at the same
time and to determine whether controlling only some of the tasks
is necessary for maintaining an acceptable temperature. In ad-
dition, it may be possible to use metareasoning to control the
temperature of a processor that semi-periodically performs high-
priority tasks by slowing or halting the execution of selected low-
priority tasks. Finally, the temperature overshoot in Algorithm
1 might be reduced by framing the scenario as a control prob-
lem, where pa is a proportional gain. Additional terms, such as
a derivative gain, might then contribute to improved tracking or
stability.

We are currently developing a metareasoning policy that will

FIGURE 9. MEASURED TEMPERATURE OF THE CPU RUN-
NING ALGORITHM 2.

adjust both throughput and expected accuracy as the processor
temperature increases.
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