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Sensor Scheduling using Smart Sensors

Pedram Hovareshti, Vijay Gupta and John S. Baras

Abstract— The sensor selection problem arises when multiple open-loop selection strategy is optimal for a cost based on the
sensors are jointly trying to estimate a process but only a subset estimate error covariance. Forward dynamic programming
of them can take and/or use measurements at any time step. In a and a gradient method were proposed for this purpose. To

networked estimation situation, sensors are typically equipped . . .
with some memory and processing capabilities. We illustrate deal with the complexity of a tree-search, greedy algquthms
that utilization of these capabilities can lead to significant have been proposed many times, some examples being [13],

performance gains in the sensor selection problem for improved [17]. Allied contributions have dealt with robust sensor
inference. Further, it also leads to significant pruning of the scheduling [1], a greedy algorithm with an information based
search tree that yields the optimum sensor schedule. We also cost measure [21] and the works of [15], [16], [18] etc. A
present a periodicity result for the case where the decision is diff t ical ht ve th ' b'I ’
whether the sensor should transmit or not. _' ere_n nume_rlca approach to solve the pro _em was pro-
vided in [3] which cast the problem as a two-point boundary
|. INTRODUCTION AND MOTIVATION value problem. This approach was further considered in [11],
4114]. A completely general framework for nonlinear systems

Recently there has been a lot of interest in networks ; e :
. : . . and general nonlinear diffusion sensor signals was developed
sensing agents which act cooperatively to obtain the best e the seminal paper [4]. The dynamic sensor schedulin
timate possible, e.g., see [10], [19] and the references therein. bap j Y 9

While such a scheme admittedly has higher complexity th nroblem was solved usmg-dynam|c programming methqu,
. ; ‘based on general stochastic control separation and nonlinear

the strategy of treating each sensor independently, the in-"" o o : :

. . Itering, which involved quasi-variational inequality tech-

creased accuracy often makes it worthwhile. If measurements . . .
: : igues for the analytical proofs [4]. A stochastic algorithm
from all the sensors are pooled, the resulting estimate can pe' . . S o
e%t is particularly useful in situations where communication

even better than the one based on the sensor with the le . .
aﬁannels impose random data dropouts was proposed in [5].

. . . c
measurement noise (where no information exchange occurs).

However, these approaches assume that a sensor, when

allowed to transmit at time step, transmits only the latest

Communication constraints, however, often impose a re-
striction on the maximum number of SENSors that @M easurement that it observed at time skeprhus, even if
transmit data to the estimator. Thus, there is a problerq : !

! . all sensors are taking measurements at every time step, the
of sensor scheduling. One example when such a situation

. . . estimator does not have access to all this information. A
arises is when there are echo-based sensors like sonar

which can interfere with each other. Another situation whe no?able exception is the general framework and methods of

N o ) L r4], where the estimator has complete past histories of mea-
sensor scheduling is useful is in tracking and discrimina- :
. . surements, and where even simultaneous measurements by
tion problems, where a radar can make different types

o] . .
o : Several sensors in each time step are allowed. In networked
measurements by transmitting suitable waveforms, each 0

which has a different power requirement. There might bgontrol systems, sensors are usually equipped to commu-

. nicate over wireless channels or communication networks.
shared communication resources (e.g., broadcast chan

S
or a shared communication bus) that constrain the usage 9

us, it is reasonable to assume that they possess some
: o . r nd pr in ilities. Thus, if th nsor n

many sensors at the same time. Such a situation arises, orage and processing capabilities. Thus, if the sensors ca

in telemetry-data aerospace systems.

Cdecute simple recursive algorithms to process the informa-
. . tion being collected, significant improvement in estimation
Because of its importance, the sensor scheduling probleo g 9 P
has received considerable attention in the literature. TI{S

r control) performance can be expected. Such algorithms

. . : ave already been demonstrated for the case of single sensor
seminal work in [12] proved a separation property between . . .
. . systems in [6], [7]. In a companion paper [8], we illustrate the
the optimal plant control policy and the measurement contrg

. improvement in the stability region using such pre-processin
policy for LQ control. The measurement control problem Prove : yreg g such pre-p 9
which is the sensor scheduling problem, was cast as a no’sr;[[ategles for multi-sensor systems. In this paper, we use
: S gp ' information processing algorithms along the lines of the
linear deterministic control problem and shown to be solvable

. . .- ones proposed in [9] for the sensor scheduling problem.
by a tree-search in general. It was proven that if the demsmm ) .
s we shall see, the optimal algorithms for the sensor

to choose a particular sensor rests with the estimator, an . . .
Scheduling problem require much less data communication

Research supported by the U.S. Army Research Office under muridpan th_e general mq|t|'sen50r problem, since only one sensor
Program Grant No. DAAD19-01-1-0465, under Grant No. DAAD19-02-1transmits at every time step.

0319, and under Grant No DAAD 19-01-1-0494. __Using these information processing algorithms, we show
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vijay@cds.caltech.edu, baras@isr.umd.edu ) the problem of finding the optimal sensor schedule. While



the general solution remains a tree-search, we show that tiveeree(k) is the error defined as
number of paths to be searched are significantly pruned. .
We also prove a periodicity result in the optimal sensor e(k) =k +1) —a(k +1).

schedules. We can compare the performance of particular encoding

The paper is organized as follows. The next section de . . ) .
with the problem formulation. We then present a simp?ﬁ?glﬁgfi;())nir;itdewdmg functions() by comparing the

recursive yet optimal information processing algorithm to be

followed by the sensors. In Section IV, we consider the prob- K

lem of optimal scheduling. Finally, in Section V, we present Ji = Ztmce(P(k))’

a special case when the decision (selection) is between a k=1

sensor transmitting or not, and present a periodicity resubbr the infinite-horizon cost

The result also applies to more general scenarios. We end %

with some directions for future research. Jo = lim %Ztrace(F(k)).
k=1

K—o0

Il. M ODELING AND PROBLEM FORMULATION
Consider a system evolving as In this paper, we are concerned with the following problems:
1) What are the functiong and ¢ that are optimal with

zk+1) = Az(k) + wlk), (1) respect to the cost functios for any schedule of the
where z(k) € R™ is the process state at time stgépand sensors?
w(k) is the process noise assumed white, Gaussian and zer@®) What is the optimal sensor schedule for the infinite-
mean with covariance matrik,,. The initial conditionz:(0) horizon cost? We will be interested in open loop sched-
is assumed independent of the process noise and Gaussian ules where the choice of the evefit) does not depend
with zero mean and covariancE,. The process state is on the measurement valuég;(k), i = 1, ---, N}.
being observed byN sensorsSi, Si, ---, Sy with the 3) For the special case when the sensing choices consist
measurement equation for the¢h sensor being of transmitting a measurement by the sensor or not
transmitting one, what is the optimal schedule for
yi(k) = Ciz(k) + vi(k), @ transmitting measurements for the finite-horizon cost?
wherey; (k) € R* is the measurement. The measuremeniVe begin in the next section by solving for the optimal
noises{v;(k), i =1, ---, N}, for the sensors are assumedencoding and decoding functions.
independent of each other, of the process noise and of
the initial condition. Further the noise (k) is assumed to Ill. OPTIMAL ENCODING AND DECODING FUNCTIONS

be Whlte,.Gaus&an and zero mean with covariance matrix » any time k, define the time-stamp corresponding to
R;. In this paper, we will assumé&v = 2 for ease of Sensor; as
exposition. The ideas are applicable to the general case,

at the expense of more notation. We assume that the pair (k) =max{j|j <k, t(j) =1}
(A,C) is observable and the paj4, R2) is stabilizable, hus the he | ) hich
whereC — [ClT Cg]T_ Thus the time-stamp denotes the latest time at which trans-

éﬂission was possible from sensorUsing the time-stamp,
we can define the maximal information §gt**(k) for each
sensor as

At every time stepk, one sensor is chosen to take th
measuremeht If the i-th sensor is chosen at tim we
represent this event ask) = . By a sensor schedule, we
mean the choice (_)f_eventsso), t(1), ---. The i-th sensor 995 (k) = {g:(0), yi(1), - -, ya(ri(K))}.
then calculates a finite vector

The maximal information set is the largest set of measure-
si(k) = £(i, k,5i(0), -+, 9i(k), 2:(0), - - ta(K)), ments from sensoi that the controllergcan possibly have
where s;(k) € R™ and transmits it to a central estimatoraccess to at timé. For any encoding functiong chosen by
(equivalently, shared with all the sensors) in an error-frehe sensors, the information available at the estimator will
manner. By abusing the notation a bit, we denote (@) the be a sub-set of the maximal information set. Hence, with the
vector received by the estimator at time stefThe estimator optimal minimum mean squared error (MMSE) estimation

calculates an estimate being chosen as the decoding functigrby the decoder,
A the performance for any encoding functiofsvill be upper
#(k+1) = g (k,5(0),5(1),---,5(k)) bounded (equivalently, the cost will be lower bounded) if the
of the stater(k + 1) that minimizes the usual mean squarecdstimator had access to the maximal information sets from
error all the sensors.
P(k+1)=E [e(k)eT(k;)] Now consider an algorithr under which at every time

stepk, if ¢(k) =1, every sensof transmits the set

INote that the assumption of one sensor being allowed per time step is
without loss of generality. Si(k) = {w:(0),y; (1), -+ ,yi(k)}.



Note that the algorithm4 does not specify valid encoding
functions since the dimension of the transmitted vectors can-
not be bounded by any constant However, if the algorithm

A is followed, at any time step, the decoder (and the con-
troller) would have access to the maximal information sets
Z2x(k). This implies that for any other encoding algorithm,
the cost will always be higher for any given schedule than
obtained by using the algorithtd. Thus, in particular, one
way to achieve the optimal value of the cagt or J, for

a given schedule is through the combination of an encoding

algorithm that makes the information s&3**(k) available
to the controller and a controller that optimally utilizes the

4) Obtain
Y(j) = (P(ili—1,j-1) " A
PG—-1j-1j-1).
5) Finally calculate

Liym(3) = M0) 70 m(G - 1),  3)

with Il,l,m(_]-) =0.
The quantity I, ., (k) is calculated by a similar al-
gorithm except using the local estimatés(j|j) and
covariancePs (j|j).

information set. Further, one such information processing « Finally, the estimatei(k|l,m) is calculated using the

algorithm is the algorithmA described above. However,

this algorithm requires increasing data transmission as time

evolves. Surprisingly, in a lot of cases, we can achieve the

relation

(P(k|k, k))71 Z(kll,m) =11 1 m(k) + T2 1.m(k), (4)

same performance using a constant amount of transmission whereP(k\k, k) is calculated as above.

and memory. o . Proof: That Z(k|l,m) is indeed the MMSE estimate
To this end, we begin with a result proven in [6], [8] given all the measurements from sensor 1 till tilhend
This result identifies the optimal information processing t9,om sensor 2 till timem can be proved by utilizing the

be done by the sensors to ensure that the estimator ggck diagonal structure of the matriz, as in the proof of
calculate the estimate of staték+1) based on the maximal Theorem 2 in 6] (see also [8]). -

information setsZ;** (k). _ The above result identifies the quantities that need to
Proposition 1: Consider a process of the form (1) beingpe transmitted by the two sensors to calculate the MMSE

observed by two sensors of the form (2). The estimatgstimate ofz(k). The quantities depend only on local mea-

(k|l,m) of the state based on measurements from sensoilrements at the sensors; however, an implicit assumption is
till time [ and sensor 2 till timen, can be calculated using the {3t each sensor is informed about the timesd m.

algorithm given below. Assume, without loss of generality, \we now present an algorithm according to which the

that! < m. sensors can calculate these optimal vectors with constant
« At each time step; < k, the sensor 1 executes thememory and processing for any given schedule. We present
following actions: the algorithmA; that the 1st sensor needs to implement. The

1) Let #;(k|l) denote the MMSE estimate of(k) algorithm.4; for the second sensor is similar.

based on all the measurements of sensaIp Algorithm A; to be followed by sensor:1The sensor

to time I. Denote the corresponding error covari-maintains two vectors; , (k) and 17, , (k).

ance byP;(k|l). Obtain the estimaté; (j|j) and
Py (j]7) through a Kalman filter. Foy < I, use
the measuremeny; (j). For j > [, assume that
the sensor 1 did not take any measurement at time
stepj.

2) Calculate

M) = (Pi(ild) " #1015 -
(Pu(jli = 1) & (ild = 1)
3) Calculate global error covariance matrices
P(jl4,4) and P(j]j — 1,7 — 1) using the relation
(P(ilg.5) "
(PGl =15 -1) "+ 0] (Z0) " Oy

+CT (802) 7' Oy if j <1

= (PGl —Lj—-1)""
+CT (Sy2) 7' Oy ifl<j<m
(P(jlj — 1,5 — 1))~ otherwise,

P(jli—1,j—1) = AP(j—1|j—1,j—1) AT+,

1) Initialization: Initialize both the vectors to be zero

vectors.

111,71,042(71)(_1) =0
112,71,71(_1) =

2) Update and TransmissiorAt every time stepk > 0,

there are two cases:

« Sensor 1 transmits at time stép It takes the
following actions:

— Itupdates vectof} , , , ) (k—1) to calcu-
late I} , .., (k) using an algorithm of the form
mentioned in Proposition 1, wheres(k) =
as(k —1). It then transmits this vector.

— It updates the vector I7, (k) from
I 1p_1(k — 1) using an algorithm of
the form mentioned in Proposition 1.

« Sensor 2 transmits at time stép Sensor 1 takes
the following actions:

— It updates the vector I7, (k) from
I 1,1k — 1) using an algoritm of
the form mentioned in Proposition 1.



— ItresetsI], . (k) = I, (k). the optimal encoding and decoding functions, we can prune
For this algorithm, it can be verified that the tree significantly. This allows us to traverse the tree for
a longer time horizonk.
Consider the case when the estimation error covariance,
when z(k + 1) is estimated using the measurements of

knowledge of the latest measurement from sensor Q0th the sensors till time steg, has reached a steady
y1(k). Thus, the sensor requires constant memory arnjate valueP*. The steady-state value exists because of our
processing ’ observability assumptions. Further, the steady-state value is

. . reached exponentially [20]. For simplicity, we will assume
These two observations allow us to state the following resullthat the horizonk is long enough so that the cost incurred
. Zrop;'osmlc;nuz:' Co?r;sldter the.t[i[)r(()jblerrlol;ormulan(;n St<"éltedin the transient phase is small and can be ignored during the
N Section 11. Using the transmitted vec %haz(k)( )an optimizatiorf. Thus, we can carry out the optimization by

9 .
13 o,y (1) from the two sensors, the estimator can constru¢fsgming that the steady-state has been reached.
the MMSE estimate ok(k + 1) using all the measurements  \ye define the following Riccati operator:

from sensor 1 till time: and from sensor 2 till timé Further,

the vectors can be calculated by the sensors using constanh(P) — APAT + R

amount of processing, memory and transmission at every ‘ " . “ . - .

time step using algorithmsl; and A,. — APC} (GiPC{ + R;) ~C;PAY,  i=1,2. (5)
Remark 1:The algorithm we have outlined is optimal . e .

among all other causal encoding algorithms, in the sense th-[slrt'e operator acts on a positive semi-definite matrband

; . LS . results in a value that equals the estimate error covariance
or any given schedule of transmission, the cégtachieved at time stepk + 1 assuming that senserwas used at time
at any timeK is minimum for this algorithm. It can also be 9

extended to consider the effect of stochastic packet drops @&epk and the initial error covariance at time steas .

communication channels from the sensors to the estimator. also define another operator that consists of applying the
However, we do not proceed in this direction. above operator multiple times. We denote
Having identified an algorithm that allows the estimator to hE(P) = hi(hi(...(hi(P)))), i=1,2, (6)
calculate the estimate based on all previous measurements
from a sensor till its time stamp, we now proceed to the
guestion of identifying an optimal schedule. in which h; has been applietltimes. We note that
1) hi(P) = hi(P).
2) hi(P)is an increasing function in the indeéxor any
In this section, we look at designing an optimal schedule, positive semi-definite matrixP.
i.e., the choice of the event$k) at every time stefk. We
begin by considering the finite horizon cogf. We first
note that for the optimal encoding and decoding functio
that we have identified in Section I, the proof of optimalityer
of open loop schedules [12] can directly be carried over. |
other words, the optimal open loop schedule, in which th
choice oft(k) depends only on the §ystem parameters, yiel Fe i-th sensor could be considered to be transmitting all
the same performance as the optimal closed loop sched

. . o ) easurementg; (0), y;(1), ---, y;(k). Thus, in the steady
in which ¢(k) can additionally depe_nd on the choice 0fstate, the error covariance at the estimator resets (t8*)
eventst(0), ¢(1), - - -, t(k —1). We omit the proof for space

) . o . : whenever a switching from sensgrto sensor: happens.
constraints, since it is a straight-forward extension of th

f1 if no further switching h in an i | of
oroof in [12] (see also [2]). Thus, from now on, we wil oreover, If no further switching happens in an interval o

. A ! lengtht¢ the error covariance at the end of this interval will
consider obtaining the optimal open loop schedule. be h!(P*)

All th ibl nsor schedule choi n repre-—,. . .
the possible sensor schedule choices can be repre This observation allows us to discard many sequences

sented by a_tree_ structure._ The depth of any no_de In the trf:‘hethe search tree and prune it significantly. We have the
represents time instants with the root representing time zer, flowing result

The branches correspond to choosing a particular sensor " . . . .
. A . . . roposition 3: Consider the problem formulation stated in
be active at that time instant. Each node is associated with the . : : :
) . ction Il. Suppose that the optimal encoding and decoding
cost function evaluated using the sensor schedule correspond-

. . .~ —functions, as identified in Section IV are being followed.
ing to the path from the root to that node. Obviously, flndlnq:urther assume that the steady-state has beegn reached, so

the optimal sequence requires traversing all the paths frow|at the error covariance in estimating the staten + 1)

the root to the leaves in the tree. If the leaves are at a dgpth o
d : based on all the measurements from both the sensors till time
a total of2¢ schedules need to be compared. This procedure

m'ght place too h|gh a demand on the. computa‘uonal a.ndquuivaIentIy, we can assume that the covariance of the initial state
memory resources of the system. We will now see that witkr(0) = P*.

1) The indexas (k) is always equal to the last time < k
where sensor 2 was able to transmit.
2) All the update steps at timé require only the

t times

IV. OPTIMAL SCHEDULING

The key observation that allows us to prune the tree is
the following. When the optimal encoding and decoding
nctions are employed by the sensors, the effect on the
ror covariance at the estimator is the same as if all
revious measurements were also transmitted by each sensor
henever it was allowed to transmit. That is,t{fk) = ¢,



m is P*. Let the sensors be denoted bynd j. Suppose trace(h;(P*)), our assumption is wrong arftt being

there existsk > 0 such that the optimal schedule means that it cannot confain
e For m = 1,.,k — 1, Trace(h]*(P*)) < By a similar argument, we can prove that the optimal

Trace(h;(P*)) scheduleS* cannot contain the sub-sequen€e as well.

o Trace(h¥(P*) > Trace(h;(P*)) u
Define two sub-sequences for selecting the sensors The above result assumes the existence of the parameter

] ) ) If such ak does not exist, using sensoat every time step is
S1o= {tln) =itln+1) =i tn+k-1) =i} optimal. Such a case arises, e.g., when sensorresponds
Sy = {t(m)=j,t(m+1) =j}, to a successful transmission and sengoorresponds to an
unsuccessful one. The issue of optimal sensor scheduling in
that case is trivial, unless a bound on the number of times
tsensom‘ can be used is given. We shall consider the latter
case in the next section.

for arbitrary timesn andn. Then, the sub-sequencés and
S, can not appear in the optimal schedule.

Proof: We will prove that an optimal schedule canno
contain sub-sequencg, by contradiction, by showing that .
the cost incurred by the optimal schedule can be reduced b Thus, we can prune all the branches that include the

choosing another sequence if the optimal sequence inde?d gﬁnceﬂl and 5, .frc;rr]n the seharch tre(;:‘_i This g“{(ﬁs us ab
contains S;. Denoting the optimal sequence choices b)§|gn| Icant decrease In the search space. However, the number

#(I), we assume that the optimal schedué contains of branches still remains exponential in the horizon length

the sequences,, such that for some time, ¢*(n) = i K. For a very large value of the horizdd, the complexity
F(n 4 1) = i Fn+ k- 1) = i. We can divide the 'S still prohibitive. However, the case for a large enough

event space into two possibilities: K is pracncally |ant|cal .to considering an infinite horlzpn
. . cost. For the infinite-horizon cost, we have the following
1) Thereis atleast one time > n+k, such that*(m) =

. eriodicity result that allows us to bypass the tree-search
j. Let T denote the smallest such time aftef £ when P Y yp

- 4 N ' it i hedil process altogether.
SEnsor 1S used. Now consider an afternate scheaule Proposition 4: Consider the problem formulation stated in
in which the choices are denoted #fy). The schedule

Si tructed usina the choices- Section Il. Suppose that the optimal encoding and decoding
IS constructed using the choices. functions, as identified in Section IV are being followed.

() 1<7-3 Further, assume that the steady-state has been reached, so
j l—=7—9 that the error covariance in estimating the stafe: + 1)
tl)=1<" based on all the measurements from both the sensors till time
! b=7-1 m is P*. Let the sensors be denoted bynd j. Suppose
(1) 1= there existsk > 0 such that
The cost achieved using schedufeis less than the « For m = 1,.,k — 1, Trace(h*(P*)) <
cost achieved using scheduk. This because the Trace(h;(P*))
cost incurred at time steps < 7 —3 and! > 7 o Trace(h¥(P*) > Trace(h;(P*))

is identical for the two schedules. However, the costonsider the optimal schedule for the infinite horizon case.
for scheduleS* at time stepsr — 2 and7 — 1 i Syppose that at time step, sensor; is used. Further, let
trace(hf(P*) + h;(P*)), while for the scheduleS, > ( be the smallest value such that at timet n, sensor
itis trace(h;(P*)+h;(P*)). Sincetrace(h;i(P*)) >  j is used again. Then the optimal schedule after timés
trace(h;(P*)), our assumption is wrong arfét being  given by
the optimal schedule means that it cannot confain
2) The other possibility is that for all future time steps 1) = j ifl=m+kn, k=0,1,2,---
m > n+ k till time K, sensori is used. However, in i otherwise
that case, we can consider an alternate scheflute Proof: The proof follows in a straight-forward fashion
which the choices are denoted b{/). The schedule from the fact that sensgrcannot be used twice in succession
S is constructed using the choices: due to Proposition3 Thus, every time the sensgiis used,
) l<n+k—2 the error covariance is ‘reset’ th;(P*). Thus, if there is
i - an alternative schedule at time+ n that yields lesser cost,
tl) =17 l=n+k-1 that schedule can be followed at time to obtain a cost

t*(l) 1>n+k. lower than that obtained using the optimal schedule. Thus,
Once again, the cost achieved using schedgilgs e optimal schedule is periodic. _ n
less than the cost achieved using schedsfte This Using this result, we can solve the optimal scheduling

is because the cost incurred at time stéps n + problem for a large horizon in case of a finite-horizon
k—2andl > n + k is identical for the two Problem, or for the infinite-horizon problem. We solve the

schedules. However, the cost for schedtifeat time 3 iy - ,
Note that Proposition 3 was proven for the finite-horizon case. However,

. X .
stepn + k —1is trace(h; (P*).), while for the sched- e the horizon was arbitrary, the result holds for the infinite-horizon case
ule S, it is trace(h;(P*)). Sincetrace(h¥(P*)) >  as well.



finite-horizon problem for a moderate value of the horizon Proposition 5: Consider the problem formulation as stated

using as the initial covariancE*. This allows us to obtain above. Further, suppose that= IrfﬂL is an integer. Then,

the steady-state periodic schedule. Using this result we c#me schedule that minimizes the cost function

obtain the schedule for large values of the horizon. In our K

experience, moderate values of the horizEh= 10 were ZtT'ace(P(m + k) (8)
k=1

enough to obtain periodic schedules.

V. SCHEDULING A SINGLE SENSOR WITH A Bounp on 1S the periodic schedule
THE NUMBER OF TRANSMISSIONS L ifhemti(G+1), i=1,2..n

The general framework considered in the previous sections t(k) = ¢ Otherwise.
facilitates the analysis of a single sensor scheduling in the
presence of a bound on the number of transmissions. As
argued in the previous section, in the case of a single sensor Py = AP,_1 A" + Ry 9)

the issue of scheduling is trivial, unless there is a bound Ok P — P andC beina a positive integer areater than 1
the number of transmissions. Considering such bounds ale o= AT gap ger g )
. ; o T ince P* < AP*A" + Ry, the above-mentioned sequence
important in applications which involve a trade-off between” . S

ncreasing in the sense th&at, < P,, wherem andn

the accuracy of the estimate and the costs of using the sensors

and communicating the information to the estimator. In thi%re positive integers such that < n. DenoteTy = 0 and

section we address this issue. =24 P Vi€ (1,2, K .
) Note that, every time the sensor transmits, the error
The problem set up is as before except that now we onle/ : ) " S
consider a single sensor observing the process. As before figyanance at the decoder is resetip= P*. Otherwise, it
' Is Updated asP(k) = AP(k — 1)AT + Ryy.

assume that the steady-state has been reached. For the ﬁmtﬁow consider an arbitrary schedule in which the updates
horizon case, denote the length of the horizonfbyand the : y ; P
happen ak timesm +t,,m+ts, ..., m+t,. Definetg =m

number of allowed transmissions kyK) < K. Therefore ‘ .
the frequency of transmission is degne)d as: andt, .1 = m + K + 1. For this schedule the cost function

Proof: Consider the sequendeP;.}$_,, where

is equal to:
9K = cg;). (n+1)j+n n+1 n+1
Z P(m+k) :nPO—l—ZTti,ti_l,l :nPO—i—ZTli
We consider the finite horizon problem of selecting ¢h&) k=1 i—1 i=1
time instants such thatk) = 1. We denote the choice of ‘not (10)

to transmit' at timek by #(k) = (. The algorithm for optimal N which l; = #; —;_, — 1 is the length of the interval
encoding in this case reduces to the sensor maintaining afgtween theth and: —1th transmissiong,, is the length of
transmitting an estimaté(k) of the stater(k) based on the the time interval before (and excluding) the first transmission

measurements(0), y(1), ---, y(k). The process estimator time andl, , is the length of the time interval after the last
updates its estimate,..(k) based on whether it receivestransmission and before K+1. In fact for= 1,2,...,n, at
new data using the timesm +t; the covariance is reset t&. This explains
the termnP,. The termsTl;,_;, ,_; take care of the cost at
A A (k) if t(k) = 1, the time instances which fall into the “idle” intervals.
Tdec(k) = Adaeelk — 1) if t(k) = 0 So we end up with the following minimization problem:

. n+1
ming, Zi:l le

Consequently, the error covariance at the decoder evolves as: ;
subject to:

[P if t(k) = 1, S L=+ )j=K-n 1)
(k) = AP(k—1)AT +Q if t(k) =0, ?:Ozlepi, Vp e {1,2,...,(n+1)j +n}
D =

where P* is the steady state error covariance of the optimal P < P, < ... < Piy41)j4n
estimate of the state(k) using all the measuremenyg0), Therefore the problem is to find the optimal assignment of

y(@), - y(k = 1). . € {0,1,...,(n +1)j + n} to I; in a way that the sum

We are interested in the following problem: Starting fromcn31", ' .
an arbitrary timem when the last update happened, find—=1 li is preserved to be equal & — n. We verify that

which schedule minimizes the cost function y keeping the idle _mterval !enthS ar_1d thergfore the
equal, the cost function is minimized. i.&. = j, and the

K minimum cost equals.P + (n + 1)T}.

ZP(”H' k) @) To show this, we first show that if there exist two idle

k=1 intervals with lengthd; andl, andi; # l4, then the cost
subject to the fact that maximum number of the channel us&n be decreased by substituting these two intervals, with two
is limited ton = ¢(K). The following statement indicates other idle intervals with lengthg andis, and shifting the
that periodic transmission minimizes the cost function.  intervals in between so that the length of the other intervals



10000

remain unchanged i, < s < I3 <4 andlis + 13 = [1 + 4.
The decrease results from the fact that the contribution from  sooor
the other intervals does not change because their length is
preserved. Furthermore,

8000

7000 [

_\vh
ﬂl - Zi:l }DZZ é 6000 -
T, =Ti+32 b 2
B (12) £ 5000
T — Zl3 P. 5
s = 2.i=117 g
2

4000

Tl4 =T3+ 224:134»1 P;

Therefore the only change in the cost incurs as a result of ***f
the change in the specific two intervals. The change in the 20l
cost function is equal to:

1000 -

l2 la
(Tl2 + Tls) - (Tll + Tl4) = Z PZ - Z Pl <0 (13) c R ® 1 Decrease in clr?stpercentage 0 ® *
I1+1 I3+1

This is because the two sums have equal number of elements. _ _ .
Furthermore, because of the monotonicity of tRe each Fflg.i.lghstogram of the percentage of decreasézindue to preprocessing.
term in the first sum is less than the corresponding term iﬁw =15)
the second sum and so the change in the cost is negative.
Therefore starting from any two intervals and exchanging the °
lengths in the above-mentioned manner decreases the cost. vr © ]
The minimum cost corresponds to the case in which no two
intervals can be substituted. This is obviously the case when ™| ° i
all the intervals are of equal length. So the result followss.

Remark:If j is not an integer, the time intervals between
the sensors cannot be all made equgl.tdowever, as shown
in the proof of the proposition, by choosing the intervals as
close to periodic as possible we can get the lowest possible
cost.

15+ q

JK(opI) Decrease
=
IS
T
I

13r q

12r q

VI. SIMULATION RESULTS
11+ T

In this section we illustrate the results, starting with the °
improvement in estimation cost using preprocessing. We 1o - n - - L =
consider the case of a simple model of two sensors trying K
to locate a noncooperative vehicle moving in a plane. The
model was developed in [5]. The acceleration is equal to.,
zero except for a small perturbation. Letdenote position
and v denote speed. Then = [p, py vy vy]T is the

state and we consider a discretization stefrollowing the oy first observation is that fall schedules, preprocess-

framework of Section Il the state space model parametefigy |owers the cost. The amount of such decrease depends
are:

g. 2. Percentage of decrease i for optimal scheduldk < 120)

1 0 A O R%/2 0 a histogram of the distribution of this decrease for a small
|01 0 R _ 0 h?/2 time horizon K=15. It can be seen that more than half of the
A= ,B = ; o .
0 01 0 h 0 schedules will incur an improvement 5% or more.
0 0 01 0 h We also compared the optimal schedules determined with
100 0 and without preprocessing for different time horizons. The
C= < 010 0 > optimal schedule using preprocessing always has a lower

on the particular choice of a sensor schedule. Figure 1 shows

cost. Figure 2 shows the percentage of the decrease in

The discretization step is considered to be.2 for the  optimal estimation cost due to preprocessing. We can see
simulations. Furthermore, the values of the process amHat even in this simple system, preprocessing results in more

sensor covariances are considered to be than 18% decrease in estimation cost.
It is worthwhile to note that the optimal schedule has
0.0100 O . . . .
R, = 0 0.0262 | a periodic structure as the horizon increases. The optimal

schedule for different horizons are given in table VI. The
R — 0.0003 0 R — 0.0018 0 trend remains the same for the valueskaf 20.
=\o 0.0273 J’ 2 0 0.0110 /- The proposed pruning method of section IV results



K | OptimalSchedule
10 | 2212212212 0.14 - - - -
11 | 22122122122 o
12 | 221221221222
13 | 2212212212212 0.12¢ 1
14 | 22122122122122 -
15 | 221221221221222 )
16 | 2212212212212212 8 0.1t 1
17 | 22122122122122122 o
18 | 221221221221221222 =
19 | 2212212212212212212 = 0.08¢+ ]
20 | 22122122122122122122 ') O
O
TABLE | 0.06} o o ]
OPTIMAL SCHEDULES O
0.04 : : : :
0 0.2 0.4 0.6 0.8 1
14 - - C Utilization frequency
el
= 1.2t 1 . . . . . .
© Fig. 4. Optimal cost in the single sensor case as a function of transmission
o frequency
7 ..
< 1 * . ]
q) .
8_ t . [4] J.S. Baras and A. Bensoussan, “Optimal Sensor Scheduling in Non-
w 08¢f .. 1 linear Filtering of Diffusion Processes3IAM Journal on Control and
g’ : . Optimization Vol. 27(4), pp 786-813, 1989.
c ., [5] V. Gupta, T. H. Chung, B. Hassibi and R. M. Murray, “A Stochastic
2 06 c Sensor Selection Algorithm with Applications in Sensor Scheduling
o and Sensor CoverageXutomaticav. 42 (2), Feb. 2006, pp. 251-260.
[6] V. Gupta, B. Hassibi and R. M. Murray, “Optimal LQG Control Across
0.4 , , Packet-Dropping Links,System and Control Letters press.
' 0 5 10 15 [7] V. Gupta, A. F. Dana, J. Hespanha, R. M. Murray and B. Hassibi,
. “Data Transmission over Networks for Estimation and Conti&EE
c Horizon Transactions on Automatic Contraubmitted, December 2006.
[8] V. Gupta, N. Martins and J.S. Baras, “Observing a Linear Process
over Packet Erasure Channels using Multiple Sensors: Necessary and
: : - : Sufficient Conditions for Mean-square StabilityfFEE Conference on
Fig. 3. CPU time reduction by pruning fai < 15 Decision and Contrgl2007, submitted.
[9] V. Gupta, N. Martins and J.S. Baras, “Stabilization over Erasure

in speed up in the search associated with the scheduliﬂl%]
problem. We have measured this by the MATLAB stopwatc
timer commands ‘tic’ and ‘toc’ for the corresponding tree11]
search routines. This is illustrated in Figure 3, where thﬁZ]
ratio of the reduction in the CPU time is plotted for the
range of horizonk < 15.

Figure 4 illustrates the case of a single senSarHere a
time horizon of K = 59 is considered and the optimal cost[14
is plotted as a function of utilization frequendy. = 59 is
selected since this particuld results inj being integer [15]
for many choices ofn. The estimation cost (error) is a
decreasing function of sensor utilization. Therefore, in real
applications a trade off analysis between the communicatiot!
and estimation costs determines the frequency of sensor
utilization. [17]
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