TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTERS</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Semiconductor Manufacturing</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Job Shop Scheduling</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Look-ahead and Look-behind Scheduling</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Setups.</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Smart-and-lucky Searches</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Problem Space and Heuristic Space</td>
<td>8</td>
</tr>
<tr>
<td>1.7 Objective Functions</td>
<td>8</td>
</tr>
<tr>
<td>1.8 Overview of Research</td>
<td>9</td>
</tr>
<tr>
<td>1.9 Plan of Dissertation</td>
<td>10</td>
</tr>
<tr>
<td>2. BACKGROUND</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Semiconductor Test Operations</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Semiconductor Scheduling</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1 Production Planning</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2 Shop Floor Control</td>
<td>19</td>
</tr>
<tr>
<td>2.2.3 Performance Evaluation</td>
<td>32</td>
</tr>
<tr>
<td>2.2.4 Summary</td>
<td>35</td>
</tr>
<tr>
<td>2.3 Job Shop Scheduling</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1 Scheduling Notation</td>
<td>36</td>
</tr>
<tr>
<td>2.3.2 Shifting Bottleneck</td>
<td>37</td>
</tr>
<tr>
<td>2.3.3 Dispatching Rules</td>
<td>39</td>
</tr>
<tr>
<td>2.3.4 Summary</td>
<td>45</td>
</tr>
<tr>
<td>2.4 Flow Shop Scheduling</td>
<td>45</td>
</tr>
<tr>
<td>2.4.1 Makespan</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2 Total Flowtime</td>
<td>46</td>
</tr>
<tr>
<td>2.4.3 Maximum Lateness (Lmax)</td>
<td>50</td>
</tr>
<tr>
<td>2.4.4 Number of Tardy Jobs</td>
<td>51</td>
</tr>
</tbody>
</table>
2.4.5 General Topics .. 52
2.4.6 Summary .. 55
2.5 Look-ahead and Look-behind Scheduling 55
2.6 Class Scheduling .. 57
2.7 Some One-machine Problems 60
2.7.1 Constrained Flowtime 61
2.7.2 Release and Due Dates 61
2.7.3 Flowtime and Release Dates 62
2.8 Smart-and-lucky Searches 64
2.8.1 Introduction ... 64
2.8.2 Simulated Annealing 64
2.8.3 Tabu Search .. 67
2.8.4 Genetic Algorithms 70
2.8.5 Summary ... 75
2.9 Problem and Heuristic Space 75
2.10 NP-Completeness .. 77
2.11 Chapter Summary .. 78

3. ONE-MACHINE CLASS SCHEDULING PROBLEMS 80
3.1 Introduction .. 80
3.2 Constrained Flowtime with Setups 81
3.2.1 Introduction ... 81
3.2.2 Literature Review .. 84
3.2.3 Notation and an Optimal Property 85
3.2.4 The Heuristic ... 87
3.2.5 The Genetic Algorithm 91
3.2.6 Empirical Testing ... 100
3.2.7 Conclusions ... 104
3.3 Class Scheduling with Release and Due Dates 104
3.3.1 Introduction ... 105
3.3.2 Literature Review .. 105
3.3.3 Notation and Problem Formulation 106
3.3.4 Heuristics ... 106
3.3.5 Analysis of the Heuristic 109
3.3.6 The Genetic Algorithm 113
3.3.7 Empirical Tests and Results 115
3.3.8 Extension to Minimizing Tardiness 120
3.3.9 Conclusions ... 123
3.4 Flowtime with Setups and Release Dates 124
3.4.1 Introduction .. 124
3.4.2 Notation and Problem Formulation 125
3.4.3 Background .. 125
3.4.4 Solution Techniques 126
3.4.5 Empirical Testing ... 134
3.4.6 Special Case ... 136
3.4.7 Conclusions .. 140
3.5 Chapter Summary ... 141

4. LOOK-AHEAD SCHEDULING PROBLEMS 142
4.1 Introduction ... 142
4.2 Minimizing the Makespan ... 145
4.2.1 Notation ... 145
4.2.2 Johnson's Algorithm .. 146
4.2.3 Permutation Schedules .. 147
4.2.4 NP-Completeness .. 149
4.2.5 Makespan Optimality Conditions and
Polynomially-Solvable Cases 150
4.2.6 Branch-and-Bound Algorithm 158
4.2.7 Heuristics ... 160
4.2.8 Empirical Results .. 160
4.2.9 Heuristic Error Bounds 162
4.3 Minimizing the Total Flowtime 164
4.3.1 Total Enumeration .. 165
4.3.2 Lower Bounds .. 167
4.3.3 Special Case .. 168
4.3.4 Empirical Testing ... 169
4.4 Minimizing the Number of Tardy Jobs 170
4.4.1 Problem Introduction .. 170
4.4.2 Lower Bound and Special Case 171
4.4.3 Heuristics .. 172
4.4.4 Results ... 173
4.5 Application to Job Shop Scheduling 174
4.6 Chapter Summary .. 175

5. GLOBAL JOB SHOP SCHEDULING .. 177
5.1 Introduction ... 177
5.2 Job Shop Scheduling ... 179
5.3 A Genetic Algorithm for Job Shop Scheduling 181
5.3.1 The Heuristic Space .. 182
5.3.2 A Genetic Algorithm for Global Scheduling 185
5.4 Global Job Shop Scheduling 187
5.4.1 The Semiconductor Test Process 187
5.4.2 The Previous Scheduling System 190
5.4.3 Scheduling Needs ... 191
5.4.4 Scheduling System Design 192
5.4.5 Information Requirements 193
5.4.6 Implementation of Global Scheduling . . . 195
5.4.7 Implementation Issues 197
5.4.8 Contributions of Global Scheduling . . . 199
5.5 Chapter Summary 200

6. SUMMARY AND CONCLUSIONS 201
6.1 One-machine Class Scheduling Problems . . . 201
6.2 Look-ahead Scheduling 202
6.3 Searching for Job Shop Schedules 202
6.4 Conclusions 203

REFERENCES 206

BIOGRAPHICAL SKETCH 219