CHAPTER 4
LOOK-AHEAD SCHEDULING PROBLEMS
In this chapter we discuss the second major area of this research. We study the problem of
scheduling a machine that processes jobs headed for two different second-stage machines. We
analyze this three-machine problem with three different objective functions: makespan, total
flowtime, and number of tardy jobs. We first examine the complexity of the problem and then
identify some lower bounds as well as some special cases that can be solved in polynomial time.
We develop a number of heuristics that find good solutions to the problem. We also use a

branch-and-bound technique to find optimal solutions.

4.1 Introduction

Job shop scheduling includes those scheduling problems in which different jobs may follow .
different roﬁtes through the shop. These problems are generally the hardest to solve optimally,
since few properties of optimal schedules are known and the number of possible solutions
explodes as the problems increase in size.

Because of the complexity of job shop scheduling, algorithms to find the optimal solution
(in a reasonable amount of time) for even the simplest objective functions, e.g. makespan, do not
exist. Recent research has shown that bottleneck-based techniques such as the shifting bottleneck
algorithm (Adams, Balas, and Zawack, 1988) or bottleneck dynamics (see Morton, 1992, for
example) can be successful at finding good schedules. Traditionally, however, researchers have
studied (and schedulers have used) dispatching rules to order the jobs waiting for processing at a
machine.

Normal dispatching rules consider only the jobs currently in the queue for the machine

being scheduled. We define look-ahead scheduling as the ability of a sequencing procedure to

142

143

include information about the status of machines downstream in the flow, enabling it to make a
better solution. Previous techniques that use this look-ahead idea include the work-in-next-queue
and number-in-next-queue dispatching rules (Panwalker and Iskander, 1977) and the use of
bottleneck starvation avoidance in shop floor control by Glassey and Petrakian (1989). Robinson
et al. (1993) consider upstream and downstream information in scheduling semiconductor batch
operations. Researchers have also studied lot release policies that look ahead to the status of the
inventory in front of or arriving at a bottleneck; see for example, Wein (1988), Glassey and
Resende (1988), and Leachman, Solorzano, and Glassey (1988). Other researchers have studied
procedures that they called look-ahead scheduling (Koulamas and Smith, 1988; Zeestraten, 1990)
but the problem setting or interpretation is different.

Consider two examples from the semiconductor test area. In the first, lots of two different
products are processed through the same brand workstation. After brand, the lots require
electrical testing, but the differences between the products indicate that the lots must be tested on
different machines. Or consider the effect of re-entrant flows. The various lots waiting for
processing at an electrical test workstation may be at one of two points in their route. At one
point, a lots moves to brand after being tested (and it will return to test at some point in the
future). At another, it moves to visual/mechanical inspection. In the first case, the brand
workstation is sending lots to two different testers; in the second, the tester is sending lots to two
dissimilar workstations. If one of the second-stage machines is a bottleneck, it seems clear that
the sequencing of lots on the first-stage machine should try to maximize the efficient use of that
bottleneck.

We can model this scenario with the following three-machine problem: There are three
machines My, M;, and M,. Each job follows one of two different flows: M - M;, or M - M.
Thus, M, is feeding the other two machines. If one of these second-stage machines is a
bottleneck because the total work required on that machine is the larger than that on the other

machine, the sequencing of jobs on M, should have as a priority the proper feeding of that

144

machine. This idea of a bottleneck will not affect our analysis of the problem. We will, however,
return to it for the heuristics and the empirical testing.

This problem, which could occur in any number of manufacturing environments, forms an
interesting general flow shop problem and a subproblem of the job shop scheduling problem. As
a flow shop problem, it is a simple model unlike the multi-machine problems previously
discussed in the literature, although work has been done on flexible flow shops with multiple
parallel machines at any given stage.

Moreover, the research into our three-machine problem may improve job shop scheduling
in two ways: one, the solution procedures can be applied directly to the subproblem of scheduling
machines near the bottleneck machine, and two, these techniques may be translated into good
look-ahead dispatching rules for scheduling throughout the shop.

In this chapter we investigate three objective functions for this problem: the minimization
of makespan, of total flowtime, and of the number of tardy jobs. We are concerned with the
analysis of solutions to the problem and the development of heuristics which can be used to find
good solutions.

The major contributions of this work include the proof that minimizing makespan is a
strongly NP-complete problem, the identification of optimality properties and special cases that
can be solved in polynomial time, and the development of an approximation algorithm.

The look-ahead scheduling problems under investigation are as follows (using the
numbering given earlier):

4. Three-Machine Look-Ahead Scheduling: Makespan (3MLA-MS)
5. Three-Machine Look-Ahead Scheduling: Flowtime (3MLA-FT)
6. Three-Machine Look-Ahead Scheduling: Number of Tardy Jobs (3MNT)

In this chapter we will look at each of these objective functions. In Chapter 2 we discussed
the research relevant to these problems. In the next section we start with the makespan objective.
In Section 4.3 we look at minimizing the total flowtime, and Section 4.4 discusses work on

minimizing the number of tardy jobs.

145

4.2 Minimizing the Makespan

As mentioned in the introduction, we are studying a problem that is a subproblem of the
general job shop scheduling problem and is also a special case of the general flow shop problem.
All analysis of the flow shop starts with Johnson (1954), who studied the minimization of
makespan for two-machine flow shop problems and for some special three-machine flow shop
problems. His famous algorithm starts jobs with the smallest first-stage tasks as soon as possible
and jobs with the smallest second-stage tasks as late as possible.

Special cases of the flow shop makespan problem have been studied by a number of
researchers, including Mitten (1958), Conway, Maxwell, and Miller (1967), Burns and Rooker
(1975), and Szwarc (1977). Garey, Johnson, and Sethi (1976) proved that the general three-
machine problem was NP-complete. Problems with release dates, preemption, precedence »
constraints, or more than three machines have also been studied.

In the flexible flow shop, more than one machine may be present at a particular stage.
Heuristics for this type of problem are discussed by Wittrock (1988), Sriskandarajah and Sethi
(1989), Gupta (1988), and Gupta and Tunc (1991). Lee, Cheng, and Lin (1992) study an
assembly flow shop problem where each job consists of two subassembly tasks that are
assembled in a third operation.

This three-machine problem is therefore closely related to problems previously studied, but
the pre-assignment of the jobs to different second-stage machines gives this problem a special

structure and leads to interesting results.

4.2.1 Notation

The following list describes the components of the problem and the notation used.

146

Jj Jobj,j=1,...,n.

M, The first-stage machine.

M;, M, The second-stage machines.

H, The set of jobs that visit My and then M.

H, The set of jobs that visit My and then M,.

poj The first-stage processing time of JJ on M.

pjj The second-stage processing time of J jon M;,i=1or2.

For a given schedule ¢, we can calculate the following variables:

Co)j The completion time of Jj on M,

Cij The completion time of J;on Mj, i =1 or 2.
C Y = Cij’ the second-stage completion time of J -
Crnax =max {C j}, the makespan of the schedule.
2C j the total flowtime of the schedule.

Note that we will call a set of jobs that visit the same second-stage machine a group; thus,
H, and H, are each a group of jobs. Each group has aflow. The flow for the jobs in H; is M -
M;,. The flow for the jobs in H, is M - M,. This section is concerned with the problem of
minimizing, over all feasible schedules, the makespan of the jobs. We call this problem the

Three-Machine Look-Ahead problem - Makespan (3MLA-MS).

4.2.2 Johnson's Algorithm

If we consider just one group and its corresponding flow, the problem of minimizing the
makespan of the set of jobs that visit these two machines is the same as Johnson's two-machine
flow shop problem. Johnson (1954) provided an optimality rule and an algorithm to solve the
problem. If each job to be scheduled has task processing times a j and b j on machines one and
two respectively, then his rule is as follows:

Johnson's Rule: J; precedes J fi in an optimal sequence if min {a;, bj} <min {aj; b;}.

This rule is implemented in the following algorithm:

Johnson's Algorithm:

Step 1. Find the smallest unscheduled task processing time. (Break ties arbitrarily.)

147

Step 2. If this minimum is on the first machine, place the job in the first open position in

the schedule. Else, place the job in the last open position in the schedule. Return to Step 1.

4.2.3 Permutation Schedul

In flow shop scheduling, a feasible schedule is called a permutation schedule if the
sequence of jobs on each machine is the same. Thus, the sequence of jobs on the first machine
uniquely identifies a schedule (assuming all tasks are started as soon as possible). In the three-
machine look-ahead problem that we are studying, the two sequences on the second-stage
machines consist form two disjoint sets of jobs. Thus, for our problem, we extend the idea of
permutation schedules to include schedules where the relative order of two jobs in the same flow
is the same at both stages.

It is known that considering permutation schedules is sufficient for finding optimal
solutions for regular two-machine flow shop problems. Thus, for our three-machine look-ahead
problems, it seems likely that permutation schedules will also be sufficient, since the problem
contains two two-machine flows. We will show that this is indeed true.

Definition: A schedule is a permutation schedule if, for all J; and J; in H, (H,), J; precedes

J

Jj on M, if and only if J; precedes J jon M; My).

Theorem 4.1. For any regular performance measure, there exists a permutation schedule
that is an optimal schedule.
Proof. First we will show that we can interchange two jobs that are not in the same order at

both stages. Given a schedule ¢ where job J fi directly follows J; on machine M, (or M) butJ fi

precedes J; on machine M, move the M, task of J fi after the M task of J;.

If we look at Figure 4.1, we can observe that moving J j causes all of the tasks (except J j) on

M, to start earlier, which does not delay any (and may expedite some) second-stage tasks. Now,

since JJ will complete on M, when J; did (C'y)j = Cp)), the processing of J jon M; will not be

delayed. Our interchange, therefore, does not increase the completion time of any job.

148

Thus, for any given schedule, we can create a corresponding permutation schedule by
interchanging the first-stage tasks. None of the job completion times are increased by this
construction. Indeed, some of the completion times may be decreased. Therefore, this
permutation schedule has a better or equal performance on all regular measures (e.g. makespan,
flowtime, number of tardy jobs, maximum lateness). Thus, it is sufficient to consider

permutation schedules when trying to minimize these objective functions. QED.

Coj Coi
51 T | Im A
Iy | Im |
Cii GCyj
Cob Coi CIOJ
B | Ip 5|
W | I 5|
C1b Ci Cy

Figure 4.1. The exchange into a permutation schedule for M, and M;.
(Machine M, not shown.)

We would note here that a permutation schedule preserves the relative order of the
sequence for each group. We will use the term interleaving for the process of combining two
sequences to form a permutation schedule. We will show in Section 4.2.5 that if we are given
sequences for each group, then there is a polynomial-time algorithm to find the interleaving that
minimizes the makespan of the schedule created. However, the optimal second-stage sequences
cannot be determined in polynomial time. In fact, the 3SMLA-MS problem is strongly NP-

complete, as will see in the next section.

149
424 -Completenes.

In this section, we consider the complexity of the SMLA-MS problem. Although other
researchers (including Gonzalez and Sahni, 1978) have shown the NP-completeness of a number
of small shop problems, we cannot determine the complexity of our problem from any of this
previous work.

We will therefore prove that 3SMLA-MS is strongly NP-complete, which will be done by
transforming 3-Partition to 3MLA-MS. (Recall that it is sufficient to consider permutation
schedules.) The 3-Partition problem can be stated as follows: Given a set of a,i=1,...,3n,
and B, partition these elements into n sets Ay, . . . , A, where each set contains three elements and
the sum of the three elements equals B. We will make the assumption that for all i,

1/4 B < a;< 1/2 B. (We can transform any problem without this property into one where it is
true.) With this property, there will never be a set of two g; or a set of four g; where the sum of
the elements equals B.

Theorem 4.2. 3MLA-MS is a strongly NP-complete problem.

Proof. Given an instance of 3-Partition, witha setofa;, i=1, ..., 3n, and B (note all g; 2 1),
create 4n jobs, 3n of which go from M, to M, and have processing times p); = a; and py; =
(B+1)a;, i=1,..., 3n; let these jobs form a set W. The n remaining jobs that go from M, to M,
J3n+1-J3p42 - - - Jap Pog =B forall kand py = (B+1)B, k=3n, ..., 4n-1,and pj 4,=B;
let these jobs form a set X. The desired makespan is M = n(32 + B) + B.

Part 1. If there exists a partition (4, . . ., A,) such that for all @; in A, ¥ a; = B, then the
sequence on My of [A1 /3,41 423,42 - - - Ay J4,] Will yield a schedule where the completion
time on M, will be M and the time on M, will be no greater than M. (See Figure 4.2.)

Part 2. Now, suppose there exists no partition. Consider any arbitrary permutation
schedule 6. The sequence is composed of consecutive subsets of jobs from W and of jobs from
X. LetA , j=1,..., n+l be these subsets of W, where Aj directly precedes the jth job from X,

except for A, , 1, which is the set of jobs following the last job from X. Note that any of these A i

150

may be empty. Let S Ji equal the sum of the first-stage task processing times for the jobs in A . Let
Ay be the first A j such that Sy, is not equal to B. Because there is no partition, there must exist one
such Ay among Ay, ..., A,

If Sy > B, then the makespan on machine M, is delayed by the delay in the kth job in X:
MSM)2S; +B2+...+ 5+ B2+ (n-k)B2 +B)+B>kB + kB2 + (n- k)B2 + B) + B=M.
(This assumes that all of the first k-1 jobs have long tasks on M;, leaving n-1-(k-1) long tasks and
one short task on M;. If one of the first k-1 has the short task, then the makespan is even longer.)

IfSp<B,letS=S8;+...+S; <kB(and < kB - 1) and suppose J,,, is the first job from W
after the kth job from X. Then, the makespan on M, is postponed by J,,,: MS(M,) 2 S + kB2 + ay,
+B+1)@mB-5)=S+ kB2 + ay, + nB2 + nB -BS - S. Including -BS = kB? +B implies MS(M,)
2a,,+ nB? + nB + B> M. Thus, there exists no schedule with makespan less than or equal to M.

Part 1 and Part 2 of the proof show that there exists a partition if and only if there exists a
schedule with the desired makespan. This implies that 3MLA-MS is a strongly NP-complete

problem. QED.

A1 A Ap-1 Ap
My [B | B |B | B? B | B2 | B | B?
M; B2+B | BZ+B BZ2+B B
M, B2+B | BZ+B BZ+B BZ+B

Figure 4.2. A schedule for the 3MLA-MS problem.

425 Mak imali nditions and Polynomially-Solvabl

This section discusses the optimal combination of two given sequences, lists a few
properties of optimal schedules, and presents two special cases that have easily-found optimal

solutions. We will see that we can easily form a permutation schedule by optimally interleaving

151

sequences for each group (Algorithm 4.1). Properties 4.1, 4.2, and 4.3 are dominance properties
between jobs in the same group. Theorems 4.3 and 4.4 describe the special cases.

Because we need to consider only permutation schedules, we can create a single schedule
for all three machines from a sequence of the jobs. That is, given a sequence on the first-stage
machine we can create a sequence for each second-stage machine. This is done by considering
the jobs in the order they appear on the first machine. However, there is no comprehensive rule
for determining this sequence. Thus, we will spend some time on how this sequence should be
constructed in certain situations.

Interleaving two sequences. Since the problem is NP-complete in the strong sense,
heuristic methods for finding good solutions are justified. A very natural heuristic is to schedule
the jobs in each group separately. For instance, each group can be scheduled by Johnson's rule.
Then we can interleave these two sequences to form a solution to the original problem. The
process of combining two sequences to achieve the minimal makespan is called optimally
interleaving. This is the best combination of these two sequences. Note, however, that the best
combination of the two Johnson sequences may not be an optimal solution; the optimal solution
may be some combination of sub-optimal solutions to each subproblem. In Section 4.2.9 we
present an example where optimally interleaving the Johnson sequences for each group is not
optimal.

So, while interleaving the Johnson sequences is a natural heuristic that works well (see
Section 4.2.8), we may wish to try other heuristics to the subproblems before interleaving. These
are discussed in Section 4.2.7. In this subsection we will describe how two sequences should be
interleaved.

Now, suppose we are given two sequences 61 and o5, one sequence for each group (we
have found solutions for each of the subproblems), and we want to find the minimal makespan
that can be achieved by combining these two sequences. The following observations will lead us

to an algorithm for doing so.

152

Define C as a makespan that we wish to achieve. To minimize the makespan given the two
sequences we need to find the minimal C for which we can find a feasible schedule. We can
schedule the tasks on the second-stage machines in the order given by 61 and o, and as late as
possible, so that the last task on each machine ends at C. In a feasible schedule, the first-stage
task for each job has to complete on M) before the second-stage task can begin. We need to
determine if there is some ordering of the tasks on M so that each task finishes on-time (with
respect the second-stage task).

For each job Jj the start time of the second-stage task can be used as the due date d i for the
corresponding first-stage task. We can find a sequence where each first-stage task finishes on-
time (C j <d j) if and only if we can find a sequence where the maximum lateness is less than or
equal to zero. If we wish to minimize the maximum lateness of the first-stage tasks, we should

order them by EDD (Earliest Due Date), according to Jackson (1955). The schedule created is an

interleaving of the two given schedules: if J; precedes J fi in oy, thend; <d ,

and J; will precede J fi
on M.
Each due date d ;= C- L, where t is the sum of the second-stage processing times of J fi and

the jobs Jy, that follow J] on the second-stage machine. See Figure 4.3.

Figure 4.3. The variables associated with J f (second-stage started late).
Note: Other second-stage machine not shown.

Since the EDD sequence corresponds to sequencing the tasks in decreasing order of ¢;, the
sequence of jobs is the same for all values of C, including the optimal one. Therefore, we can
find the optimal makespan from the feasible schedule with the jobs in this order and all tasks
starting as soon as possible. This is the optimal interleaving of two given sequences, described in

Algorithm 4.1.

153

Algorithm 4.1 (Optimal Interleaving): Given a sequence ¢ for the jobs in H; and a
sequence o for the jobs in H,, perform the following steps to yield a schedule with the minimal
makespan:

Step 1. For each Jj in H,, define A ; as the set of jobs (not including J J-) that follow J fi inoj.

Then t;=pj;+ZA;P]k

Step 2. ForeachJ fi in H,, define A j as the set of jobs (not including J j) that follow J i inojy.
Then tj=py; + ZAjPZk-

Step 3. Schedule the jobs on M, in decreasing order of the ¢;, starting at time zero, and start
all second-stage tasks as soon as possible.

Note that this algorithm takes O(n) effort, since each group is already in decreasing order of
the s and forming the schedule is only combining the two sequences without changing the
relative orderings.

In Example 4.1 we perform Algorithm 4.1 on a problem with five jobs and given sequences
for each group. We are given sequences [J;J3J5] and [J4J 5] for each group. After
computing the ¢;, we form the interleaved sequence [J; J3J4J5J5]. The corresponding

schedule has a makespan of 11 (see Figure 4.4).

Example 4.1. Given the following five jobs and the two sequences [J; J3J5] and

[JyJ5]:
o W ey Ry
I Hy 2 4 9
I H; 1 1 1
I4 Hy 2 1 4

154

I I3 I

Jgq JS
0 2 4 6 7 8 10 11

Figure 4.4. Optimal schedule for Example 4.1.

Properties of optimal solutions. In general, we still do not know how to construct the
sequences on M, and M,. These subproblems are what is difficult about this problem. Johnson's
rule, which is optimal for the two-mchine flow shop, is not always applicable for the 3SMLA-MS
problem. Of some help, however, are a number of dominance properties for jobs in the same
group that limit the number of sequences that need to be considered in searching for the optimal.
The first property establishes a precedence relationship between two jobs that is a restrictive form
of Johnson's rule. The other two relate two jobs that are processed consecutively on some
machine.

Property 4.1. (Absolute Dominance) If bothJ; and J j are in Hy and pp; < pg)j and
Pki 2 Pij» then J; should precede J 2 (If both equalities hold, then the jobs are obviously
interchangeable.)

Proof. Suppose we have a schedule ¢ such that the inequalities above hold and J fi precedes
J;. Without loss of generality, suppose both jobs are in H; and that all of the second-stage tasks
are started as late as possible. Then it is easy to see that exchanging J; and J jon both machines

(see Figure 4.5) does not increase the makespan. Thus, it is sufficient to consider schedules

where J; precedes J - QED.

Figure 4.5a. J; and J jon M, and M;. (Machine M, not shown.)

155

i Jj

St Ch §15 Chj

Figure 4.5b. The exchange of J; and Jj on M, and M;.
(Machine M, not shown.)

Property 4.2. (Consecutive Dominance) If bothJ; and J j are in Hy, and are processed
consecutively on M, they should be sequenced by Johnson's rule (i.e., if min {pg;, p kj} < min
{Pri» Po j}, then J; should immediately precede J j).

Proof. The fact that both jobs are processed consecutively on both machines implies that
Johnson's Rule applies to them. If the jobs are not sequenced according to Johnson's Rule, they
can easily be exchanged, and the makespan of the schedule is not increased by the switch. QED.

This property is stated for two jobs from the same group processed consecutively. It can be
extended to a set of three of more consecutive jobs on M, from the same group:

Corollary 4.1. (Batch Dominance) The jobs in each batch of a schedule should be
ordered by Johnson's Rule, where a batch is defined as a set of consecutive jobs on M from the
same group.

Property 4.3. (Small Second-stage Dominance) Suppose J; and J j are in Hy and are
processed consecutively on My. If pp; 2 pii, Pg)i 2p kjp and py; > p kjp then J; should precede J j

Proof. Without loss of generality, suppose J; and J j are in H,. Consider a schedule where
the two groups have been optimally interleaved and the second-stage tasks are started as late as
possible. Then, if there are any jobs between J; and J jon M,, they must be from H,, and the start
times of these jobs on M, are between the start times of J; and J jon M;. (See Figures 4.6a and
4.6b.) Suppose J fi precedes J;. Let us interchange these jobs on both M and M; and check that

we still have a feasible schedule without increasing the makespan. Let y be the old start time of

JjonM,. Let zbe the old completion time of J; on M. For J;

s the new completion time on M,

156

equals z. Since J; can be on only one machine at atime, z<y + p, the old start time of J; on

M,;. Thus, z <y + py;, the new start time of J jon M;, and the schedule is still feasible for J j

Pj Te P

Pyj Pli

Te

y z

Figure 4.6a. (second-stage tasks started late).

Poi Te Poj

P1i P1j
JC

Xy z

Figure 4.6b. (second-stage tasks started late).

Now, let x be the new start time oij onM, Thusy=2z -ijZ Z-pgj=*. Now, for J; and
for all jobs J, between J fi and J;, the new completion time is less than x and thus y and thus the
start time of their second-stage tasks. We can therefore switch J fi and J; without increasing the
makespan of the schedule. QED.

Corollary 4.2. If for some Hy, pp; 2 py.; for all J;, then the jobs in H}, should be ordered by
k POj = Pkj k

i
LPT on the My, tasks.

We note that if Corollary 4.2 is true for both H; and H,, we have the first special case
mentioned below (Theorem 4.3).

Polynomially-solvable special cases. Like other three-machine flow shop problems, the
3MLA-MS problem has special cases that can be solved in polynomial time. Theorems 4.3 and

4.4 present such special cases.

157

Theorem 4.3. If p;; < ppy, for all J in H; and p2j _<.p0j for all JJ in H,, then the optimal
solution can be found by ordering the jobs in each group by their second-stage processing times,
longest processing time first, and optimally interleaving the two sequences.

Proof. This is true because Corollary 4.2 holds for both groups. QED.

Theorem 4.4. If, for some H;, min {pOj : Jj € H, U H,} 2 max {pij :Jj € H;}, then the
optimal schedule can be found by sequencing the jobs in each group by Johnson's Rule and
optimally interleaving these sequences.

Proof. By the given, we know that the conditions of Corollary 4.2 hold for the jobs in H;.
Thus, the jobs in this group should be ordered by longest second-stage task processing time first.
For these jobs, this sequence is the same as the sequence given by Johnson's rule. Now, if we can
determine the optimal ordering of the jobs in Hy, the other group, we can interleave the groups to
derive an optimal schedule. We will show that these jobs should be ordered by Johnson's rule.

Consider an optimally-interleaved schedule where Jj, is processed immediately before J jon
M., and where the jobs are not ordered by Johnson's rule. That is, min {pg)j Pip} <min {pgy,
Pijl-

If there are no jobs from H; between Jy, and J jon M,, then Property 4.2 implies that the
jobs should be interchanged.

Else, let J,, be the job from H; processed just before Jj IfJ fi is not the last job on M, then
we can move J jto immediately after J;,. Because the jobs that were between J and J fi have short
second-stage tasks, delaying these jobs does not delay the processing of any successive jobs.
Now Jj, and J j are consecutively processed on M, and Property 4.2 implies that the jobs should
be interchanged.

Finally, if J fi is the last job on M, (and My), then the fact that the schedule is optimally
interleaved implies that p kj < Pimp Since J,, is the last job on M;. By the given, p;,, is less than or
equal to ppy, and poj- Thus, min {poj, Pip} <min {pgp, pkj} implies that pyj < min {pgp, ij}
(since p kj <po j) and consequently pgy, <pop, and pyp <p kj Property 4.3 implies that J fi should

precede Jy,

158

We have thus shown that the jobs in Hj, should be ordered by Johnson's rule. This gives us

an optimal ordering for Hj, which can be interleaved with H; to solve the problem. QED.
4.2.6 Branch-and-Bound Algorithm

In this section we will identify three lower bounds on the makespan; we will take the
maximum of these to form our overall lower bound. We will also discuss the use of a branch-
and-bound technique for finding optimal solutions for the 3MLA-MS problem. We will use the
overall lower bound in the analysis of the worst-case performance of an approximation algorithm
(Section 4.2.9). We will begin by discussing the three component lower bounds.

For the first component bound, consider only the jobs in H;. Order these jobs using
Johnson's rule and determine for each J; a completion time C7;on M. Then, LBy =max {C};}.
Similarly, LB, = max {Cy j}'

The third component bound takes into account that all of the jobs use M. We relax the
problem by dropping the second-stage assignments of the jobs and allowing an infinite number of
second-stage machines. In fact, however, we only need »n second-stage machines, one for each
job. If each job has a separate second-stage machine, then the minimal makespan, which will be
a lower bound on the optimal makespan for the original problem, is the maximum sum of first-
stage completion time plus second-stage task processing time. By an argument similar to that of
Section 1.4, we can find the minimal makespan by sequencing the jobs by their second-stage task
processing times, longest first. We schedule the jobs in this order on M,. The second-stage
completion time of any job Jj in H;is COj +Djj. Therefore, LB3 = max {COj + Pij}- Note that
LBy will be greater than X py, since there exists some job Jj that has Cp; = 2 POk

Our lower bound for a given problem (hereafter referred to by the variable LB) will be the
maximum of these three lower bounds for the makespan: (i) LB, the minimum possible
makespan of the jobs in set H,, (ii) LBy, the makespan of the jobs in set H,, and (iii) LB3, the
minimal makespan if there exist an infinite number of second-stage machines. Thatis, LB =

max {LBl, LBz, LB3}.

159

In a standard branch-and-bound algorithm, each node will consist of a partial schedule of
jobs. From a node, we exclude certain branches using the above dominance properties and create
a lower bound using straight-forward extensions of the above lower bounds.

In order to help prune branches from the search tree, we will use the optimal properties that
we developed in Section 4.2.5. We will also use a dominance property (Property 4.4) that is more
dependent upon the current makespan of each machine (where ¢; is the makespan of M;).

Property 4.4. For a given partial schedule, if J fi is unscheduled and in Hy, (where H,, is the
other group), #;, = X pp; (the sum over all jobs), and ¢, < ¥ py;, then Jj should not precede any
job from H,,.

It is easy to show that if, in any schedule constructed from this partial schedule, J fi does
precede any of the jobs from H,,, we can move J jto the last position without increasing the
makespan.

We used the branch-and-bound algorithm to solve a number of problems. On the set of 15-

job problems, the running time was usually less than one second (on a 386 PC), although it was

much greater for two problems, one of which had a lower bound that was not tight. See

Table 4.1.
Table 4.1. Statistics on branch-and-bound procedure for LA154.

Problem Lower Bound Optimal Time Nodes
1 2942 2942 0.11 38
2 2080 2080 0.11 39
3 3138 3138 0.16 47
4 3122 3122 0.11 37
5 1956 1956 0.16 56
6 2034 2034 0.22 51
7 2187 2187 0.17 57
8 1919 1919 0.17 71
9 1911 1911 73.92 61916
10 1945 1956 637.30 546654

Note: Time measured in seconds.

160

4.2.7 Heuristics

Since 3MLA-MS is a strongly NP-complete problem and the branch-and-bound procedure
may occasionally take too long to find the optimal solution, the use of approximation algorithms
is a preferable alternative. Our discussion so far has led us one very natural heuristic, the
interleaving of the Johnson sequences. We will also introduce another combination that will be
of use later.

Johnson Interleaved. Order the jobs in each group using Johnson's rule. Optimally
interleave them using Algorithm 4.1.

Merged Johnson. Order the jobs in each group using Johnson's rule. Select the group
with the smallest total task processing time on M, (if the totals are equal, pick one arbitrarily).

Start the schedule with all of the jobs from this group. Follow them with the jobs from the other

group.

4.2.8 Empirical Results

In this section we report on the empirical testing of our heuristics. We discuss the problem
sets generated, our methodology, and our results.

In order to study the scheduling of a bottleneck machine, consider one of the second-stage
machines, say M;, as a bottleneck operation. As a bottleneck, the workload of M, should be
greater than that of My or M,. Therefore, we will construct problems where the total processing
time on M, is likely to be the largest.

Three problem sets (LA154, LA304, LA504) were created using uniform distributions to
generate processing times. The mean fraction of jobs in each group and the mean processing
times were set such that M; would have more work to do than M,. These problems had 15, 30,

and 50 jobs. There were ten problems in each set.

161

Table 4.2. Characteristics of 3MLA-MS problem instances.

Set Jobs Average number Mytimes M;times M, times
of jobs in H; (range)

LA304 30 15 20-60 40-120 30-90

LA154 15 5 80-160 240-480 120-200

LA5S04 50 37 30-60 40-80 60-120

Another problem set (LA201) was created based upon the problem structure used in the
NP-completeness proof. Ten sets of 15 random integers ranging from 1 to 10 was created (with
an adjustment to insure that the total processing time was divisible by 5), and a 20-job problem
was created from each set of these a i using the construction in Theorem 4.2. For this problem we
knew a good lower bound, although we determined later that two of the embedded 3-Partition
problems had no solution and thus the lower bound could not be achieved.

For each problem, our lower bound on the makespan was the maximum of the three
component bounds (see Section 4.2.6). The best component bound depended upon which
machine had the largest workload for any problem. Since M; generally had the most processing
time, the M, - M; bound was usually greatest.

For the 15-job problems, we were able to calculate the value of the optimal solution. For
the other uniform problems we were able to find heuristic solutions that achieved the lower
bound, implying that our lower bounds were tight and that we had found optimal solutions.

On the 20-job hard problems, we could solve the imbedded 3-Partition problem. For 8 of
the 10 problems, there does exist a partition and thus we know the optimal makespan. For the
other two, we do not know the optimal, although we came very close with the heuristics.

The results of the Johnson Interleaved and Johnson Merged heuristics on minimizing the
makespan are shown in Table 4.3. Performance is the relative deviation from the optimal (if
known) or the lower bound. We observed that the Johnson Interleaved algorithm found near-
optimal or optimal solutions for all of these problems. The performance of the Johnson Merged
algorithm varied from good on the 30- and 50-job problems to poor on the 20-job problems. The
Johnson Interleaved heuristic outperformed a number of other sequencing rules, and these results

were consistent with testing on a number of other problem sets with different problem structures.

162

Table 4.3. Makespan summary table for 3MLA-MS problem.
Peformance is relative deviation from optimal or lower bound.

Set Johnson Johnson
Interleaved Merged
LA 154 0.50 244
LA 304 0.00 0.35
LA 504 0.00 0.40
LA 201 0.42 23.14

4.2.9 Heuristic Error Bounds

It is often possible to evaluate a heuristic by analyzing its worst-case behavior. Heuristics
that minimize the makespan of scheduling problems are especially open for this kind of analysis
due to the simplicity of the objective function. Since the Johnson Interleaved heuristic performed
the best in our empirical study, we are most interested in determining the worst-case performance
of this procedure.

We will begin our analysis with the Merged Johnson procedure. For this bound we will
make use of the lower bounds derived in Section 4.2.6. Recall that our lower bound LB = max
(LB,, LB,, LB;}.

Theorem 4.5. For a given instance of 3MLA-MS, the schedule created by the Merged
Johnson heuristic has a makespan less than 3/2 LB.

Proof. Without loss of generality suppose that 3., poj < 22 pgj- Now, LB3 > > Poj the
sum over all of the jobs, implying X, pp j < 1/2 LB; < 1/2 LB. LBy, be the minimal makespan
achievable by the jobs in Hy, found by scheduling the jobs using Johnson's rule. The makespan
of the scheduled created using the Merged Johnson heuristic is max {LB;, 2y; poj+ LB,}. This
is less than max {LB, 1/2 LB + LB} = 3/2 LB. QED.

Now, let us consider the Johnson Interleaved heuristic. Since this algorithm combines the
two Johnson sequences optimally, its performance cannot be worse than that of the Merged

Johnson heuristic. Thus we can make the following statement.

163

Corollary 4.3. For a given instance of 3SMLA-MS, the schedule created by the Johnson
Interleaved heuristic has a makespan less than 3/2 LB.

Theorem 4.6. The maximum error of the Johnson Interleaved algorithm relative to the
optimal makespan is one-half.

Proof. If C* is the value of the optimal makespan and C j; the makespan of the schedule
created by the Johnson Interleaved algorithm, LB < c*<c JI<3/2LB<3/2 C*. Thus,
(Cjr-CH/C* <1/2. QED.

Let us make a few observations about our algorithm. First, the error bound can be extended
to the case where there are m > 2 groups (each group with a different flow to a different second-
stage machine). The maximum relative error of the Johnson Interleaved algorithm is 1 - 1/m in
this case.

Second, the Johnson Interleaved algorithm interleaves the groups by looking ahead to the
future workload of the second-stage machines (the sum of the remaining second-stage task
processing times).

Finally, our error bound of one-half is tight. In the following problem instance, the bound
is achieved in the limit.

Example 4.2. Given n, let C* be 2z + 1. For H, construct jobs Jy, . . . , J,, with the

following characteristics:

i=1,...,n-1: ppi=1 pri=1
i=n Pon=1 Pip=n
Construct in H; jobs J,, 1, . . . , J2,, with similar characteristics:
i=n+1,...,2n-1: ppi=1 pri=1
i=2n: po2n=1 pPiop=n.

Now, since ties can be broken arbitrarily, each group is already ordered by Johnson's rule
(we could force this ordering by subtracting a small amount from the appropriate first-stage

tasks). An optimal schedule can be achieved by interleaving the sequences [J,J; ... J,.1] and

164

(V249541 - - - J25-1 - The makespan of such a schedule is C* =2n+ 1. The interleaving of the
Johnson sequences yields a schedule with makespan 3#, as does merging the Johnson sequences.
As n goes to infinity, the ratio of each of these makespans to c* goes to 1.5. See Figures 4.7, 4.8,

4.9 (J,. = Jyp) for the optimal, interleaved, and merged schedules with n=5.

JS Ix Jl J6 12 J7 13 J8 Iq J9

I J1 | I J3 Iy
Jx J6 J7 JS Jg
0 2 7 8 9 10 11

Figure 4.7. Optimal schedule (second-stage tasks started late).

1 J6 J2 J7 J3 18 I4 Jg JS Jx

I1 11 J3 I J5

Jo |37 |8 |9 X
0 2 6 10 15

Figure 4.8. Interleaved Johnson schedule (second-stage tasks started late).

Jl J2 13 I J5 J6 J7 Jg J9 Jx

Jo |17 | T8 | Jo Ix

0 1 6 15

Figure 4.9. Merged Johnson schedule.

4.3 Minimizing the Total Flowtime

In this section we discuss the Three-Machine Look-Ahead problem with the objective of
minimizing the total flowtime (3MLA-FT). We know that minimizing total flowtime in a two-

machine flow shop is an strongly NP-complete problem (Garey, Johnson, and Sethi, 1976). Since

165

that problem is a special case of SMLA-FT, 3MLA-FT must also be a strongly NP-complete
problem. Hence, we will investigate optimality conditions, lower bounds, and heuristics. Since
total Lﬂowtime is a regular objective function, only permutation schedules need be considered for
optimality (see Section 4.2.3); thus, a sequence of jobs for M, corresponds to a unique schedule
on all three machines. The problem notation is the same as that for the 3MLA-MS problem.

A number of researchers have studied the problem of minimizing the total flowtime in a
flow shop. This work includes lower bounds, branch-and-bound algorithms, and heuristic
approaches. See Ignall and Schrage (1965) for a branch-and-bound and Ahmadi and Bagchi
(1990) for improved lower bounds. Szwarc (1983) studies special cases, and Van de Velde
(1990) presents a Lagrangian relaxation. Krone and Steiglitz (1974), Kohler and Steiglitz (1975),
Miyazaki, Nishiyama, and Hashimoto (1978), and Miyazaki and Nishiyama (1980) all present

heuristic approaches. Ahmadi et al. (1989) includes batch processing.

4.3.1 Total Enumeration

Initially, we wanted the compare the difficulty of finding near-optimal solutions for 3SMLA-
FT to the difficulty of finding near-optimal solutions for 3MLA-MS, where we had very good
results. One way in which we could compare the two problems was to compare the range of the
objective functions over the domain of all permutation schedules.

For a nine-job problem, a total enumeration of the permutation schedules includes over
300,000 sequences. We picked an arbitrary instance, created each schedule, and measured the
makespan and total flowtime of each schedule. This procedure yielded a distribution of
makespans and total flowtimes over the set of sequences.

The primary result is that 18.5% of all sequences have makespans within 6.7% of the
optimal makespan, but less than one quarter of one percent of all sequences have flowtimes
within 6.7% of the optimal flowtime. (See Table 4.4 and Figure 4.10.) Because there are much
fewer schedules that are near-optimal, we can infer that the problem of minimizing the total

flowtime is a much harder problem than the problem of finding the minimum makespan. Similar

166

results hold for another nine-job problem and a fifteen-job problem where a random sample of the

sequences were examined.

Table 4.4. Distribution of schedule makespans and flowtimes.

Deviation from Percent of Deviation from Percent of
optimal makespan schedules optimal flowtime schedules
33% 5.65 % 3.7 % 0.05 %
6.7 18.47 6.7 0.23
10.0 30.13 14.2 2.05
13.3 49.07 21.6 6.85
16.7 62.17 29.1 15.83
20.0 7541 36.6 29.18
23.3 86.24 44.0 45.37
26.7 92.31 51.5 62.31
30.0 96.43 59.0 77.28
33.3 98.10 66.4 88.65
40.0 100.00 73.9 95.49
100
."‘D
90_ .. Erd
R0 S S . oo
I (R R e
B 604 E‘ ------------------
g 50 S
£
pE [N —
2
S B T T
E 30
6 20 --mmmm g e oo
10- £ e eeieecccammeemmeeemeeeemesesmesemes-emeees-emessecsemeesmmeceesee=
0 T T T 1)
0 10 20 30 40 50 60 70 80

Percent Deviation from Optimal

I —£+— Makespan --E+-- Flowtime l

Figure 4.10. Deviation from optimal makespan and flowtime.

167
4.3.2 Lower n

In this section we discuss lower bounds on the total flowtime. These lower bounds provide
us with a way of determining the quality of the solutions produced by our heuristics and can be
extended into lower bounds for a branch-and-bound algorithm.

The lower bounds are similar to those proposed in Ignall and Schrage (1965). The initial
lower bound on the total flowtime is calculated by ordering the jobs by their processing times on
M,, shortest processing time first (SPT), and assuming that the second-stage machines have
infinite capacity. Thatis, LB; =% Coj + 2pg i+ > paj-

We compute the second bound by considering each of the second-stage machines. Leta =
min {pOj :Jj € H,} and b =min {poj : Jj € H,}. Now, a (b) is the earliest time that the second-
stage tasks on M; (M,) could start. Then, form two sequences ¢, and G, of the jobs in H; and H,
respectively by ordering the jobs in each group by the second-stage task processing times,
shortest processing time first. Schedule on M, the second-stage tasks of the jobs in H, in the
order given by ;. The first task should begin at @, and each successive task should immediately
follow (we do not schedule the first-stage tasks). This forms completion times C; i for the jobs.
Repeat for the second-stage tasks of the jobs in H, in order to calculate C» i

However, only one machine can start at its earliest time. The other must start at a time no
less than a + b. Let r be the cardinality of H, and s the cardinality of H,. Either the r tasks on M,
will be delayed by b, or the s tasks on M, will be delayed by a. After calculating rb and sa, we
can increase our lower bound by adding the smaller quantity. Thus, the second lower bound is
LB,=% Clj +2 C2j+ min {rb, sa}.

In Example 4.3, we calculate the lower bounds for the problem instance that we introduced

in Example 4.1.

168

Example 4.3. Given the following five jobs in two groups:

I B LV R I
I, H 1 1 1
I3 H 5

Lower Bound 1: Order first-stage by SPT and add second-stage:

poj 1 1 2 2 2
COj 1 2 4 6 8

ZCOj=21. zp1j=9. Zp2j=4. LBI=34.

Lower Bound 2: Order each second-stage machine by SPT:
a=1.r=3.b=1 s=2.

crj 2 6 10 Cyi 2 5

2Cjj=18. £ Cy;="7. min {rb, sa) =2. LBy=27.

4.3.3 Special Case

This section discusses a special case that leads to easily-found optimal solutions.

Theorem 4.7. If p;; < pgy for all Ji in H; and p2j SPOj for all Jj in H,, then any sequence
¢ in which the first-stage tasks are in SPT order forms an optimal schedule.

Proof. Suppose we have such a 6. Consider H,. If J; is the first job on M, then C ;= Cy;
+py;- If Ji is the next job from H; on My, then p; < pg; < po- Thus, the second-stage task of J;
completes before (or at the same time as) the first-stage task of J; and does not delay the second-
stage task of Ji. Thus, Cpp = Cpy + pjp Similarly, this equality is true for all J; in Hy, and C2j
= COj +p2j for a]le in H,. The total flowtime is therefore ¥, Cj=) COj + Zp1j+ szj. Since

the first-stage tasks are in SPT order, this achieves the first lower bound, and this sequence is an

optimal schedule. QED.

169

4.3 4 Empirical Testing

Empirical testing was performed using a number of different heuristics. The three
heuristics that performed the best (and very similarly) are described below. The 3MLA-MS
problem sets were used as a testbed. For each problem, the four lower bounds on the flowtime
were calculated. The best of these was taken as the lower bound. For the fifteen-job problems,
we were able to find the optimal solutions from the branch-and-bound algorithm. The
performance of a heuristic on a problem was taken as the relative deviation from the optimal
solution (if known) or the best lower bound.

SPT-look-ahead. Each group H; and H, is ordered by the first-stage task processing times
(shortest first), forming two sequences. These sequences are interleaved by choosing at each step
the first unscheduled job from one sequence or the other. Define at each step the following
variables: f; is the completion time of the partial schedule on M; and ¢#; is the completion time of
the partial schedule on M;. Let p; (p,) be the processing time on M, of the next job from H,
(H,). Note that these are the shortest such task processing times from each set of jobs. If #; - ¢, <
D1, the work-in-process inventory (WIP) waiting at M, is low; schedule the job from Hy. If ¢, - ¢,
2 p; + Py, then the WIP at M, is high; schedule the job from H,. Else, p; <t - to < p; + p;, and
the WIP is intermediate; schedule the job with shortest first-stage processing time (p, or p).

WIP-look-ahead. Again, order the jobs in each group by the first-stage task processing
times (shortest first). Combine the groups as in SPT-Look-ahead, except for one case: If p; <t -
to < p1 + P, schedule the job from H;. Thus the work on M; is always used to determine which
job to schedule.

Johnson-look-ahead. Sequence each group by Johnson's rule. Combine the groups as in
SPT-Look-ahead, except for one case: If p; < #; - ty < p; + p,, schedule the job from H,. Thus the
work on M; is always used to determine which job to schedule. |

We tested the heuristics on the problem sets described in Section 1.7. For the fifteen-job

problems, we were able to find the optimal solutions from a branch-and-bound algorithm. We

170

could not find optimal solutions for the larger problems. Therefore, in order to measure the
heuristics, we computed a lower bound on the flowtime for each problem. We calculated the
lower bounds described in Section 2.1 and took the largest as the lower bound. The performance
of a heuristic on a problem was taken as the relative deviation from the optimal solution (if
known) or the best lower bound. Due to the special structure of the problem, we could find
improve the second lower bound for the instances in Set 4 by determining the optimal total
flowtime for the five jobs in H,.

Minimizing the total flowtime is harder than minimizing the makespan, and in Table 4.5 we
report the results of the three heuristics described above. These heuristics were selected because
they performed much better than a number of other procedures that combined the groups
differently. The look-ahead heuristics found solutions with average total flowtime within eight
percent of the optimal value. Because of the special structure of the 3MLA instances in Problem
Set LA201, very good solutions were easier to find. The WIP-Look-ahead heuristic was slightly
better on all of the other problem sets. However, the heuristics were very close to each other.

Table 4.5. Heuristic performance for the 3MLA-FT Problem.
Performance relative to optimal or lower bound.

Set SPT WIP Johnson
Look-ahead Look-ahead Look-ahead

LA 154 7.23 7.13 7.32
LA 304 541 5.16 6.15
LA 504 4.95 4.85 6.58
LA 201 1.37 1.37 1.37

4.4 Minimizing the Number of Tar

4.4.1 Problem Introduction

The other objective function under consideration in look-ahead scheduling is the number of

tardy jobs. This problem models a subproblem of the shop scheduling problem related to the

171

feeding of a bottleneck machine. The objective mirrors the management concern of customer
satisfaction.

Let us call our problem the Three-Machine Number Tardy (3MNT) problem. Recall that
only permutation schedules need be considered. Thus a sequence for all of the jobs defines a
unique schedule. The problem notation is the same as that for SMLA-MS, except that we have
for each jobJ ja due date dj. Since 3MLA-MS is strongly NP-complete, 3MNT is also strongly
NP-complete. Consider an instance where all of the jobs have the same due date: finding a
schedule with no tardy jobs is equivalent to finding a schedule with makespan less than or equal
to the common due date.

Since the problem is computationally difficult, we will examine a simple lower bound, a

special case, and some heuristic approaches to finding solutions.

4.4.2 Lower Bound and Special Case

Good lower bounds are hard to find for the problem of minimizing the number of tardy jobs
in a flow shop (Hariri and Potts, 1989). We will make use of a fairly simple one.

The lower bound makes use of the fact that the Moore-Hodgson algorithm will find the
optimal number of tardy jobs for a one-machine problem. Given an?nstance of 3MNT, the due
date of each job is adjusted by subtracting the processing time of the second-stage task. These
adjusted due dates and the first-stage processing times form a one-machine problem for machine
zero. The lower bound is calculated by using the Moore-Hodgson algorithm to optimally
sequence these tasks. The number of tardy first-stage tasks is a lower bound on the minimum
number of tardy jobs for the 3MNT instance.

This lower bound is achievable in the following special case:

Theorem 4.8. If min {pOj :Jje H;} 2 max {plj:Jje H,} and min {poj:Jje H,} 2 max
{p> j J j € H,}, then an optimal sequence can be found be minimizing the number of first-stage

tasks that are tardy to the adjusted due dates.

172

Proof. Because of the conditions above, the completion time of a job JJ inH;is
Cj = COj + plj Thus, Jj is tardy if and only if CO_] > d_] -pl:]'. QED.
We also tried lower bounds on each of the second-stage machines, but these were not as

good. This seems reasonable if the interaction of the two flows is significantly contributing to

tardiness.
4.4.3 Heuristics

Simple rules that can be extended for this problem include the Moore-Hodgson algorithm
and Earliest Due Date (EDD). These can be expanded by including look-ahead ideas. We also
developed a simple problem space genetic algorithm to find good solutions.

Look-ahead rules. The look-ahead extension of the Moore-Hodgson algorithm includes
both machines. The jobs are ordered by their due dates and added to the schedule until a tardy
jobis found. The procedure then determines the critical path of tasks that determines the
completion time of the tardy job. Then, each job in the path is evaluated to determine how much
the completion time would decrease if that job were removed from the partial schedule. This
calculation depends upon whether the job precedes, is, or follows the crossover job (the job
whose first and second tasks are in the critical path).

We developed two look-ahead versions of the EDD rule. The first is similar to the Mooré—
Hodgson rule. The jobs are sequenced by their due dates. They are scheduled one at a time.
When a job is tardy, however, we simply remove it to the end of the schedule. (In the Moore-
Hodgson rule, we look for the job whose removal helps the most.) This form of the EDD is
called EDD-No Tardy.

The other look-ahead version (EDD-Look-ahead) tries to schedule machine one (the
bottleneck) carefully. The jobs in each group are ordered by their due dates. The primary idea is
to get the jobs from group one to be on-time; group two jobs can be inserted if they don't
interfere. At any point in constructing the schedule, we consider the next job from each group. If

either would be tardy if scheduled next, we place it at the end of the schedule. Eventually, we get

173

a job from each group that would be on-time if scheduled next. We then determine if scheduling
the group two job next would cause the group one job to be tardy. If not, we schedule this group
two job and consider the next job from that group. Else we schedule the group one job next.
Genetic algorithm. After initial testing, we determined that the look-ahead Moore-Hodgson
rule found consistently good solutions. Thus, we used a problem space genetic algorithm to
adjust the problem data used by this rule so that we could find better solutions. The procedure is
similar to those described in Chapter 3. We adjust the due dates using a steady-state genetic

algorithm. The population size was 50, and the algorithm generated 1000 new individuals.

4.4.4 Resulis

In order to compare the heuristics we created a number of problem sets. Each set had 10
similar instances. Problems were created with 15, 30, and 50 jobs. The processing times were
chosen randomly, and the due dates were chosen from a range that depended upon the sum of the
processing times.

The look-ahead Moore-Hodgson heuristic performs better than any of the other rules (See
Table 4.6). A number of rules that used the first-stage due date of a lot were also tested but did
not perform as well. The genetic algorithm was able to find slightly better solutions than those

found by the Moore-Hodgson rule.

Table 4.6. Summary table of results for SMNT.

Set Jobs Lower EDD EDD Moore Genetic
Bound No Tardy Look-ahead Algorithm

NT 151 15 5.8 7.8 7.3 7.0 6.5

NT 152 15 53 7.6 7.1 7.1 6.3

NT 301 30 9.0 12.7 12.5 12.0 10.6

NT 501 50 17.0 21.6 214 20.7 204

174
4.5 Application ho hedulin

One of the primary motivations for studying these problems was to see if we could develop
useful dispatching rules. After considering our results, it seemed clear that look-ahead and look-
behind policies similar to those we used on the one-machine and three-machine problems would
be intuitively good ways to dispatch jobs. However, we wanted to determine the tradeoffs of
using such rules on a number of objectives. To this end, we created a job shop scheduling
problem that modeled the semiconductor test area we were studying. This problem had 82 jobs
and 23 machines and included various test operations. Processing time data were gathered from
some historical lots. We scheduled the jobs under a number of dispatching rule combinations,
using standard dispatching rules, look-ahead rules, and look-behind rules. We measured the
schedules on four scales: total flowtime, makespan, number of tardy jobs, and total tardiness.

The bottleneck in this problem was a set of burn-in boards. Thus, we developed a look-
ahead rule that orders the jobs waiting by their task processing times and uses information about
the downstream bottleneck resource (the burn-in board availability) to determine which lot should
be scheduled next. We also developed a look-behind rule that sequences lots by EDD and
reserves burn-in boards for the next late lot that will be arriving soon. The effort of using these
rules is slight for our problem; in a manufacturing environment, the dispatching effort might be
more significant.

We used the following scheme in order to see how look-ahead and look-behind rules would
influence schedule performance. We allocated the rules by dividing the machines into three
areas: electrical test, burn-in, and other. In any given policy, all of the machines in the same area
used the same dispatching rule. Our model included one burn-in workstation and 15 testers. We
used seven standard rules: SPT, EDD, Slack per Remaining Operation, LPT, Modified Due Date,
Earliest Finish Time, and First-In-First-Out in all areas.

For each of the standard rules, we created four policies. In the first, all of thé areas used

that rule. In the second, the testers used the look-ahead rule (since these were the machines

175

feeding the burn-in area). In the third, the burn-in area used the look-behind rule. In the fourth,
the testers used the look-ahead rule while the burn-in area used the look-behind rule. This
yielded 28 policies.

The average results over the seven standard rules are summarized in Table 4.7. We observe
that the use of a look-behind rule, which is concerned with expediting late jobs, has a drastic
effect on due date-related measures. It is able to reduce total tardiness while increasing the
number of tardy jobs. This is a common tradeoff in scheduling problems. The look-ahead rule,
which is concerned with avoiding unnecessary delays, reduces the total flowtime and makespan
objectives. Our results are the consequence of the specific definitions of these look-ahead and
look-behind rules. For other problems, alternative definitions may yield different results. While
our results are not proof that look-ahead and look-behind rules are the answer to solving the job
shop scheduling problem, the decreases in total flowtime (when the look-ahead rule was used)
and total tardiness (with the look-behind rule) did encourage us to use them in our procedures to

find good solutions (discussed in Chapter 5).

Table 4.7. Performance of 28 dispatching rule combinations.

Flowtime Makespan Tardy Tardiness
All policies? 2,179,344 88,677 17.1 192,394
Single rules® 2,168,014 89,324 16.6 249,968
With Look-ahead® 2,135,800 88,850 16.6 243,253
With Look-behind? 2,222,639 88,534 17.6 138,130
With both? 2,190,921 88,001 17.6 138,226

Notes: a: Average over all 28 policies.
b: Average over seven policies, one for each standard rule.

4.6 Chapter Summary

In this chapter we have examined a special case of the general three-machine flow shop. In
this problem, the jobs to be scheduled form two classes with different groups, and we wish to

minimize the makespan, the total flowtime, or the number of tardy jobs.

176

We proved that minimizing the makespan is a strongly NP-complete problem, and we also
identified some properties of optimal solutions and some special cases that can be solved in
polynomial time. We developed an approximation algorithm, Johnson Interleaved, that can find
near-optimal solutions by looking ahead to the future workload of the second-stage machines.
We showed that the worst-case error bound for this procedure is one-half and that this bound is
tight in the limit. We also developed a branch-and-bound algorithm that can find exact solutions
to the problem.

Then we described the problem of minimizing the total flowtime. We presented lower
bounds, optimality conditions, and the results of testing on selected problem instances a number
of heuristics that look ahead to current workload at the second-stage machines.

Finally we examined the problem of minimizing the number of tardy jobs. We discussed a
simple lower bound, a special case that achieves this bound, and a number of simple and look-
ahead heuristics. We also showed that a problem space genetic algorithm can find better
solutions.

These results have two contributions. First is the analysis of these three-machine problems,
problems previously unstudied in the literature. We conclude from the results of our empirical
testing that look-ahead heuristics can find good solutions for the problems of minimizing total
flowtime and minimizing the number of tardy jobs, and the interleaving procedure minimizes
makespan.

Second, while these problems are important questions in their own right, they are also
significant as subproblems in a job shop. It is possible to apply our results to the problem of job
shop scheduling, either as part of a general scheduling procedure or as an attempt to schedule the

bottleneck of a job shop more efficiently.

