CHAPTER 3
ONE-MACHINE CLASS SCHEDULING PROBLEMS

In Chapters 3, 4, and 5, we discuss the results of our research into a number of different
scheduling problems and the general job shop scheduling problem. The primary motivation is to
examine subproblems of the job shop scheduling problems in order to gain insight into the larger
problem. The subproblems that we will examine are interesting scheduling problems that have
not been previously considered.

We will start with the one-machine class scheduling problems. Our approach in this
chapter is to develop analytical results, to test extended heuristics, and to show that a problem

space genetic algorithm can be a good procedure for a variety of scheduling problems.
1 _Intr ion

The three one-machine problems studied in this work are class scheduling problems that
model the complicating factor of machine setups in the manufacturing process. Most problems
with sequence-dependent setup times are NP-complete. Class scheduling problems have a
special structure that makes them good candidates for further research: the jobs to be scheduled
form a number of disjoint job classes and setups occur whenever the machine processes
consecutive jobs from different classes. And although we will study a number of different
problems, we will see that a problem space genetic algorithm will be a useful procedure for all of
them.

The one-machine class scheduling problems under investigation are as follows:

1. Constrained Flowtime with Setups (CFTS)
2. Class Scheduling with Release and Due Dates (CSRDD)

3. Flowtime with Setups and Release Dates (FTSRD)

80

81

The first problem studied is the class scheduling extension of the one-machine problem of
minimizing the total flowtime of a set of jobs that have deadlines. The research includes an
optimality property for the jobs in the same{ class, a good heuristic, and the development of a
problem space genetic algorithm that can find better solutions.

The second problem is the class scheduling problem where each job has a release date and
a due date. The objective is to minimize the number of tardy jobs. We investigate a number of
heuristics and the use of a problem space genetic algorithm. We also look at a secondary criteria,
minimizing the total tardiness.

The objective in the third problem is to minimize the total flowtime where each job has a
release date. We consider a number of approaches to finding good solutions, including a problem
space genetic algorithm, and present a special case that can be solved with a pseudo-polynomial
dynamic programming algorithm.

This chapter considers the research on each of these problems in turn. Research relevant to

these problems is also discussed in Chapter 2. See especially Sections 2.6 and 2.7.
2 ined Flowtime wi

We will first consider the one-machine class scheduling problem of minimizing the total
flowtime subject to the constraint that each job must finish before its deadline. A new heuristic is
proposed for the problem. We investigate the use of a genetic algorithm to improve solution
quality by adjusting the inputs of the heuristic. We present experimental results that show that

the use of such a search can be a successful technique.

3.2.1 Introduction

This research is motivated by the scheduling of semiconductor test operations. Assembled
semiconductor devices must undergo electrical testing on machines that can test a number of
different types of semiconductors. If a machine is scheduled to test a lot consisting of devices

that are different from the devices tested in the previous lot, various setup tasks are required.

82

These tasks may include changing a handler and load board that can process only certain types of
semiconductor packages or loading a new test program for the new part. However, if the new lot
consists of circuits that are the same as the previous type, none of this setup is required. This type
of change is a sequence-dependent setup that can be modelled by class scheduling.

Since post-assembly testing is the last stage in semiconductor manufacturing, meeting a
job's due date is a very important objective for the manager of a test facility. A secondary
criterion is the minimization of total flowtime (the sum of the job completion times), which
reflects the manager's desire to increase throughput and decrease inventory holding costs.

This is a dual criteria problem, in which the primary criterion is used as a constraint and the
secondary criterion is optimized under this restriction. The problem of minimizing the total
flowtime subject to deadlines is an old problem. Smith (1956) provides an optimal solution
technique that repeatedly schedules the longest eligible job last. The class scheduling version of
the problem, however, is more difficult.

For our problem, finding a feasible schedule is an NP-complete problem. (A schedule is
feasible if every job finishes before or at its deadline.) Thus, there exist no exact algorithms to
minimize in polynomial time the total flowtime subject to the deadline constraints. (For a
discussion of the theory of NP-completeness, see Section 2.10 and Garey and Johnson, 1979.)
Thus, we are motivated to try different heuristics. In this work we develop a multiple-pass
heuristic that finds good solutions quickly. The first contribution of our investigation of this
problem is the extension of Smith's algorithm into a heuristic which considers the setup times
while sequencing the jobs by their deadlines and processing times.

We are also interested in using a genetic algorithm to improve the quality of our solutions.
A genetic algorithm is a heuristic search that has been used to find good solutions to a number of
different optimization problems, but genetic algorithms searching for good schedules must
overcome the difficulty of manipulating the sequences of jobs. We investigate the use of a
genetic algorithm to search a new type of space, the problem space. This type of approach was

introduced in Storer, Wu, and Vaccari (1992), who consider alternative search spaces for the

83

general job shop scheduling problem. In this work, we extend the idea to the problem of one-
machine class scheduling.

Our search attempts to adjust the deadlines of the given problem so that our heuristic will
find even better solutions. The space of adjusted deadlines that we search forms a problem space
(we will return to this point in Section 3.2.5). The second contribution of this work is our use of
this method to improve the scheduling of a single-machine problem.

If we use the principles of Davis (1991), then we can classify our genetic algorithm as a
type of hybrid genetic ‘algon'thm. However, the only unusual characteristic of our algorithm is the
decoding (the bit string does not describe a point in the solution space; instead it must be mapped
to a solution via the heuristic). Moreover, the range of hybrid genetic algorithms is so large (for
instance, Goldberg, 1989, describes hybrids differently) that our use of the term problem space
genetic algorithm is a more precise description of the search. Finally, this problem space exists
independently of the genetic algorithm, and the use of this new search space is not limited to our
search. Other searches (including steepest descent, simulated annealing, and tabu search) could
be used to explore the space. Therefore, we will continue to refer to our search space as a
problem space and to our search as a problem space genetic algorithm.

The next subsection summarizes some of the relevant literature on class scheduling
problems and the dual criteria objective under consideration. In Section 3.2.3, we discuss our
notation, an example instance of the problem, and a number of basic results. We discuss in
Section 3.2.4 the heuristic developed for the problem. Our genetic algorithm will employ this
heuristic. In Section 3.2.5, we present a problem space, introduce genetic algorithms, and
discuss the details of the genetic algorithm we developed to search the problem space. Section
3.2.6 describes the generation of the sample problems, the computational experiments, and the

results. Finally, in Section 3.2.7, we present our conclusions.

84

3.2.2 Literature Review

In this section we will briefly mention some of the relevant research on class scheduling
and on the dual criteria problem of minimizing total flowtime subject to job deadlines. This owrk
and the literature on genetic algorithms are discussed in more detail in Chapter 2.

One of the first papers on problems with class scheduling characteristics is Sahney (1972),
who considers the problem of scheduling one worker to operate two machines in order to
minimize the flowtime of jobs that need processing on one of the two machines. Sahney derives
a number of optimal properties and uses these to derive an branch-and-bound algorithm for the
problem. Gupta (1984) defines the class scheduling problem, and Potts (1991), Coffman, Nozari,
and Yannakakis (1989), and Ho (1992) also study two-class scheduling problems.

Bruno and Downey (1978) prove that, for more general class scheduling problems, the
question of finding a schedule with no tardy jobs is NP-complete. Monma and Potts (1989) prove
that many class scheduling problems are NP-complete, including minimizing makespan,
maximum lateness, the number of tardy jobs, total flowtime, and weighted flowtime.

Dobson, Karmarkar, and Rummel (1987, 1989), Gupta (1988), Ahn and Hyun (1990), and
Mason and Anderson (1991) all study the class scheduling problem under different objective
functions. We will modify the procedure of Ahn and Hyun in order to use it as a comparative
heuristic. The only other dual criteria problem in this area is studied by Woodruff and Spearman
(1992); they consider a class scheduling problem with profit maximization and deadlines.

In the dual criteria literature, the problem of minimizing total flowtime subject to job
deadlines (a deadline is a constraint on the completion time) is among the oldest questions, being
first studied by Smith (1956). The problem of minimizing the weighted flowtime subject to job
deadlines is a strongly NP-complete problem (Lenstra, Rinnooy Kan, and Brucker, 1977), and a

number of researchers have examined branch-and-bound techniques.

85

2.3 Notation and imal Pr

In this section we introduce our problem and notation, give an example instance of the class
scheduling problem under consideration, and present some basic results.

Our class scheduling problem is the minimization of the total flowtime of a set of jobs
where the jobs have deadlines on their completion. The problem can be formulated with the

following notation:

Jj Jobj,j=1,...,n

pj processing time of J fi

D i deadline of J fi

G; jobclassi,i=1,...,m

n; number of jobs in G;

S0i time of initial setup if first job is in G;
Ski time of setup between jobs in G and G;
C; completion time of J fi

Z]C i total flowtime.

The problem is to find a sequence that minimizes the total flowtime (2 C j) subject to the
deadline constraints (C Y <D i forallJ j)- We name this problem the Constrained Flowtime with
Setups problem (CFTS). Since job preemption or inserted idle time leads to a non-optimal
solution, we will assume that schedules being considered have neither. Any schedule that is a
solution for CFTS will have a number of batches or runs that are sets of jobs from one class
processed consecutively. Before each batch will be a class setup. The problem involves
determining the composition and order of batches from different classes.

CFTS is an extension of a one-machine problem studied by Smith (1956). In his problem,
which we name the Constrained Flowtime problem (CFT), there exist no sequence-dependent
setup times.

An instance that we will use to illustrate our work is described in Example 3.1.

Example 3.1. The data in Table 3.1 form an instance of a class scheduling problem with five

jobs in two job classes. The first three jobs form one class, with the remaining two jobs in the

86

second class. Recall that no setup is required between jobs in the same class. However, a class

setup is necessary between jobs of different classes.

Table 3.1. Job and Class Data for Example 3.1.

j 1 2 3 4 5
Pj 1 2 2 3 2
D; 3 16 14 10 18
G, ={1,2,3} n =3 So1 =831 =2
G, = {4,5} n,=2 Spz=812=1

CFTS is an NP-complete problem since finding a feasible schedule is NP-complete (Bruno
and Downey, 1978). Hence, it is unlikely that any polynomial algorithm to solve the problem
exists. We will study the use of heuristics to find good solutions.

We now describe Smith's rule for CFT and an optimal property for CFTS. Our new
heuristic extends Smith's rule by taking advantage of the optimal property, which we calll Smith's
property.

In this and later sections, we will refer to each job that can complete at a given time without
violating the job's deadline as being eligible. In this problem, we are concerned with deadlines
that are constraints on the completion times, and we will create schedules backwards, starting
with the last position in the sequence. Thus, we say that a job J fi is eligible at atime tif t< D .
The job can feasibly complete at this time without violating the deadline constraint.

Smith's property for CFT states that if a job is assigned the last position of an optimal
schedule, then it must be the longest eﬁgible job. Smith's rule is derived from this property.
Algorithm 3.1 (Smith's rule for CFT). Lett=p, +...+p,. Among the jobs that are eligible
at time ¢, that is, ¢ < D, choose the job J; with the longest processing time p . Schedule J jto

J

complete at ¢, and solve the remaining problem in a similar manner.

87

The following property extends Smith's rule to each class in CFTS. This property will then
be extended to consider all classes in order to generate approximate solutions to CFTS.
Lemma 3.1 (Smith's property for CFTS). For each class in an optimal schedule for CFTS, the
only job that could be scheduled to complete at a time ¢ is the longest eligible one.
Proof. It suffices to show that if two jobs J; and Jj in the same class are both eligible at time ¢
and J; is longer than J fi @;>p j), then scheduling J jto complete at time ¢ leads to a non-optimal
solution. Suppose we do. Then C =1 and J; precedes J fi in the schedule formed. Create a new
schedule by interchanging the two jobs. Since J fi is moved to the left, it is still feasible, and the
new completion time is less than C;, the old completion time of J; (p; > p j)' The completion
times of any jobs between J fi and J; are decreased. Meanwhile, J; completes when J fi did, but this

is feasible since t< D i We have therefore created a feasible schedule with less total flowtime,

and the original schedule cannot be optimal. QED.

3.2.4 The Heuristic

Quick methods of finding good solutions are sometimes effective ways to attack difficult
problems. In this section we describe a multiple-pass heuristic that extends the idea of Smith's
rule. We illustrate how this heuristic works using Example 3.1.

Our heuristic finds solutions for CFTS by scheduling jobs in the spirit of Smith's rule,
working backwards from the end of the schedule. Since the makespan (the maximum completion
time) of the optimal solution is not known, the heuristic starts with a trial makespan. After
scheduling all of the jobs, we compute the actual makespan (by removing any idle time) and use
this makespan as the starting point for another iteration. We continue this process until some
limiting makespan is reached. At this point, another pass of the heuristic yields a schedule with
the same makespan or a schedule that is infeasible (because some job or setup starts before time
Z€er10).

This heuristic constructs schedules that satisfy Smith's property for CFTS (Lemma 3.1).

While that lemma applies only to jobs in one class, our algorithm extends the idea of longest

88

eligible job by considering all of the job classes. We schedule the longest job with the minimum
wasted time. Wasted time is time spent in a setup and idle time.

This (single-pass) Minimum Waste algorithm schedules an eligible job from the same class
as the previously scheduled job if one exists. Else, it selects a job from the class with the smallest
setup or selects the job with the latest deadline. It does this by measuring each job's gap: the
wasted time incurred by selecting that job. Note that if no class setups exist, this algorithm is the
same as Smith's rule for CFT (Algorithm 3.1).

Algorithm 3.2 (Single-pass) Minimum Waste.

Step 0: Given a completion time ¢, select for the last job the longest job eligible at this time J s
ie.t<D . Schedule this job to end at ¢, and reduce ¢ by p .

Step 1 (a modification to Smith's rule): Suppose that at time ¢, a job from class G; starts. Then,
for each unscheduled job J s define q /j as the gap between the last possible completion time of J fi
and ¢. If Jj isin class G, g j = max {t-D j 5k;} (see Remarks below for an explanation of this
definition). Let ¢ = min {qj over unscheduled J j}. Select the longest job J fi with 9j=9 and
schedule this job to end at ¢ - g. Any necessary setup s;; can begin at ¢ - g. Reduce tby g and p i
Step 2: If there remain unscheduled jobs, return to Step 1.

Step 3: There are no more unscheduled jobs. If the first job in the schedule is in class G;, a setup
of length 5(; must end at z. Reduce ¢ by this amount.

Step 4: If t < O, the schedule created is infeasible. Else, compute the actual makespan of the jobs
and setups scheduled.

Remarks. In order to motivate the definition of ¢ js the gap, let us note that the setup after J fi is
Sk;» SO the job may not complete after ¢ - 5;;. However, if the deadline D) <t- Sk, the gap will be
gj=t- D i which is greater than s;. This gap thus includes the setup and a period of inserted idle
time of length ¢ - Dj - 5;- Note that if JJ is also in class G, qj= Oif and only if ¢ < Dj. The

algorithm is a type of greedy heuristic, in that it attempts to minimize the setup time or idle time

in selecting jobs to be scheduled.

89

Multiple-Pass Minimum Waste Heuristic. To find a good solution for CFTS, we can use the
following procedure that makes use of the single-pass Minimum Waste algorithm.

Step A: Let ¢’ = max {Dj :j=1,...,n}.

StepB: Lett=1¢"

Step C: Perform one pass of the Minimum Waste algorithm (Algorithm 3.2) with completion
time ¢. This creates a trial schedule.

Step D: Let ¢’ be the sum of processing times and setup times of this schedule. If ' < ¢ and the
trial schedule is feasible, go to Step B. (The smaller makespan may yield another schedule.)
Step E: If the trial schedule was infeasible or ¢’ = ¢, take the last feasible schedule created and
remove the inserted idle time, starting all jobs as soon as possible. This schedule is the result of
the heuristic. If an infeasible schedule was created on the first pass, then take the sequence of
jobs from the schedule and process the jobs in this order, starting at time zero. This will yield a
schedule with some violated deadline constraints.

Because the problem of finding a feasible schedule is NP-complete, a single pass of the
Minimum Waste algorithm is not guaranteed to find one. Still, as we shall see, it is usually able
to find a feasible schedule if one exists. If a feasible schedule exists, it must finish by the
maximum deadline, which is the first trial makespan. Initially, the heuristic is concerned with
reducing the makespan. Eventually, as the makespan reaches a lower limit, the algorithm
concentrates on the flowtime objective through its use of Smith's property to select a job.
Example 3.2. Let us apply the Multiple-Pass Minimum Waste heuristic to Example 3.1. In the
first iteration, ¢ = 18, the maximum deadline. The first pass of the Minimum Waste algorithm
performs the following calculations (see Table 3.2 for complete algorithm): at time 18, no jobs
have been scheduled, and the only eligible job is‘ J5. After choosing J, ¢ is reduced by ps =2 to
16. ForJy, J3, and J4, the waste is the gap until the deadline. Thus, g; =16 - D; =13, and
similarly for the other two jobs. For J,, however, D5 = 16, and the deadline gap is zero, but
because J is in a different class than J 5, g5 =575 = 1. Thus, J5 has the smallest waste and is

scheduled to end at time 15. After five steps, all of the jobs are scheduled (see Figure 3.1). There

90

are two units of inserted idle time, however, so the actual makespan of the schedule can be

reduced to 16.

Table 3.2. Calculations of the first pass of the Minimum Waste algorithm. Initial makespan =
18.

Waste: Schedule:
Time: I) J3 I J5 Jj Cj
18 15 2 4 8 0 Js 18
16 13 1 2 6 I 15
13 10 0 3 I3 13
11 8 2 Ia 9
6 3 I 3

Scheduled flowtime: 58.
Reduced makespan: 16.

so1 | 1 $12 I4 521 I3) s12| s
0 2 3 5 6 9 11 13 15 16 18

Figure 3.1. Schedule created on first pass of heuristic.

When the heuristic repeats the algorithm with the new makespan of 16 (see Table 3.3 for
calculations), jobs J and J 5 are eligible at time 16. These jobs also have the same processing
time, but suppose J; is chosen. Then, at time 14, J3 is eligible and has no gap, as it is in the same
class as J5. However, J5 has a gap g5 = s, =2. The algorithm continues in this manner,
creating the schedule shown in Figure 3.2.

The Multiple-Pass Minimum Waste Heuristic again repeats the algorithm, which now
begins at the reduced makespan of 15, and a similar schedule can be found if J5 is chosen at time
15. This schedule has no idle time (see Figure 3.3), the reduced makespan is also 15, and so the

heuristic stops.

91

Table 3.3. The second pass of the Minimum Waste algorithm. Initial makespan = 16.

Waste: Schedule:

Time: Jl J2 J3 J4 J5 Jj Cj
16 13 0 2 6 0 Iy 16
14 11 0 4 2 I3 14
12 9 2 2 I3 10
7 6 0 I5 7
5 2 J 1 3
Scheduled flowtime: 50.

Reduced makespan: 15.

sor |11 s12| s I4 $21 I3 p)
0 2 3 4 5 7 10 12 14 16

Figure 3.2. Second schedule.

so1 |71 |s12| Js J4 $21 I3)
0 2 3 4 6 9 11 13 15

Figure 3.3. Third and final schedule.

3.2.5 The Genetic Algorithm

In this section we present an alternative search space, the problem space, provide a brief
introduction to genetic algorithms and some references to selected works, and discuss the details
of the problem space genetic algorithm we used to find good solutions for CFTS.

Problem space. The original work on problem and heuristic spaces is by Storer, Wu, and
Vaccari (1990, 1992), who define some alternative search spaces for the job shop scheduling
problem: the problem space and the heuristic space. They note that a solution to a problem is the
result of applying a heuristic to the problem. Given a problem p, a heuristic 4 is a function that
creates a sequence corresponding to a solution s,\i.e. h(p) = s. Thus, if one adjusts the heuristic,

one creates a different solution. The set of adjusted heuristics is the heuristic space. Likewise, if

92

one adjusts the problem data that are used by the heuristic, one generates a different solution.
This set of adjusted problem data is the problem space. The idea is applied to the job shop
scheduling problem, and different heuristic searches over the spaces are performed, including hill
climbing, genetic algorithms, simulated annealing, and tabu search.

Our research extends this idea by defining a problem space for the one-machine class
scheduling problem. If we adjust the deadlines that are inputs (along with the other problem data)
to a pass of the Minimum Waste algorithm, we will create a possibly different schedule. We will
use as a problem space for CFTS these adjusted deadlines, and we will use one pass of the
Minimum Waste algorithm to create a sequence of jobs using the adjusted deadlines. The
feasibility (against the actual deadlines) and total flowtime of the sequence can be evaluated by
scheduling the jobs to start at time zero with no inserted idle time. The idea is to force jobs to be
done earlier or later by decreasing or increasing the deadlines. We will prove that every solution
for CFTS (including the optimal one) is in the range of 4.

Theorem 3.1. For each solution to an instance of CFTS, there exists a vector of adjusted
deadlines that can be mapped to that solution using one pass of the Minimum Waste algorithm.

Proof. Suppose that ¢ is a solution (a feasible schedule with no preemption or inserted idle
time) for an instance of CFTS. For each job, consider adjusting the deadline so that it equals the
job completion time. Then, if we use one pass of the Minimum Waste algorithm with the
adjusted deadlines, the job selected for the last position will be the job with the maximum
adjusted deadline. This job is the one with the maximum completion time C; and thus was the
last job in ©. It will be scheduled to complete at its adjusted deadline, which is C;.

Now we are at the start time 7 of a job J; and the job with the smallest gap is the
unscheduled job Jj that immediately precedes J; in o, since the adjusted deadline is C ' and C i <t
Any setup necessary between J f and J; is already included in the difference between C; and ¢.

J

Thus the gap cannot be larger for this job, and the gap for any other job Jy is larger since C} < C 2

This job will be scheduled to complete at its adjusted deadline, which is C 2 If we continue in this

93

manner, all of the jobs will be sequenced in the same order as they were in G, and we create the
same schedule. QED.

The more we adjust the deadlines, the more change we create in the schedule. For instance,
consider the following examples of applying one pass of the Minimum Waste algorithm to
vectors of adjusted deadlines where we have changed only the second and fifth deadlines: (Note
that the fourth schedule created is infeasible since J, completes at time 18, which is greater than

the actual deadline: D5 = 16. The adjusted deadline of 19 was used only to sequence the jobs.)

Heuristic(problem) = solution:

Minimum Waste (3, 6, 14, 10,20)=[124 3 5], flowtime 46.

Minimum Waste (3, 16, 14, 10, 18) =[14 32 5], flowtime 50 (original deadlines).
Minimum Waste (3, 17, 14, 10, 16) =[1 54 3 2], flowtime 46.

Minimum Waste (3, 19, 14,10, 17) =[14 3 5 2], infeasible (Cy = 18).

In Figure 3.4 we show a graph that illustrates how adjusting just two of the five deadlines
of Example 3.1 can create a number of different schedules. The first, third, and fourth deadlines
were not adjusted. Each point in the plane (only non-negative deadlines were considered)
corresponds to a pair of values for the second and fifth adjusted deadlines. The points in each
region of the plane are mapped by a pass of the Minimum Waste algorithm to the job sequence
denoted by the five-digit sequence shown in that region. The dot marks the point that
corresponds to the unadjusted deadlines (D, = 16, D5 = 18). The best sequences achievable by
adjusting these deadlines are 12435 and 15432 (total flowtime = 46), and the only other feasible
sequences are 14235 and 14325 (total flowtime = 50). The optimal solution (which cannot be
found by adjusting only the second and fifth deadlines) is 13452, with total flowtime = 43.

Since the actual problem space consists of all of the problem data and there are numerous
heuristics that can be used, we can investigate other spaces and heuristics that might be useful.
Our first search was to adjust the job processing times and to use the Shortest Processing Time
(SPT) rule. However, it is difficult to find feasible solutions since SPT ignores the deadline

constraints entirely. We also tried the using the Earliest Due Date (EDD) rule while adjusting the

94

deadlines, but EDD does not give enough attention to the flowtime objective. Sequencing by
either SPT or EDD is a fairly naive heuristic, since neither makes use of the other available
information. The Minimum Waste algorithm, however, considers due dates, processing times,
and setups, and using it improves our searches. In addition, while it would be possible to use the
Minimum Waste algorithm while adjusting the processing or setup times, the effect of these
variables on the sequencing of jobs is more indirect than that of the deadlines.

The use of a heuristic space seems to be hard for this problem. Feasibility is a large
concemn, and there are very few heuristics we can use to find feasible schedules. Also, the

Minimum Waste algorithm has no parameters to adjust.

Job 6 Deadline

21435 12435 14235 14325

18 . 14352

L LS

21543 12543 15423 15432
6
3
V.
52143 51243 51423 51432
3 6 10 14 18

Job 2 Deadline

Figure 3.4. Graph of adjusted deadlines and schedules created.

95

A genetic algorithm for CFTS. In this section we discuss the details of the genetic
algorithm we developed to find better solutions for CFTS. As mentioned before, genetic
algorithms are heuristic searches that use a population of points in the effort to find the optimal
solution. The stronger members of the population survive, mate and produce offspring that may
undergo a mutation. These offspring form a new generation. Genetic algorithms have been used
on sequencing problems before, although they cannot use natural crossover techniques in
searching the solution space. The advantage of the problem space is that the genetic algorithm
can use standard techniques to create offspring.

Our genetic algorithm searches the space of adjusted deadlines. We use a binary coding for
the adjusted deadlines and a single pass of the Minimum Waste algorithm as the heuristic. For
this genetic algorithm, we use many of the ideas presented in Davis (1991), to which we refer
readers who wish to learn more about the issues discussed here.

In the problem space, each point is a vector of integers that are deadlines used as input for
one pass of the Minimum Waste algorithm. We will use a binary representation of the points in
problem space. In the population of the genetic algorithm, each individual is a string of bits.
Each successive six-bit substring represents a deadline for a specific job. The integer decoded
from this binary number ranges from zero to 63 and linearly maps to a real number in the range
from zero to the maximum deadline in the given problem data. This discretization reduces the
problem space but still allows the deadlines to vary significantly with respect to each other.

The adjusted deadlines are used as input to a single pass of the Minimum Waste algorithm,
which outputs a sequence of jobs. The algorithm uses the largest of the adjusted deadlines as the
initial makespan and schedules the jobs accordingly, using the actual job processing and class
setup times where necessary but using the adjusted deadlines; to determine when a job is eligible.
If necessary, the algorithm can start jobs before time zero.

Using the actual problem data and the sequence of jobs output from one application of the

Minimum Waste Algorithm, we can create a schedule of jobs that starts at time zero and has no

Table 3.4. Bit representation of the dummy.

97

L63 Dj/18_|

10 56 49 35 63

Bits

001010 111000 110001 100011 111111

Table 3.5. A point in the problem space.

Bits 001010 111000 110001 100111 011111
Integer 10 56 49 39 31
D; 285 16 14 11.14 885

Table 3.6. Application of the Minimum Waste algorithm.

Waste: Schedule:
Time: Jl J2 J3 J4 J5 Jj Cj
16 13.15 0 2 486 17.15 J2 16
14 11.15 0 2.86 5.15 J3 14
12 9.15 2 3.15 J4 10
7 4.15 0 Is 7
5 2.15 I 285
so1 |91 |[s12] Js Ja 21 I3 b}
0 2 3 4 6 9 11 13 15

Figure 3.5. Schedule corresponding to new bit string.

After some experimentation we decided to use a steady-state genetic algorithm that created
offspring by repeatedly (and randomly) selecting from a set of four genetic operators: one-point
crossover, uniform crossover, and two types of mutation. Small mutation used a low probability
(two percent per bit) of flipping a bit in the string; large mutation used a higher probability (fifty
percent). The search used tournament selection for selecting the parents necessary for the
crossover or mutation, and duplicate bit strings were not allowed in the population. Tuning was
performed in order to determine some good settings for various algorithm parameters. (See Table

3.7. The problem sets used for tuning are described in Section 3.2.6.)

98

Table 3.7. Flowtime performance while tuning 2000-individual genetic algorithm on 30-job
problems (Newprob4).

Population Operator Increase Frequency Mutation Average
Size Probabilities inr of Increase Rate Ratio
(in percent) ‘

Tuning Increase in r and Frequency of Increase, Population Size = 10

10 25,25,25,25 +2 10 2% 0.8575
10 25,25,25,25 +10 10 2% 0.8666
10 25,25,25,25 +50 10 2% 0.8562
10 25,25,25,25 +2 50 2% 0.8646
10 25,25,25,25 +10 50 2% 0.8700
10 25,25,25,25 +50 50 2% 0.8624
10 25,25,25,25 +2 100 2% 0.8676
10 25,25,25,25 +10 100 2% 0.8755
10 25,25,25,25 +50 100 2% 0.8625

Tuning Increase in r and Frequency of Increase, Population Size 50

50 25,25,25,25 +2 10 2% 0.8597
50 25, 25,25,25 +10 10 2% 0.8660
50 25,25,25,25 +50 10 2% 0.8623
50 25, 25,25,25 +2 50 2% 0.8669
50 25,25,25,25 +10 50 2% 0.8687
50 25,25,25,25 +50 50 2% 0.8654
50 25, 25,25,25 +2 100 2% 0.8619
50 25,25,25,25 +10 100 2% 0.8626
50 25,25,25,25 +50 100 2% 0.8669

Tuning Increase in r and Frequency of Increase, Population Size 100

100 25,25,25,25 +2 10 2% 0.8800
100 25,25,25,25 +50 10 2% 0.8794
100 25,25,25,25 +2 50 2% 0.8738
100 25,25,25,25 +50 50 2% 0.8792
100 25,25,25,25 +2 100 2% 0.8751
100 25,25,25,25 +50 100 2% 0.8716
Tuning Mutation Rate
10 25,25,25,25 +50 10 2% 0.8562
10 25, 25,25,25 +50 10 10% 0.8990
10 25,25,25,25 +50 10 50% 0.9962
10 25, 25,25,25 +50 50 2% 0.8624
10 25,25,25,25 +50 50 10% 0.8953
10 25,25,25,25 +50 50 50% 0.9629
50 25, 25,25,25 +50 10 2% 0.8623
50 25,25,25,25 +50 10 10% 0.8994

50 25,25,25,25 +50 10 50% 0.9236

99

Table 3.7. (Continued)
Population Operator Increase Frequency Mutation Average
Size Fitnesses inr of Increase Rate Ratio
(in percent)

Tuning Operator Fitness

10 75,0,0, 25 +50 10 2% 0.8664
10 50, 15, 10, 25 +50 10 2% 0.8764
10 25,25,25,25 +50 10 2% 0.8562
10 15, 50, 10, 25 +50 10 2% 0.8758
10 0,75,0,25 +50 10 2% 0.8592
10 75,0,0, 25 +50 50 2% 0.8730
10 50, 15, 10, 25 +50 50 2% 0.8628
10 25,25,25,25 +50 50 2% 0.8624
10 15, 50, 10, 25 +50 50 2% 0.8649
10 0,75,0,25 +50 50 2% 0.8688
50 75,0,0, 25 +50 10 2% 0.8574
50 50, 15, 10,25 +50 10 2% 0.8732
50 25,25,25,25 +50 10 2% 0.8623
50 15, 50, 10, 25 +50 10 2% 0.8689
50 0,75,0,25 +50 10 2% 0.8720

Tuning 3000-individual genetic algorithm on 50-job problems (Prob50z).

10 25,25,25,25 +50 50 2% 0.8880
50 25,25,25,25 +50 50 2% 0.8931
50 25,25,0,50 +50 50 2% 0.8739

Notes: Performance is average ratio to solution found by the Multiple-Pass Minimum Waste
Heuristic. Operators are one-point crossover, uniform crossover, large mutation, and small
mutation. Mutation rate is probability per bit.

These parameters included the population size, the mutation rate, the operator selection
probabilities, and the rate of change of the penalty coefficient . The rate of increase in the
penalty coefficient affected the solution quality slightly. The mutation rate, population size, and
relative probabilities of operator selection affected solution quality more significantly, with a
smaller mutation rate (two percent, as mentioned earlier), smaller population sizes, and a higher
probability for selecting the small mutation yielding better solutions. These factors imply that the

search can easily find good neighborhoods (especially since a point corresponding to the original

problem data is included in the initial population) but needs to spend time hunting for a better

100

solution. Thus, a search that incorporates some kind of local search at the end of the genetic
algorithm may be useful.
3.2.6 Empirical Testing

In this section we describe a set of experiments performed in order to test the genetic
algorithm and the heuristics. We discuss the gengaration of sample problems and the
computational results.

Problem generation. In order to test the heuristics and the genetic algorithm described
above, it is necessary to create a set of test problems. We describe in this section how we can
create problems that have at least one feasible solution and problems where finding a feasible
solution is more difficult.

The problems in the first problem set have 30 jobs in four classes, with random processing
times in the range [1, 20] and sequence-dependent setup times in the range [0, 5]. For this set, we
want to determine random deadlines in order to insure that some feasible schedule did exist.

We use the following procedure: after computing the random class setup times, each job is
given a random processing time, and an initial cdmpletion time is computed by scheduling it after
all previously constructed jobs. This first-generated, first-served schedule yields a makespan that
becomes an upper bound for the deadlines, and each job is given a deadline determined by
sampling a random variable uniformly distributed between the job completion time (in this
schedule) and the makespan, i.e. the interval [C s Cinax 1. Thus, the initial sequence is a feasible
solution.

In order to determine the performance of the genetic algorithm on minimizing the flowtime
when feasible solutions are harder to locate, a number of additional problem sets are created. In
addition to the problem set described earlier, which includes problems that were known to have a
feasible solution, we generate 30-job and 50-job problems with tighter deadlines. The 30-job
problems have four job classes and the 50-job problems ten job classes. Tighter deadlines are
achieved by extending the range of values that a random deadline could take. Let us define a

value £ that can range from zero to one. The deadline for J fi is taken from the interval

101

[kC i Cinax)s where the C yi and C,,;, are from the original generated schedule. If k= 1, this plan
is the same as the original one, and the generated problem is guaranteed to have a feasible
schedule. If £ =0, all of the deadlines vary equally, and there may exist no feasible schedule. As
k decreases from one to zero, the problems we generate have a higher probability of having fewer
feasible schedules. We generated problems with k=0, 0.2, and 1. Since the Multiple-Pass
Minimum Waste Heuristic cannot find feasible solutions for some of these problems, we will see
if the genetic algorithm can find solutions that are feasible.

Results. In this section we discuss the results of our experiments with the solution
procedures on the generated problem sets. We summarize the findings and present tables of the
collected data. Since the optimal solutions are not known (a branch-and-bound algorithm to find
optima requires excessive computational time) and no good lower bound can be determined, we
measure the performance of the solution procedures relative to each other.

Each procedure was run once on each of the problems in the problem sets. The procedures
include the Multiple-Pass Minimum Waste Heuristic and the problem space genetic algorithm.

For comparison purposes, we also implemented a version of the heuristic that Ahn and
Hyun (1990) use to reduce the total flowtime in class scheduling problems. They proposed an
iterative heuristic that starts with an initial feasible sequence where the jobs in each class are in
SPT order (since they are not concerned with deadlines) and applies both a forward and backward
procedure to it, repeating the steps until no strict improvement is found. Each of the forward and
backward procedures interchanges different subschedules where the second subschedule consists
of jobs from one class and the first subschedule has no jobs from this class. If the interchange
reduces the total flowtime, the subschedules are switched; this maintains the class SPT property.

Our version of this algorithm, called the Modified Ahn & Hyun heuristic, uses one pass of
the Minimum Waste algorithm to form the initial schedule. In addition, a potential swap of two
subschedules is performed only if the swap reduces the total flowtime and maintains deadline

feasibility.

102

The results (see Table 3.8) show that the genetic algorithm can find solutions that are much
better than those found by the Multiple-Pass Minimum Waste Heuristic and are slightly better
than those that Modified Ahn & Hyun heuristic produces. The genetic algorithm needs more
time to find good solutions on the larger problems, although additional tuning may help improve
the performance of the search.

The searches for the 30-job problems were for 2000 iterations using the following
parameter settings: population size of 10, all operator fitnesses equal, increase of 50 in r every 10
individuals. The searches for the 50-job problems were for 3000 iterations using the same
population size, no large mutations, and an increase of 50 in r every 50 individuals.

Table 3.8. Total flowtime performance of heuristics on problems where a feasible was
found.

Problem Problems Jobs k Performance? of Heuristics

Set Genetic Algorithm Modified Ahn & Hyun
Newprob4 10 30 1 0.8562 09130
Prob2a 4 30 0.2 0.9099 0.9346
Prob50z 10 50 1 0.8739 0.8755
Prob2c 8 50 0.2 0.8796 0.8914

Note: a: Performance is average ratio to solution found by the Multiple-Pass
Minimum Waste Heuristic.

We observed that if the Multiple-Pass Minimum Waste Heuristic is unable to generate a
feasible solution, the Modified Ahn & Hyun heuristic and the problem space genetic algorithm
cannot locate a feasible solution. Thus our results are reported only for those problems where
feasible schedules were created.

The genetic algorithm is able to outperform the Multiple-Pass Minimum Waste heuristic on
total flowtime at the cost of increased computational time, as a full 2000-individual run lasts 256
seconds on average. (All computations performed on a 386 personal computer.) This is due to
the effort of decoding the long bit strings into deadlines and the complexity of using one pass of

the Minimum Waste algorithm to evaluate the individual. This computational effort is substantial

103

compared to that of running the Multiple-Pass Minimum Waste and Modified Ahn & Hyun
heuristics. The heuristics need less than one second to find a good solution toa problem. A
faster computer, however, would be able to reduce the computation time necessary for the genetic
algorithm. Still, these results show that genetic algorithms that search the problem space can find
very good solutions to scheduling problems.

The improvement in total flowtime of the solutions that the genetic algorithm can find is a
result of two things: the multiple sampling of the search space and the evolutionary process. This
leads to the following question: Are the genetic characteristics of the search a significant factor?
We answer this question by changing the genetic algorithm so that each individual is a
completely new one. Instead of choosing parents and creating offspring, we create new
individuals by again mutating the dummy individual. This is a random sampling approach. (See
Table 3.9.) These results imply that even though the same number of individuals are evaluated,
the random sampling performs well but does not generate the same quality of solutions that the
genetic algorithm does. Thus, we feel that the evolutionary process does contribute significantly
to the improvement in total flowtime.

Table 3.9. Total flowtime performance of random sampling on problems where a feasible
was found.

Problem Problems Jobs k Performance? of Random Sampling
Set

Newprob4 10 30 1 0.9435
Prob2a 4 30 0.2 0.9545
Prob50z 10 50 1 0.9728
Prob2c 8 50 0.2 1.0165

Note: a: Performance is average ratio to solution found by the Multiple-Pass
Minimum Waste Heuristic.

In conclusion, the genetic algorithm can find solutions with low total flowtimes. This good
performance is due to the multiple sampling of the problem space (since more than one

neighborhood can be searched at once); the use of the Minimum Waste algorithm to create

104

solutions from adjusted deadlines; and the ability of the genetic algorithm to combine the best

characteristics of the points in the initial population.

3.2.7 Conclusions

This portion of the work has two contributions: it introduces an extended heuristic for the
dual criteria class scheduling problem that we call CFTS, and it describes a problem space
genetic algorithm used to find good solutions. The problem is to minimize the total flowtime
subject to deadline constraints. In this section we present a multiple-pass heuristic for finding
good solutions and discuss problem space and the genetic algorithm. Finally, we describe our
experimental results, in which we compared the genetic algorithm to some heuristic approaches.
From these results we make the following conclusions:

The Multiple-Pass Minimum Waste heuristic performs well at minimizing the total
flowtime of CFTS. Though not an exact procedure, it is usually able to find feasible, high-quality
‘solutions.

A genetic algorithm that searches a problem space of the Minimum Waste algorithm for
CFTS can find solutions with lower total flowtime. This genetic algorithm includes a penalty
function for infeasible points that increases the cost of tardiness as the search progresses. In

addition, it produces slightly better solutions than another procedure modified for this problem.

3.3 Class Scheduling with Release and Due Dates

In this section, we study the one-machine class scheduling problem of minimizing the
number of tardy jobs. Moreover, some of the jobs have non-zero release dates. We describe an
extended heuristic developed for this problem and a genetic algorithm used to find good
solutions. We also discuss an extension of this problem to the question of minimizing tardiness

with minimum number of tardy jobs.

105

3.3.1 Introduction

The class scheduling problem studied in this section is to schedule a set of jobs, where
some jobs have non-zero release dates, in order to minimize the number of tardy jobs. This
problem is motivated by the semiconductor test area. Since post-assembly testing is the last stage
in semiconductor manufacturing, meeting a job's due date is a very important objective for the
manager of a test facility. The consideration of release dates is an attempt to model the look-
behind situation that exists in the job shop, where the scheduling of a machine (the bottleneck, for
instance) may be improved by including information about the jobs that are arriving soon.

This problem, like most class scheduling problems, is a difficult case. Since even finding a
schedule with no tardy jobs is an NP-complete problem, exact algorithms to solve our problem in
polynomial time do not exist. Thus, we are motivated to try different heuristics énd searches.

Our approach waS to modify an existing algorithm to include class setups and see how such
an algorithm performs on this problem. Since the heuristic was not guaranteed to find good
solutions, we also investigated a genetic algorithm. Thus, this research presents contributions in
the extension of class scheduling problems to include a problem that has not been previously
investigated and the use of both genetic algorithms and problem spaces to include the search for

good solutions to class scheduling problems.

3.3.2 Literature Review

In this section we will mention some of the most relevant research on class scheduling and
on the problem of minimizing the number of tardy jobs in the presence of release dates. A full
discussion can be found in Chapter 2.

Bruno and Downey (1978) prove that, for general class scheduling problems, the problem
of finding a schedule with no tardy jobs is NP—éomplete. Monma and Potts (1989) prove that

class scheduling to minimize the number of tardy jobs is an NP-complete problem.

106

As discussed in Chapter 2, the one-machine problem of minimizing the number of tardy
jobs when some have non-zero release dates (1/r j/ XU j) is a strongly NP-complete problem
(Lawler, 1982). A restricted version of the problem has been considered by Kise, Ibaraki, and
Mine (1978), who solve the problem optimally if the release and due dates match (rj < ry implies
dj < dy). They present an O(#n2) algorithm (Kise's algorithm, described in Section 3.3.4) for this

case.

3.3.3 Notation and Problem Formulation

We will use the basic notation introduced in Section 3.2.3. For CSRDD, each job J fi hasa
release date rjand a due date d ;. Fora given schedule, U;= 1ifC > d i and O otherwise. The
problem is to find a sequence that minimizes Y, U fi subject to the constraint that C i 2 rj+Dpj.

An NP-complete problem, CSRDD is unstudied in the literature on class scheduling. In
order to simplify the problem, it is assumed that the release and due dates match; that is, there
exists an ordering where the jobs are simultaneously in Earliest Release Date (ERD) order and in
Earliest Due Date (EDD) order. Our primary heuristic for CSRDD extends Kise's algorithm for

the problem without setups to form a heuristic for finding good solutions.

3.3.4 Heuristics

In this section we will describe a number of heuristics: Kise's algorithm for the problem
without class setups, our extension of this algorithm, and other heuristics used for testing
purposes.

Kise's algorithm. Kise's algorithm orders the jobs by their release and due dates (a non-
ambiguous ordering since the dates must match). The algorithm is an extension of the Moore-
Hodgson algorithm (Moore, 1968) for minimizing the number of late jobs. Each job is scheduled
after the partial schedule of on-time jobs while maintaining release date availability. If the new
job is tardy, the algorithm searches the on-time jobs for the job whose removal leaves the shortest

schedule of on-time jobs. The removed job is made tardy and will be processed with the other

107

tardy jobs after the feasible jobs. In this manner, the algorithm finds the largest subset of the jobs
that can be delivered on-time. These jobs are scheduled in order of their release and due dates.
The search subalgorithm has effort that is linear in the number of jobs in the partial schedule.
Since the subalgorithm may be performed up to » times, the total effort of Kise's algorithm is
O(n?).

Kise's heuristic is not optimal for CSRDD, although it can be modified to include setup |

times. Take the following example:

Example 3.3.
j rj pj dj i
1 0 5 6 1
2 0 4 13 2
3 5 5 14 2
4 6 2 15 1

So1 =82 = 1. S12= 1. S21=4.

The optimal sequence is [J; J4J, J3], with C; =6, C, =8, C, = 13, and C4 = 18, which has
one tardy job. Kise's algorithm adds J3, which is tardy after J; and J,, and the subalgorithm
makes J; a tardy job. When J, is added to the schedule after J, and J3, it also is tardy, for a total
of two tardy jobs.

Kise extension. Our algorithm for CSRDD extends Kise's algorithm by considering two
options when adding a new job to a partial schedule: we can place the job in a position after all of
the on-time jobs or in a position after the last on-time job from the same class (if there is one). In
either case, if an on-time job becomes tardy, we make tardy the job whose removal creates the
shortest partial schedule of on-time jobs. We then choose between the two partial schedules
created, selecting the new partial schedule with the smaller number of late jobs (or smaller
makespan if they tie) as the incumbent before trying to schedule the next job.

Intuitively, it appears that the extended algorithm should outperform the Kise algorithm,
since it includes an additional scheduling choice. Due to the complexity of the problem,

however, this is not guaranteed. The following problem is one counter-example:

108

Example 3.4.
1 0 3 5 2
2 0 3 13 1
3 6 3 14 2
4 14 3 17 2

S01 =971 = 1. Sp =812 = 2.

The optimal sequence is [J; J,J3J4], with C; =5, C, =9, C3 = 14, and C4 = 17, with none
tardy. Kise's algorithm will construct this schedule. In the proposed algorithm, the addition of J;
to [J; J,] creates a partial schedule with no tardy jobs and a makespan of 14. The scheduling of
J; after J; and before J, creates a makespan of 13 (C1 =5, C3=9, Cy= 13), so the sequence [JJ3
J, 1 replaces [JJ,J3]. When we add J, after J,, J,is tardy (C, = 18), and the on-time jobs
complete at time 13; when J, is scheduled before J,, J, is tardy (C4 = 17, C,=21). The algorithm
thus yields [J; J3 J,J4], which is not an optimal schedule.

Tardiness rules. We also tested two heuristics based upon the R & M procedure of
Rachamadugu and Morton (1982) and used for reducing weighted tardiness in Morton and
Ramnath (1992). These are primarily class scheduling extensions.

RM: A dispatching rule v;'here the priority of a job at time t is based upon the weight, the
processing time, and the slack of the job:

RM=w;/pj* exp(- Sj+/k *Pavg)
where RM is the job priority, w /j the job weight, p j the processing time, S j+ the slack max {0, d ;-
t-p j} , k a predefined constant, and p ;,, g the average processing time of the jobs in the queue. In
this formulation, jobs with higher weights, shorter processing times, and less slack will be
scheduled first. According to Ramnath and Morton, the constant & is normally set to 2.

X-RM: The x-dispatch (look-behind) version of the RM rule includes jobs that will be
arriving soon in an extended queue. That is, they arrive before the completion time of the
shortest job already waiting. The RM priority is discounted by an amount that depends upon the

arrival time:

109

X-RM = RM * (1 - (13 + p)*(r; - 9* Ippin)s
where X-RM is the job priority, p the utilization factor, i the arrival time of the job, and p,,,;,, the
smaliest processing time among jobs currently available. Morton and Ramnath (1992) claim that
this procedure reduces weighted tardiness by 40% over the standard RM rule.

These two priorities are used as dynamic dispatching rules. At a time ¢, the job with the
highest priority is scheduled next. For our class scheduling problem, we redefine the components
to include the setup times, but otherwise we use the same formulas. This works well for the
objective of weighted tardiness, but for our objective (minimizing the number of tardy jobs), we
would like to postpone the processing of the tardy jobs in order to concentrate on the on-time
jobs. Thus, when we schedule a job that will be tardy, we look for the job whose removal will
result in a shorter schedule with no tardy job and we remove that.

For our class scheduling problem, we include in the processing time the class setup
necessary to process a job and modify the release date by the same amount. That is, if the job
completing at time ¢ is in G; and J fi is in Gy, we add s;; to p j and subtract s;; from rj (for the X-

RM calculation). Weuse p=1and k=2 and wj= 1 for all Jj.

3.3.5 Analysis of the Heuristic

In this section we discuss the computational effort necessary to perform the extended Kise
heuristic and the worst case error of this heuristic. A pseudo-code presentation of the heuristic
and its subalgorithm can be found in the Appendix.

It is obvious that the extended version of Kise's heuristic takes more effort than Kise's
algorithm. However, the effort of the algorithm is still O(#2). When adding the next job to a
partial schedule, there are two positions for the new job. The algorithm would take at most O(n)
effort to find the last job from the same class as the new job, to insert the new job, and to
determine which (if any) jobs are now tardy. If there is a tardy job, a pass of Kise's subalgorithm
must be performed to determine which job to remove. This is also O(n). For the other position,

there is O(n) effort in adding the new job to the end of the partial schedule and performing a pass

110

of the subalgorithm. Thus, the total effort of adding the new job is O(n), and since n jobs must be
scheduled, the total effort of the extended Kise heuristic is O(n2).

Since CSRDD is strongly NP-complete, there is no optimal polynomial or pseudo-
polynomial algorithm. Since our extended Kise heuristic is not guaranteed to find an optimal
solution, we need to look into the worst-case error bound. In the following we describe two
families of instances for CSRDD where the extended Kise heuristic cannot find good solutions.
While the first of these examples prove that the heuristic can perform arbitrarily badly, the
examples will also provide problem instances that we can use for testing the performance of the
genetic algorithm. They are especiélly good for this since we know the optimal solution in
advance.

Example 3.5. In this case, the extended Kise heuristic finds » - 1 out of n jobs tardy when the
optimal has only two tardy jobs. There are n jobs where J; is in G, and J3, . . . , J, are in G5, and

the jobs have the following characteristics:

J] Jl Jz, “ ey Jn
I'j 0 1
pj 1 1
dj 1 n

The class setups are as follows:

S0i 0 2
S 1i - n
SZi 0 -.

The optimal sequence (for n > 2) begins with the n - 1 jobs in G,. The last job ends at 1 +
(n - 1) =n, so they are all on-time. Since J 1 is scheduled after this, it is tardy. The Kise and Kise-
extension algorithms start by scheduling J; first. This job completes at time 1. When the first job
from G, is scheduled to form [J; J,], the job completes at 1 + n + 1 = n + 2 and is therefore

tardy. Removing J; yields a partial schedule that ends at time 2 and is thus longer than the partial

111

schedule consisting of just J;. Thus J, is made tardy. This continues for all of the jobs from G,,

and they are all forced to be tardy, for n - 1 tardy jobs.

Example 3.6. In this case the optimal solution has no tardy jobs and the extended Kise heuristic
finds n/3 tardy jobs. We construct the problem instance in the following way: choose a non-
negative integer k. Letn=3(k+ 1). Letm=3. Fori=0,...,k, construct three jobs, J3;, 1 in

Gy, 342 in Gy, and J3;, 3 in G3, with the following job characteristics, where 0 < €< 1 and

0<d<1:

Jj I3iv1 J3itv2 JI3i+3
Tj 3i 3i 3i

pj 1-¢ 1+€ 1

dj 3i+2 3i+2+6 3i+3.

Let the class setups be as follows, where s > :

Gl Gl G2 G3
soi 0 0 0
S1j - S 0
SZi 0 - S
83 1 0 -

The optimal sequence of jobs is [J,J1 J3J5sJ4J6 . . . J3p42 J35+1J3k+3]- This schedule

has no inserted idle time and no setup time (see Figure 3.6).

AP} Ji I3 Js Ja Js J3k42 | I3k+1 | T3Kk+3

0 1+¢ 2 3 4+¢ 5 6 3k+1+e 3k+2 3k+3

Figure 3.6. Optimal Schedule.

Taking the jobs in ERD order, we schedule J, first (C; = 1 - €). J; is scheduled next, but C,
=C+S12+py=2+5>dy =2+ 9. Thus, J, is tardy, and since p, > p;, J; remains while J, is
now tardy. J3 is added next, with C3 = C; + s13 + p3 =2 - €. J,4 is added next, starting at time 3 >
C3 + 531 = 3 - € and completing at time C4 =4 - €. (Starting J, after J; makes J, tardy.) By

repeating the above argument, it can be shown that J5 will be made tardy and J¢ will follow J.

112

This process continues for all of the jobs (see Figure 3.7). Thus, the heuristic creates a schedule
where the &k + 1 = n/3 jobs in G, are tardy, while the optimal schedule has no tardy jobs. Note
that we never insert a job into the middle of a partial schedule; thus, Kise's algorithm and the

extended Kise heuristic create the same schedule.

I I3 $31 T4 J3ke1 | T3k43 | 12 J3k+2
0 1-¢ 2-e 3-¢ 3 4-¢ 3k 3k+1-¢ 3k+2-¢ 3k+3 4k+3+ke

Figure 3.7. Heuristic Schedule.

The first of the two above cases will be useful in the proof of the following error bound
theorem. For the purposes of Theorem 3.2, we assume that the triangle equality holds for the

class setups: s p + Spe 2540 foralla=0,...,m,b=1,...,mc=1,...,m.

Theorem 3.2. For an instance of CSRDD, if there exists a schedule in which at least one job
completes on-time, the extended Kise heuristic will create a schedule with at least one on-time
job. Moreover, there exist problem instances where the heuristic will schedule exactly one on-

time job, although there exist schedules with more than one on-time job.

Proof. First, we note that the number of scheduled on-time jobs never decreases as the extended

Kise heuristic schedules new jobs. Now, consider a job J fi in class G; that completes on-time in

some feasible schedule. Thus, forJ s C s dj. Now, Cj 2rj+ pj and C jz 50i* Pj since by the

triangle inequality stated above, if there exist any jobs before J s the sum of the setups before J fi is

at least sp;. Thus, dj 2 i+ Pj and dj 2 50; +pj

Suppose that the schedule created by the extended Kise heuristic has no on-time jobs.
Then, when the extended Kise heuristic considered J;, no other on-time jobs were scheduled. The

heuristic started J j as soon as possible (the maximum of rj and s(,), but J j was tardy. Thus,

C j = max {rj, 5pi} +p > d;, but this contradicts the result above. Thus, the heuristic creates a

j’

schedule with at least one on-time job.

113

Thus, we have shown that the extended Kise heuristic will schedule at least one on-time
job. This bound is tight, as our discussion of Example 3.5 shows that there exist problems for
which the heuristic will schedule exactly one on-time job although the optimal schedule has more

than one on-time job.

3.3.6 The Genetic Algorithm

In this section we present the problem space and discuss the details of the genetic algorithm
we used to find good solutions for CSRDD.

Problem space. In Chapter 2 we described the ideas of alternative search spaces. In this
section we present the problem space that we searched in order to find good solutions for
CSRDD.

We defined a problem space for CSRDD in the following manner: Given a problem p in
problem space, a heuristic 4 is a function that creates a sequence corresponding to a solution s for
CSRDD, i.e. h(p) =s. We defined a problem as a vector of job release dates, using a pass of
Kise's algorithm to create a sequence of jobs by considering the jobs in order of their new release
dates instead of the order imposed by the matching release and due dates. The actual release
dates are used in determining the schedule, however. Note that all solutions for CSRDD
(including the optimal ones) that schedule all tardy jobs last are in the range of 4. Following are
two examples of applying this heuristic to different vectors of deadlines for the problem in

Example 3.3:

Heuristic(problem) = solution:

Kise (0, 1, 5, 6) = [J, J3 J; J4], two jobs tardy.
Kise (0, 8,5,4) =[J; J4J3 J,], one job tardy.

A genetic algorithm for CSRDD. In this work we developed a genetic algorithm based on

the ideas presented in Davis, 1991, namely, steady-state reproduction without duplicates,

114

fitnesses measured by linear normalization, a uniform crossover operation, operation selection,
and interpolated parameters.

Steady-state reproduction adds new individuals a few at a time, whereas the traditional
method replaces the entire population with a new generation. Steady-state reproduction
(attributed to Whitley, 1988, and Syswerda, 1989) is used to ensure that good individuals (and
their good characteristics) survive. Steady-state reproduction without duplicates prevents
children that are identical (in chromosome values) to a current member from joining the
population.

Linear normalization is a fitness technique that creates fitness values by ordering the
individuals in a population by their objective function evaluation. The assignment of fitnesses
begins with a constant value and decreases the fitness linearly as it considers each individual in
order. This technique prevents a super individual from dominating the population at the
beginning of a run and yet differentiates between the various very good individuals that exist near
the end of a run. Of course the values of the original constant and the decrement parameter
influence the extent of these two phenomena.

Uniform crossover, an operator first described by Syswerda (1989), is a way to combine
characteristics in ways that standard one- or two-point crossovers cannot. In a uniform crossover,
two parents are selected and two children produced. Each bit position is considered
independently and the parent that contributes the bit value for that position in the first child is
determined randomly. The second child receives the value for that position from the other parent.
While uniform crossover can destroy a good characteristic by mixing it with a bad string, it can
also combine features that are widely dispersed across the string.

Since one-point crossover remains a good operator, however, we used both types of
crossover in our genetic algorithm. Before creating a child, we randomly decide on which
operator we wish to perform: uniform crossover, one-point crossover, or mutation. Each operator
has an operator fitness and the probability of that operator being selected is proportional to that

fitness. If one of the crossovers is selected, two parents are selected and two children are created.

115

If the mutation operator is selected, one parent is selected and a child created by forcing each bit
to undergo a mutation with some small probability. The child or children created are checked
against the current population for duplication, evaluated, and inserted into the population,
replacing the worst members of the population. The new population is then reordered and new
fitnesses created using the linear normalization technique.

As we did with the CFTS genetic algorithm, the initial population included one individual
(the dummy, or seed) that was created form the actual problem data. The remaining individuals
in the initial population were constructed by mutating the bits in the initial (dummy)
chromosome. This initial mutation rate was set at 0.05 per bit.

We interpolate the following parameters over the course of the run: the decrement for linear
normalization is increased, and the operator fitnesses are changed to favor crossovers and

discourage mutations.

Table 3.10. Parameter values for genetic algorithm.

Population size: 100

Linear normalization decrement: 0.2 to 1.2

Probability of selecting mutation operator: 35% to 25%
Probability of selecting uniform crossover operator: 40% to 30%
Probability of selecting one-point crossover operator: 25% to 45%
Mutation rate; 0.02 per bit

3.3.7 Empirical Tests and Results

In this section we describe the empirical tests conducted to test how well the heuristics and
genetic algorithm perform.

Problem generation. We created problem sets using the due date assignment method of
Hariri and Potts (1989). The release dates can also be created using a similar method. In this
method, setup times and processing times of the jobs are determined first from random variables.

Then, an estimate of the maximum completion time is made by simply summing the job

116

processing times. This makespan is used to define a specific ranges for the due dates and a range
for the release dates. The due dates and release dates are sorted and the matching pairs are given
to the jobs. By changing the parameters governing the definition of the ranges, problem sets with
different characteristics can be created.

Different sets of 10 problems were created. The number of jobs per problem ranged from
15 to 100. The processing times ranged from 1 to 20 and the class setup times from 0 t0 9. The
jobs were randomly placed into a number of job classes, depending on problem size. The release
dates and due dates were taken from a uniform distribution. The upper and lower bounds of this
distribution were proportional to the sum of the job processing times. The proportions changed

for each problem set. (See Table 3.11.)

Table 3.11. Data on problem sets.

Set Problems Jobs Classes Release date Due date
range range
KH301 10 30 4 0-04 04-0.6
KH302 10 30 4 0-04 . 0.6-1.0
KH151 10 15 4 0-04 04-0.6
KHS501 10 50 5 0-04 04-0.6
KH303 10 30 4 0-04 02-1.0
KH304 10 30 4 0-0.6 02-1.0
KHMIXED?2 10 30 4 0-04 04-0.6
KHMIXED3 10 30 4 0-1.0 04-1.2
KHMIXED4 10 30 8 0-1.0 04-1.2

Results. After numerical testing on these forty problems, it appears that the Kise and Kise
extension heuristics and the R & M heuristics are fairly equal. A number of other heuristics were
unable to find as many on-time jobs. Note that the lower bound was derived by using Kise's

algorithm while ignoring all setup times.

117

Table 3.12. Average performance of heuristics.

Set Jobs Lower Kise Extended RM X-RM
Bound Kise

KH301 30 8.3 12.0 10.7 11.6 11.6

KH302 30 1.1 49 2.7 42 43

KH151 15 4.8 6.8 6.4 6.6 6.7

KHS501 50 12.6 19.5 16.0 17.9 17.9

Note: Performance is the average number of tardy jobs found by that heuristic on the ten
problems in each problem set.

In addition to the problems where the release and due dates matched, we created a set of
30-job problems where no such correspondence existed. These ten problems had the same
characteristics as the problems in the set KH301. On these problems the R & M heuristic

performed slightly better than the extended Kise heuristic.

Table 3.13. Average performance of heuristics, non-matching release and due dates.

Set Jobs Kise Extended RM X-RM
Kise

KHMIXED?2 30 7.7 53 45 4.7

KHMIXED3 30 11.1 10.2 8.9 8.7

KHMIXED4 30 10.0 92 7.2 7.0

Notes: Performance is the average number of tardy jobs found by that heuristic on the ten
problems in each problem set.

Since the heuristics were finding good solutions, we decided to test the problem space
genetic algorithm on 18- and 30-job problems that could not be solved well by the heuristics.
These problems were instances of the problem described above in Example 3.6, where the
extended Kise heuristic creates a schedule where a third of the jobs are tardy, although an optimal
schedule has no tardy jobs. These results show that the problem space genetic algorithm is able
to find good solutions. (In some of the following graphs we present our results with the number
of on-time jobs, since the objective of the genetic algorithm was to maximize the number of on-

time jobs.)

118

Table 3.14. Average performance of heuristics, hard problems.

Set Jobs Kise Extended Genetic Algorithme
Kise 1000 3000

Hard A 18 6.0 6.0 0.6 -

Hard B 30 10.0 10.0 4.5 1.5

Notes: Performance is the average number of TARDY jobs found by that heuristic on the five
problems in each problem set.
a: Results reported at 1000 and 3000 individuals.

18

17

—
(@)
1

Number of On-time Jobs
® &

13-

12 1 T |
0 100 200 300 400 500 600 700 800 900 1000
Number Created

Figure 3.8. 18-job problems, Average number of ON-TIME jobs.

119

Table 3.15. 18-job problems, number of ON-TIME jobs, 10 runs of 1000:

Number of Problem Average
Individuals
Created 1 2 3 4 5

0 137 13.9 13.5 13.6 134 13.6
100 139 14.1 14.1 14.0 13.9 14.0
200 147 14.5 14.7 14.8 149 14.7
300 154 15.3 15.5 15.5 15.3 154
400 162 16.1 16.1 16.5 15.8 16.1
500 16.5 16.5 16.9 16.6 16.5 16.6
600 16.8 16.8 17.1 17.0 16.8 16.9
700 169 17.3 17.3 17.3 17.0 17.2
800 17.0 17.5 17.3 17.3 17.5 17.3
900 17.0 17.5 17.4 17.3 17.5 17.3

1000 17.1 17.5 17.5 17.3 17.5 174

Figure 3.9. 30-job problems, average number of ON-TIME jobs.

120

Table 3.16. 30-job problems, number of ON-TIME jobs; 3 runs of 3000

Number of Problem Average
Individuals
Created 1 2 3 4 5

0 203 20.3 20.7 213 20.7 20.67
100 213 21.0 210 21.7 213 21.27
200 217 21.7 210 220 21.7 21.60
300 220 220 21.7 220 22.0 21.93
400 227 223 22.3 22.7 22.3 2247
500 233 23.0 22.7 23.0 233 23.07
600 24.0 24.0 23.0 233 23.7 23.60
700 24.0 24.0 24.0 23.7 23.7 23.87
800 25.0 24.3 24.7 24.7 24.7 24.67
900 25.0 24.7 25.0 24.7 25.0 24.87

1000 25.7 25.0 26.3 253 253 25.53
1100 26.0 26.0 26.7 26.3 25.7 26.13
1200 26.3 26.0 27.0 26.7 26.0 26.40
1300 26.7 26.7 27.7 26.7 26.3 26.80
1400 270 26.7 28.0 26.7 26.7 27.00
1500 273 27.0 28.0 27.0 26.7 27.20
1600 27.3 27.3 28.0 27.3 27.0 27.40
1700 27.7 27.3 28.3 27.3 27.0 27.53
1800 28.0 277 28.3 27.3 273 27.73
1900 28.0 27.7 28.3 28.0 273 27.87
2000 28.0 27.7 28.3 28.3 27.7 28.00
2100 283 277 28.3 28.3 27.7 28.07
2200 283 27.7 28.3 28.3 28.0 28.13
2300 283 27.7 28.3 28.3 28.3 28.20
2400 28.3 28.3 28.3 28.3 28.3 28.33
2500 283 28.3 28.3 28.7 28.3 28.40
2600 28.3 28.3 28.3 28.7 28.3 28.40
2700 28.3 28.3 28.7 28.7 28.3 28.47
2800 28.3 28.3 28.7 28.7 28.3 2847
2900 28.3 28.3 28.7 28.7 28.3 2847
3000 283 28.7 28.7 28.7 28.3 28.53

3.3.8 Extension to Minimizing Tardiness

In addition to simply minimzing the number of tardy jobs, it is often an objective of

schedulers to minimize the total tardiness of the tardy jobs. To this end, we study the problem of

121

minimizing the total tardiness subject to a constraint on the number of tardy jobs, since the
minimization of total tardiness usually leads to schedules where many jobs are tardy and are tardy
by a small amount. Since finding the minimum number of tardy jobs is an NP-complete problem,
we use our heuristic to set the value of the constraint. Then, within that limitation, we minimize
the total tardiness.

We develop some further extensions of Kise's algorithm that create a set of tardy jobs and
then insert the tardy jobs into the schedule of on-time jobs in order to reduce the total tardiness.
We also use our genetic algorithm to search for schedules with low number of tardy jobs and low
total tardiness.

The problem of minimizing tardiness subject to a minimal number of tardy jobs has been
considered for the problem without class setups (or release dates) by Vairaktarakis and Lee
(1993), who develop an algorithm to optimally schedule a given set of tardy jobs and an efficient
branch-and-bound technique to find the optimal tardy set. Other researchers have studied dual
criteria problems with the same primary objective. Emmons (1975) considered the problem of
minimizing total flowtime subject to minimum number of tardy jobs, using a branch-and-bound
algorithm to find optimal solutions. Shanthikumar (1983) examined the problem of minimizing
the maximum lateness subject to minimum number of tardy jobs, also using a branch-and-bound
algorithm.

Our problem, which includes both class scheduling and non-zero release dates, is an NP-
complete problem. The tardiness heuristics that we use to find good solutions use the extended
Kise heuristic to determine a set of tardy jobs. The heuristics also use the sequence of on-time
jobs created by the extended Kise heuristic, pushing the jobs to the right, starting them as late as
possible, and attempting to insert the tardy jobs into the gaps in this schedule.

The first heuristic (T) orders the tardy jobs by their release dates and attempts to
interleave the two sequences of jobs, scheduling tardy jobs to start as soon as possible while
maintaining the feasibility of each on-time job (whose completion time is constrained by the due

date).

122

The second heuristic (T5) considers every tardy job as a candidate for a gap between the
partial schedule and the next on-time job, selecting the tardy job that yields the earliest start time
for the next on-time job. Any remaining tardy jobs are scheduled by their release dates.

The third heuristic (T3) was a modification of the second that scheduled the remaining
tardy jobs using a version of the Minimum Waste heuristic (see Section 3.2) that didn't consider
deadlines (since all jobs are tardy). This heuristic has been shown to perform well on flowtime
criteria. We use this because minimizing the total tardiness of the set of tardy jobs is identical to
minimizing the total flowtime of those jobs.

Due to the non-optimal nature of the extended Kise heuristic, it is possible that the
tardiness heuristics will often be able to schedule a tardy job so that it finishes on-time (reducing
its tardiness to zero). However, the primary objective of these heuristics is to reduce tardiness,
not reduce the number of tardy jobs.

Results. We tested the heuristics on three problem sets, selected because the variance of
the due dates meant that the schedules were more likely to have gaps in which to insert tardy jobs.
Each solution technique was measured by the average total tardiness found by that heuristic on
the ten problems in each problem set and the percent deviation of this average from the average
tardiness found by the extended Kise heuristic. The performance of the genetic algorithm on

each problem is the average of ten trials of one thousand new individuals.

Table 3.17. Data on new problem sets.

Set Problems Jobs Classes Release date Due date
range range
KH303 10 30 4 0-04 02-1.0

KH304 10 30 4 0-0.6 02-1.0

123

Table 3.18. Average performance of heuristics.

Set Extended T, % T, % T, %
Kise

KH302 236.4 237.3 -0.38 234.7 0.72 231.5 2.07

KH303 758.3 756.6 0.22 718.4 5.26 704.1 7.15

KH304 920.0 869.0 5.54 859.4 6.59 844.0 8.26

Note: Performance is the average total tardiness and the percent improvement.

Table 3.19. Average performance of heuristics.

Set Extended G.A. % G.A. %
Kise 3000

KH302 236.4 229.0 3.13

KH303 758.3 884.3 -16.62 695.3 8.30

KH304 920.0 771.9 16.10

Note: Performance is the average total tardiness and the percent deviation.

3.3.9 Conclusions

In this section we have introduced a class scheduling problem that we call CSRDD. The
problem is to minimize the number of tardy jobs where some jobs have non-zero release dates,
and we assume that the release and due dates match. We have described a heuristic developed to
find good solutions. We have discussed a problem space and a genetic algorithm to search this
space. We have described our experimental results, from which we make the following
conclusions:

Our extended Kise heuristic can find good solutions for instances of CSRDD. It can do this
by considering the class setups in both the subalgorithm that decides on which job to make tardy
when a new job is added and the option to insert the new job into the middle of the partial

schedule in order to reduce the number of setups.

124

When the extended Kise heuristic cannot find good solutions, our problem space genetic
algorithm can. By searching the problem space near the original problem, it can discover
solutions that are improvements on the schedule constructed by Kise's algorithm.

Also in this section we discussed an extension of this problem to the problem of

minimizing total tardiness in the presence of a constraint on the number of tardy jobs.

3.4 Flowtime with Setups and Release Dates

The third of the class scheduling problems that we consider has jobs with non-zero release
dates, and the objective is to minimize the total flowtime. We develop some lower bounds and
dominance properties and examine some heuristics for finding good solutions to the problem.

We discuss a problem space genetic algorithm that can improve the performance of a look-behind

dispatching rule. For this problem we also developed a search technique for comparison

purposes.
3.4.1 Introduction

This problem, like the others we have examined, is motivated by considering the
scheduling of a semiconductor test area. We have class setups, arriving jobs, and an objective
that mirrors the goal of management to minimize work-in-process inventory.

We will examine the problem of minimizing total flowtime when the jobs have non-zero
release dates. This strongly NP-complete problem is a look-behind scheduling model, where we
are interested in scheduling a machine by considering the jobs that will be arriving at the machine
soon.

In addition to a look-behind scheduling rule, we will consider the use of a problem space
genetic algorithm (similar to those developed for CFTS and CSRDD) that can improve the
performance of this rule by adjusting the parameters of the rule. Due to the structure of the

FTSRD problem, we will also use a decomposition heuristic as a means of comparing solution

125

quality. The decomposition heuristic is a search technique that considers a sequence of
subproblems at each move.

In the next section we will introduce the notation and problem formulation. After that we
will mention some of the previous research on the scheduling problem under consideration (a
review of the literature on class scheduling and genetic algorithms can be found in Chapter 2),
examine some lower bounds and dominance properties that can be used in a branch-and-bound
technique, discuss our heuristics (including sequencing rules and the genetic algorithm), and

report on the experimental results.

3.4.2 Notation and Problem Formulation

We use the same notation as that for the CFTS and CSRDD problems (Sections 3.2.3 and
3.3.3), except that the jobs do not have due dates. The FTSRD problem is to find a sequence that
minimizes Y, C yi subject to the constraint that C Y 2 rj+pj. We will see that FTSRD is NP-
complete and has not been previously considered in the literature on class scheduling.

We make two assumptions in the analysis of the problem. One, a class setup for a job can
begin before the job is available. Two, although all of the release dates are known, the processing
for a job cannot begin until the release date. These conditions are motivated by our consideration

of the one-machine problem as part of the job shop scheduling problem.

3.4.3 Background

The one-machine problem of minimizing total flowtime when the jobs have non-zero
release dates has been previously studied in the case where no sequence-dependent setups are
present. The problem is simple if the jobs are preemptive, that is, if a job that has begun
processing can be interrupted by another job and then resumed later. In this case, the optimal
policy at the next decision point is to schedule the job with the shortest remaining time. The set

of decision points includes all job release times and completion times. If the jobs are non-

127

We note here that matching processing times and release dates do not imply a dominance
property. Even if pj<p; implies r; < r; (or even if the release dates are identical) within each

class, we do not have an optimal order for the jobs in each class. Consider the following

instance:
i pj 7j
G, J; 3 0
J, 4 0
J3 4 0
G, Ja 1 6
Js 1 6
Je 1 6

So1 =21 =8 =S12= 1.

The optimal solution is [J,, J4, Js, Jg, J1, J3], with a total flowtime of 59. The best solution

in which G, is in SPT order are [Jy, J4, J5, Jg, J,, J3], with a total flowtime of 60 (see Figure

3.10).
X 1, X |, |Js [J6 | X A I
5 7 8 9 13 17
X I X I, |35 |36 | X I, I
4 7 8 9 14

Figure 3.10. Optimal schedule and best SPT schedule.

A number of dominance properties have been suggested forthe 1/r j/ > C I We have
modified the properties of Dessouky and Deogun (1981) for use in our search. We make the
assumption here that the class setups satisfy the triangle inequality: s, < sgp + sp for all G,

Gp, G,.

18

128

Suppose that we are at a node in the search tree with a partial schedule ¢ that ends at time ¢
with a job in class G and a set K of unscheduled jobs. IfJ fi is in K and in Gy, define the
following earliest start time:

tj = max {t+s.ps rj}.

Note that if ¢ + 5,4, < r;, the necessary class setup can be completed before the job arrives.
At this node we can use any of the following dominance properties:

Property 3.1. Let J; be the shortest job in K. If J fi is in G3, and J; is in G, the node (o, J j)
is dominated by (0, J) if £; + sgp < ;.

Property 3.2. The node (o, Jj) is dominated by (o, J)) if t; + p; + 545 < rj

Property 3.3. IfJ fi is in G, and J; is in G 4, the node (o, J j) is dominated by (o, J) if all of
the following statements are true:

@¢t+p; < tj+pj,

(b) t; +p;+ Sge < 1j+pj + Sp, for all job classes G, : G N K # {},
(C)seb+ijsea+pi forallG,: G, N K # {}, and

(@ sgp +pj+sbd5sea+pi+sadfora11Ge :G,NK#({},andG4:GgNK# {}.

Proofs: Property 3.1. Take any schedule (o, Jj 61, J}» 09), where there are m jobs in 6.
If we move J; before J js the new completion time of J; is no greater than the old completion time
of J i thus the flowtime of J; is decreased by at least (m + 1)p; (since J; is the shortest job).
Meanwhile, we delay only the start of J fi and the m jobs in 61 by at most p; (since ¢; +p; + sgp -

4 < p;)- The jobs in 65 are not delayed at all (the triangle inequality of the setups insures this).

Property 3.2. Take any schedule (o, J 015 J;, 63). We canmove J; before J fi without
delaying J s
Property 3.3. Take any schedule (o, Jj 01, J; 09). Note that the earliest start times of J;

decreasing the flowtime of J; and possibly that of the jobs in G5.

and JJ are before 6. Interchange J; and J j The new completion time for J; is not greater the old

completion time of J f (by condition a). By condition b (if the first job of 01 is in G), the jobs in

o1 are not delayed. Then, by condition c (if the last job of 01 is in G), the new completion time

129

for JJ is not greater than the old completion time of J;. Finally, the last condition (if the first job
of 0, is in G) implies that no jobs in 0, are delayed.

In any of these cases, we can take a schedule that starts with (6, J j) and find a schedule
which starts with (o, J;) and which has less total flowtime. Thus, it is clear that the first node is
dominated and that we do not need to search that part of the tree.

Lower bound. A branch-and-bound procedure needs a lower bound. A good lower bound
is important to efficiently finding solutions. We develop two bounds: the first concentrates on the
release dates, the second on the setup times.

The first lower bound for a node completely ignores the class setups. Instead, it solves the
associated 1/ r;, preemption/ Y, C Y problem with the SRPT rule and adds the optimal flowtime to
that of the partial schedule in the node.

The second lower bound separates the setup times from the job processing times. We
assume that each class will have exactly one remaining setup. If we further assume that this setup
will the shortest possible, then we can easily sequence the job classes to minimize the
contribution of the setup times to the total flowtime. The unscheduled jobs are scheduled by SPT
without regard to their release dates. The two sums are added to the flowtime of the partial
schedule in the node.

The first lower bound should work well when the interarrival times are large, and the
second bound should be useful at nodes where all of the unscheduled jobs are available.

Testing. For 30-job problems, the branch-and-bound procedure required excessive
computation time to find an optimal. Still, improved lower bounds could be found by truncating
the branch-and-bound search in the following way: We prevent the search from moving below a
certain depth in the tree and take the lower bound at this depth as the objective function value. If
we continue to do this, the truncated search returns the lowest lower bound at this depth. This
will be a lower bound on the optimal solution and will be better than the lower bound computed

at the root node.

130

Dispatching rules. The SPT rule is known to minimize the total flowtime for1// ¥ C Ji
(Smith, 1956). Since we are studying a total flowtime problem, we are most interested in SPT-
like heuristics. We will develop a rule that considers the waste associated with a job (the waste is
the sum of the idle time and setup time incurred if the job is scheduled next). We propose the
look-behind dispatching rule Shortest Waste, "Among the jobs with the minimum waste, schedule
the shortest one." (This rule is similar to the Minimum Waste algorithm for CFTS.)

Let us define a few relevant variables: ¢ is the current time, the completion of the last
scheduled job; G is the class of the last scheduled job, and the waste of an unscheduled job J fi in
Gpis

wj=max {rj -1, 5:p}-

Our dispatching rule can be now stated:

Shortest Waste:
Among all unscheduled J s select the job with the minimum w;. Break any ties
by selecting the one with the minimum p i

Decomposition. For the FTSRD problem, we decided to implement a search heuristic for
comparison purposes. A decomposition heuristic for finding good solutions to sequencing
problems was introduced by Chambers et al. (1992). The heuristic is a type of local search. It
begins with an initial sequence, and forms new sequences until it finds a local minimum. The
critical step is the decomposition of the problem into subproblems that depend upon the current
solution. A new solution is generated by combining the optimal or near-optimal solutions to each
subproblem. The heuristic thus makes very good moves through the search space; only a few
moves are needed before convergence is reached.

Consider, for example, a 12-job problem. Start with some initial solution to the problem.
Select the first six jobs of this solution and find a good solution to the 6-job subproblem. Take
the first three jobs (in order) of this subproblem solution as the first three jobs of the new

solution. Then combine the remaining three jobs from the subproblem and with the next three

131

jobs from the initial solution. This forms a new 6-job subproblem. Continue solving
subproblems and building the new solution until all of the jobs have been considered.

We use this technique in order to find good solutions against which we could measure the
performance of our other heuristics. (We did not feel that this type of search would be as
effective on deadline-oriented CFTS and CSRDD problems.) We use a branch-and-bound
technique with an approximate dominance property to generate near-optimal solutions to the
subproblems. The algorithm has two parameters. We need to select m as the size of the
subproblems which we will solve; the larger the value, the better our subproblem solutions will
be (at the expense of computation time). We also select f as the number of jobs from the
subproblem solution that will be fixed into the new solution. A smaller f requires that more

subproblems be solved per step. The following steps outline the procedure.

Step 1. Setm and f. (We want fto divide n - m.) Let ¢ be the ERD schedule.

Step 2. Take the first m jobs of 6. Let & be an empty schedule.

Step 3. Solve the m-job subproblem by branch-and-bound.

Step 4. Append the first f jobs of the solution to 7.

Step 5. If there are any unconsidered jobs in o, take the next f jobs from o, add to the
m - f remaining from the subproblem, and go to Step 3; else go to Step 6.

Step 6. Append the m - f remaining jobs of the solution to «. If & is a better schedule
than o, let ¢ = and return to Step 2; else go to Step 7.

Step 7. The solution found by the heuristic is ©.

We experimented with different values of (m, f). The best results (in terms of computation
time and solution quality) were achieved with (9, 3) and (15, 5). We used our branch-and-bound
algorithm with only the second lower bound and only the following approximate dominance
property:

Property 3.4. Given a partial schedule o, (0, J;) dominates (c, J j) ifJ;and J j are in the same
class, J; is the shortest unscheduled job in that class, and w; < w i

This property is a simple extension of a previously considered dominance rule (see, for

instance, Dessouky and Deogun, 1981). Unlike the dominance rules that we use in the full

132

branch-and-bound procedure, it has the advantage of being quick to check, since there are fewer
unscheduled jobs from the same class.

In the section on computational results, we will discuss how well the decomposition
heuristic performs.

A problem space genetic algorithm. In this problem, we consider the problem space
defined over the problem release dates. A point in this space is an n-element vector of non-
negative real numbers. When a heuristic is applied to an instance of FTSRD, it uses the actual
release dates to generate a solution. If, however, we adjust the release dates of the problem, we
can change the sequence created by the heuristic. This sequence can be evaluated as a schedule
by using the actual problem data. We can associate, therefore, with the vector of adjusted release
dates a performance value: the total flowtime of the schedule that was created. Moreover, we can
search the space of adjusted release dates to find good schedules. This exploration is the
objective of the problem space genetic algorithm. Our purpose is to show that the performance of
a simple heuristic can be improved with a smart-and-lucky search like a genetic algorithm.

We will use the Shortest Waste heuristic to convert a vector of adjusted release dates into a
sequence of jobs. The optimal solution is within the range of this heuristic: if each adjusted
release date equals the actual start time of the job in an optimal solution, the Shortest Waste
heuristic will schedule the jobs in the optimal order, since at any time, the job with the shortest
waste will be the one with the next adjusted release date, which is the job with the next optimal
start time.

As we did for CFTS and CSRDD, we will use a steady-state genetic algorithm. The initial
population is formed by mutating a source individual that is the digital representation of the
actual release dates. After empirical testing on a number of problem instances, we decided on the
following parameters: The population size is 100 individuals. The four operators are uniform
crossover, one-point crossover, small mutation, and large mutation; all have the same probability
of being selected. In the small mutation, a bit is flipped with 2% probability; in the large, the

probability increases to 50%. The algorithm uses tournament selection to identify parents. See

133

Davis (1991) or Goldberg (1989) for more information about these aspects of the genetic
algorithm.
Example 3.7. The following problem is used to illustrate some of the issues we have

discussed so far.

J rj p] l
1 0 5 1
2 0 4 2
3 5 5 2
4 6 2 1

So1 =802 = 1. S1p = 1. So1 =4,

The ERD sequence is [J; J, J3 J4], with a total flowtime of 55. The EFT sequence is
[J, J3 J4 J1], with a total flowtime of 52. The Shortest Waste sequence is identical in this case. If
we adjust the release dates to (1, 2, 5, 6), the Shortest Waste sequence is [J; J4J5 J3], with a
flowtime of 45.

In the branch-and-bound algorithm, we compute lower bounds at the root node. The first
lower bound for the entire problem is the SRPT schedule, total flowtime of 39, shown below (J;

is preempted at time 6 by J,):

) I I J1 J3
0 4 6 8 11 16

Figure 3.11. The SRPT schedule.

The second lower bound (Longest Weighted Batch Size plus SPT) is computed as follows:

Batch sizes: b; =2. by =2.

Shortest setups: 1 =5g1 = 1. 5, =55,= 1.
Xs5;B;=14)+1(2)=6.

Processing times in SPT order: 2,4, 5, 5.
Completion times: 2, 6, 11, 16. X Cj=35.
Lower bound = 35 + 6 = 41.

134
3.4.5 Empirical Testing

Problem generation. In order to test the heuristics, four sets of ten problems were created.
The characteristics of the sets are shown below (processing, interarrival, and setup times

randomly selected from uniform distributions with the given ranges):

Table 3.20. Data on problem sets

Set Problems Jobs Classes Processing Interarrival Setup
Times Times Times
FT151 10 15 5 1,20 1,10 0,9
FT301 10 30 S5 1,20 1,15 0,9
FT302 10 30 10 1,20 1,15 5.9
FT304 10 30 10 1,15 1,20 59

Results. In this section we will discuss how well our solution techniques performed. (See
Table 3.21.) The branch-and-bound could find optimal solutions on only the 15-job problems.
On the 30-job problems, we used the decomposition heuristic with parameters (9, 3) to quickly
generate solutions and measured the performance of other heuristics against these solutions. The
(15, 5) decomposition was much slower than the (9, 3) decomposition, since the time necessary to
solve each subproblem grew exponentially. Still, it found slightly better solutions, and the
processing time was reasonable (although it varied from problem to problem) if the heuristic

dominance property and second lower bound were used.

Table 3.21. Performance of heuristics.

Problem Shortest 9,3) (15,5) Genetic
Set Waste Algorithm
FT151 1.095 1.005 - 1.010
FT301 1.067 1.000 0.992 1.006
FT302 1.066 1.000 0.995 1.005
FT304 1.031 1.000 0.994 1.005

Notes: Performance measured against optimal solution for FT151. Against decomposition
(9,3) for 30-job problems. All performances are average ratios over 10 problems.
Performance of genetic algorithms averaged over three runs of 3000 individuals.

135

Although the initial lower bounds for the 30-job problems were not good, we were able to
improve them using the branch-and-bound tree to show that the decomposition (9, 3) heuristic
was within ten percent of the optimal ﬂowtime.

The Shortest Waste heuristic found good solutions very quickly and generally performed
better than other dispatching rules. On the 15-job problems, the genetic algorithm was not an
effective heuristic, since it required more computation time than the branch-and-bound and could
not always find optimal solutions.

On the 30-job problems, the problem space genetic algorithm found solutions better than
Shortest Waste and as good as the decomposition heuristic. The computation time was slightly
longer for a 3000-individual search than for a (15, 5) decomposition, but a 1000-individual search
was much shorter and found solutions with little increase in total flowtime. The exponential
nature of genetic search is exhibited in Figure 3.12. (In other testing, we found that the genetic
algorithm was not as effective when using a simple Earliest Release Date rule to create
sequences).

All programs were run on a 386 PC. Decreases in times were achieved when the programs
were run on a 486 PC, and further decreases could be achieved on a more powerful machine.
Except for the 30-job branch-and-bound (which we could not solve), we do not consider
processing times to be a significant obstacle. The numbers in Table 3.22 are offered only for

comparison purposes.

Table 3.22. Typical computation times

FT302.1

Decomposition (9,3): 17.8 seconds
Decomposition (15,5): 338.67 seconds
1000-individual GA: 134.62 seconds
3000-individual GA: 350.37 seconds
Shortest Waste: < 0.1 seconds

FT151.1

Branch-and-bound: 10.71 seconds
Decomposition (9,3): 0.8 seconds
3000-individual GA: 149.24 seconds
Shortest Waste: < 0.1 seconds

136

1.07

7 SRR —

1.054

1.03+

Performance of Search

1.024

1.014

b 500 1000 1500 2000 2500 3000
Number of New Individuals

Figure 3.12. Performance of Shortest Waste Genetic Algorithm
Performance measured against decomposition (9,3).

3.4.6 Special Case

In this section we consider a particular special case of the problem which may be useful in
certain manufacturing situations. We will assume that there exist exactly two job classes and that
the job processing times are equal within each class.

Specifically, we study the following instance: pj=p forallJ fi inGy,p =9 forallJ fi in G,.
Since all of the jobs in a class have identical processing times, we may order them by ERD. We
note here that all of the release times are integer.

We will describe a pseudo-polynomial dynamic program to solve the problem, a special

case of the strongly NP-complete FTSRD problem.

137

Dynamic programming. We can use a dynamic program for two reasons: there are only
two classes, and we have an ordering for the jobs in each class. According to Monma and Potts
(1989), this ordered batch scheduling problem can be solved in pseudo-polynomial time. The
following dynamic program interleaves the classes. The state variable in the dynamic program
corresponds to a partial schedule that consists of the first i; jobs from G, and the first i, jobs from
G, and that ends before or at a specific time with a job from a specific class (if it is cheaper to end
sooner, that schedule should take precedence). At each point in the state space, we will measure
the total flowtime of the scheduled jobs. The recursion determines the best partial schedule to
which we should add the specified job.

Algorithm 3.3. Letf(, a, i;, i;) be the minimum flowtime of a partial schedule where the
last jobs ends at or before time ¢, there are i; jobs from G, and i, jobs from G,, and the last
scheduled job is from G ;. t=0,...,R. a=1,2. i;=0,...,n,i3=0,..., n,. Renumber the
jobs so that j < n; iijis inGy,r<...<ry,and j>nm iijis inGy, ry41 ... <ry, Rissome
upper bound on the makespan of a schedule. We can find one such R by scheduling all jobs in
ERD order, performing a class setup in front of every job. We also have an upper bound: R <
max {rj} + ij+ By Sp1 + Ny S1p.

Initialization:
flt,a, i, i) =ift<O.
ft, 1,0, i) = oo for all ¢ and for i, > 0.

At, 2, iy, 0) = oo for all ¢ and for i; > 0.

ft, 1,1, 0) = o for t < max {sq, rj} +p, iij is the first job in G, (j = 1).

fit, 1,1,0) =max {sq;, rj} + p fort 2 max {sq, rj} +p, if.lj is the first jobin G, (j = 1).
ft,2,0, 1) = e for t <max {sg,, rj} +4q, iij is the first job in G, (j = n; + 1).

ft,2,0, 1) =max {sg,, rj} + g for t 2 max {sg, rj} +q, iij is the first jobin G, (j=n; + 1).

Iteration: (i; + i, > 1)
ﬂt, 1, il’ 12) = min {f(t—p, 1, il'l, 12) + t,f(t-p-S2l, 2, il'l, lﬁ + t,ﬂt—l, 1, il’ 1'2)} ift=> rj +p,
where j = i;.

fit, i, i) =cift< i+ D, where j = i;.

138

f(t, 2, il’ IQ) =min {f(t—q, 2, il’ iz‘l) + l',ﬂt-q-slz, 1, il’ i2’1) + t,f(t—l, 2, il’ 12)} ift2 ':] +4q,
where j = n; + iy.

f6,2,i, i) ==ift< i+ q where j = n; + i,.

Answer: the optimal total flowtime is min {f(R, 1, n;, ny), AR, 2, ny, np)}.

Figure 3.13. Schedules for iteration (/ fi and J; in G and J; in G).

In the iteration, the first term being considered for f{(¢, 1, i, i) is the total flowtime of the
partial schedule formed by adding the J fi (j = ip) to a schedule ending at or before #-p with a job in
G,. The second term is the flowtime if Jj is added to a schedule ending at or before t-p-s,; with a
job in G,. The third term corresponds to a schedule that ends at or before -1 with J j Ift< rj+p,
there is no feasible schedule that ends with J fi thus, f(t, 1, iy, i) is set to infinity. The iteration is
similar for the f(t, 2, i, iy).

The effort for each point in the state space is constant. The effort for the entire program is
thus proportional to the number of points in the state space. This is O(Rn2). Since R is bounded
by a polynomial function of the problem data, the algorithm is pseudo-polynomial. The dynamic
program can be implemented to find the optimal objective function value with memory
requirements that are O(Rn): If we are determining the values for points with i; + i = k, any
points in the space where i} + i < k - 1 are ignored. If we define f(¢, a, i) =ft, a, i}, k - i}), we

need to keep only f; and f;_q at any time.

139

Test problems. We generated 70 test problems in order to test the dynamic program on a

range of problem sizes. The data for the problem sets are summarized in Table 3.23 (10 problems

in each set).
Table 3.23. Data about problem sets for special case.
Problem Number p q Class Interarrival
Set of jobs setup times
FT201 20 1 1 1 1-3
FT307 30 1 1 1 1-3
FT308 30 2 3 1 2-5
FT309 30 4 2 3 4-8
FT401 40 1 1 1 1-3
FT507 50 1 1 1 1-3
FT601 60 1 1 1 1-3

Results of special case dynamic program. The dynamic program finds optimal solutions in

time that is nearly proportional to Rn2 (see Table 3.24).

One drawback of the dynamic program is the amount of memory required to perform the
algorithm; we were able to solve only 60-job problems. In addition, it requires significant
processing time on a 386 personal computer. These problems can be overcome, however, since a
larger computer could handle more memory (the amount required is O(Rn)), and would run more

quickly.

Table 3.24. Results of dynamic program

Problem Number Average Average

Set of jobs R computation time
FT201 20 41.1 0.808
FT307 30 61.4 2.270
FT308 30 108.1 3.487
FT309 30 185.5 5.899
FT401 40 81.8 4.698
FT507 50 101.6 9.079

FT601 60 121.4 14.836

140

Extensions of special case. The dynamic program can be modified to solve any FTSRD
problem where there exists a natural order for the jobs within each class. This includes problems
where the jobs in each class have the same processing time (as we have discussed) or problems
where all of the jobs have the same release date (order the jobs in each class by SPT). In any of
these cases we have an ordered batch scheduling problem. If each class has a natural order, the
dynamic program can be used to interleave these sequences since we have an ordered batch
scheduling problem.

Recall from the example presented in Section 3.4.4 that matching processing times and

release dates do not give us a natural order for a class.

3.4.7 Conclusions

In this research we have studied a computationally difficult class scheduling problem. The
objective is to minimize the total flowtime of a set of jobs that have non-zero release dates. We
examined a number of techniques to solve the problem, including a branch-and-bound search,
look-behind dispatching rules, a decomposition heuristic, and a problem space genetic algorithm.
We were interested in determining how this type of genetic algorithm can be used to find good
solutions for another class scheduling problem.

Our results are as follows: While we did develop lower bounds and a number of
dominance properties, our branch-and-bound approach was unable to solve any 30-job problems.
The decomposition heuristic was a successful technique, locating solutions of high quality. The
Shorest Waste heuristic could sometimes generate good solutions. However, by incorporating
these rules in a genetic algorithm that searched the space of adjusted release dates, we couid find
much better solutions.

From these results we can conclude two things: For the one-machine class scheduling
problem we call FTSRD both the problem space genetic algorithm and the decomposition

heuristic can find good solutions in reasonable time. Additionally, look-behind rules may be

141

useful for job shop scheduling, especially on a bottleneck machine which undergoes class setups

and where jobs continue to arrive while the machine is processing.

In this chapter we have presented the results of research into three one-machine class
scheduling problems. We can make a number of observations about this research. 1. None of
these three problems have been previously considered in the literature. 2. We have presented
analytical results and developed extended heuristics for each of these problems. 3. All three
problems are motivated by the semiconductor test area job shop environment, and the extended
heuristics developed for these problems may be useful as dispatching rules in the general job shop
scheduling problem. 4. Our problem space genetic algorithm is a robust approach, able to find
good solutions over a variety of one-machine class scheduling problems, and should be

applicable to other difficult combinatorial and scheduling problems.

