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Abstract

This paper addresses the channel estimation problem for slow frequency-selective fading

channel using training sequence and maximum likelihood (ML) approach. Traditional works

assumed symbol period spaced delay-tapped line model and additive white Gaussian noise

(AWGN). Because of pre-�ltering in the receiver front end, if the sampling rate is larger than

one sample per symbol or sampling epoch is unknown (i.e., timing information is not available),

AWGN model is not valid anymore. A more general ML channel estimation method using dis-

crete Fourier transform (DFT) is derived with the assumption of colored Gaussian noise and

over sampling. Similar idea can be adopted to derive the ML joint timing and phase estimation

algorithm.
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1 Introduction

For burst-transmission digital communication systems, channel estimation is required for maximum-

likelihood sequence estimation receivers [1] [2]. A typical data burst consists of several blocks of

user data and a predetermined training sequence (TS) which is used to estimate the channel impulse

response. Channel estimation can be done using a Wiener �lter or the discrete Fourier transform

(DFT). For example, [3] - [5] consider channel estimation given a known training sequence. The

authors of [3] addressed the problem of selecting the optimum training sequence for channel esti-

mation by processing in the frequency domain. Optimum unbiased channel estimation given white

noise is considered in [4] following a maximum-likelihood approach. Following the least-squares

(LS) philosophy, [5] presents algorithms for optimal unbiased channel estimation with aperiodic

spread spectrum signals for white or nonwhite noise.

Previous works [3] - [5] assumed symbol period delay-tapped line model or AWGN noise [3]. Because

of pre-�ltering in the receiver front end, this model is not accurate enough and will cause aliasing

or leakage on the spectrum. Since typical pulse shaping rollo� factors in wireless communication

range between 0.2 and 0.7, a sampling frequency larger than one symbol rate is required to prevent

aliasing. Typically a nominal sampling rate of two samples per symbol period is used in wireless

receiver [1]. When sampling rate is higher than one sample per symbol or timing information is

unknown, AWGN model is not valid. Therefore a more general model is desired to accommodate

colored Gaussian noise and a higher sampling rate. Felhauer proposed a whitening matched �lter

approach in [5] to deal with colored noise, which actually follows the general idea in Van Trees'
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classical work in [6]. In this paper, we will show that a direct optimum estimator can be derived

without preliminary processing [6] (p.289).

This paper takes a ML approach and derives an optimal channel estimation algorithm in the

frequency domain. The auto-covariance matrix of a colored Gaussian noise is a Toeplitz matrix.

Toeplitz matrix was thoroughly studied in [7]. In their book, Grenander and Szego showed that a

Toeplitz matrix converged to a circular matrix in the "weak sense". More engineering descriptions

can be found in [8] [9]. It is well known that the inverse of a Toeplitz matrix is not Toeplitz

generally. Kobayashi showed that the inverse of a Toeplitz matrix was asymptotically Toeplitz [11],

similar methodology was adopted in Meyr's book [1]. However we found that it was not generally

true and there was some condition to apply this idea in our work [12]-[13]. The condition is that

there should be no zeros of the Z transform of the function that de�nes a Toeplitz matrix on unit

circle. In another word, the discrete time Fourier transform (DTFT) of this function has no zeros

within the frequency band that is smaller than the sampling rate. If the above condition satis�es,

the inverse of a Toeplitz matrix converges to a circular matrix in the "�nite boundary strong sense"

(refer to [12]).

It is well understood that the unitary matrix used in the eigendecomposition of a circular matrix

is a DFT matrix which will be de�ned later. We adopt the eigendecomposition of the inverse

of auto-covariance matrix, the DFT approximation based our research result, and the time shift

property of DFT here. This paper is organized as follows: Section 2 describes our channel model

and derives the likelihood function. The ML channel estimator is presented in Section 3. Section

4 addresses one special case of this idea, the ML joint carrier phase and timing o�set estimator.
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Figure 1: Modeling of Slow Frequency-Selective Fading Channel and Matched Filter

Some computer simulation results are shown in Section 4 too.

2 Problem Formulation

Without limitations on the number of paths and delay of each path in our problem, the following

channel model is assumed:

h(t) =

L�1X

l=0

hlÆ(t� �lT ) (1)

where L is the total number of paths, which is unknown, hl and �l are the attenuation and delay

factor of path l respectively, T is the symbol period. In our model, we assume slow and fre-

quency selective fading channel, i.e., hl and �l remain constant within the observation window, �l

is comparable with symbol period. The baseband received signal is modeled as the following:

x(t) =
p
Es

L�1X

l�0

N=2�1X

n=�N=2

hlang(t� nT � �lT ) + n(t) (2)
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where fang is the training sequence, n(t) is the AWGN noise with two-sided power spectrum density

(PSD) N0=2. The received signal x(t) is passed through a matched �lter with response g(�t), then

sampled at the rate 1=Ts with Ts = T=M (M is the sampling rate in samples per symbol). The

output of the matched �lter is de�ned as y(t) that is given by:

y(t) =
p
Es

L�1X
l=0

N=2�1X
n=�N=2

hlanr(g � nT � �lT ) +N(t) (3)

where r(t) = g(t) 
 g(�t), N(t) = n(t)
 g(�t).

The likelihood function of fhl; �lg is the pdf of a Gaussian r.v. The mean of yk given fhl; �lg is

my(k) =
p
Es

L�1X
l=0

N=2�1X
n=�N=2

hlanr(kTs � nT � �lT ) +N(kTs); k 2 [�K=2;K=2 � 1] (4)

with K = M(N + R) is the total number of digital samples, N is used to model the central

portion of the TS, R is used to model the remaining observation including the shaping pulse tail.

It is reasonable to assume that my(k) = 0 when jkj > K in engineering problems. The physical

explanation is that all the information of my is included. The auto-covariance matrix of vector y is

cov[yjh; � ] =
N0

2
� (5)

where � is a K by K Hermitian and Toeplitz matrix de�ned as

� =

2
66666666664

r(0Ts) r(�Ts) � � � r(�(K � 1)Ts)

r(Ts) r(0Ts) � � � r(�(K � 2)Ts)

...
...

. . .
...

r((K � 1)Ts) r((K � 2)Ts) � � � r(0Ts)

3
77777777775

(6)
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The likelihood function of y given a; h; � is

f(yjh; � ) =
exp

n
�1

2
(y �my)

H
�
No

2
�
�
�1

(y �my)
o

(2�)K=2jNo

2
�j1=2

(7)

The log likelihood function is given by

l(yjh; �) = log(f(yjh; � )) (8)

= �
1

No

�
�yHQmy �mH

y Qy +mH
y Qmy

�

�

 
1

No
yHQy + log

"
(2�)K=2

????No

2
�

????
1=2
#!

where Q is the inverse of �.

3 ML Channel Estimator in Frequency Domain

Before going through the derivation of the channel estimator, we review some mathematical results

based on our research.

3.1 On the Toeplitz Matrices

A family of Toeplitz matrices Tn (n is the dimension of the matrix) are de�ned by a sequence of

complex numbers

ti; fi = � � � ;�1; 0; 1; � � � g
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such that the elements of Tn at the ith row and jth column is equal to ti�j, i.e.,

Tn = fti�jg (9)

Furthermore, we restrict our discussion to the case that t
�i = t�i , the conjugate of ti. With this

restriction, Tn becomes Hermitian. Toeplitz matrix in this form plays pivotal role in many signal

processing issues. Actually, often what is more relevant is the inverse of such matrix rather than

the matrix itself. For instance, if ti represents the correlation of a stationary random process (in

our case �). The inverse of Tn (in our case Q) is associated with the joint probability function of

n consecutive samples of the random process.

One of the diÆculties in analyzing the inverse matrix arises from the fact that the inverse of a

Toeplitz is no longer Toeplitz, though it was shown in [10] that such inverse can be decomposed

into multiplication and summation of Toeplitz matrices. One widely used technique to tackle the

problem is to substitute the Toeplitz matrix Tn with a circular matrix. Such circular matrix can

be de�ned by the Fourier Transform of sequence tn. Let F(�) denote the Fourier Transform of tn,

i.e.,

F(�) =

1X
k=�1

tke
�j�k:

Let Un denote the unitary matrix de�ned as

Un =
1p
n

2
66666666664

1 1 � � � 1

1 e�j(2�=n) � � � e�j(2�(n�1)=n)

...
...

. . .
...

1 e�j(2�(n�1)=n) � � � e�j(2�(n�1)(n�1)=n)

3
77777777775

(10)
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and Dn denote the diagonal matrix with the ith diagonal element �i;n = F(2�(i � 1)=n), i.e.,

Dn =

2
66666666664

�1;n 0 � � � 0

0 �2;n � � � 0

...
...

. . .
...

0 0 � � � �n;n

3
77777777775

: (11)

Then the circular matrix UH
n DnUn is de�ned as Cn. Substituting Tn with Cn is based on the

well-known fact that Tn converges to Cn in the weak sense as long as jF(�)j is bounded�.

In many applications, the quadratic form xHT�1n x can be limited to the case that x has only �nite

nonzero terms in the middle of the vector, i.e.

x = (0; � � � ; 0; x
�k; x�k+1; � � � ; x0; � � � ; xk; 0; � � � ; 0) (12)

and k does not increase with n. We shall call this �nite boundary quadratic form.

De�nition: For two families of Hermitian matrices An; Bn, consider the quadratic form

max
x

����
xH(An �Bn)x

xHx

���� ; (13)

where the maximum is over all the n-dimensional vector of the form (12). If (13) converges to zero

for any given k, we shall call An converges to Bn in the �nite boundary strong sense convergence.

If x corresponds to an observation within the window [�k; k] and with negligible leakage outside the

observation window, we are able to replace An with Bn asymptotically in evaluating the quadratic

forms. Many practical applications fall into this category.
�In [7], Cn is de�ned through the inverse Fourier Transform, i.e., the ith diagonal element of Dn is equal to

F(�2�i=n) and Un is replaced by UT

n . The current notation is more consistent with engineering conventions.
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Theorem: Let Tn be a family of Hermitian Toeplitz matrix associated with the sequence ftng of

�nite order, i.e., ts = 0 for jsj > W ([8], p.23), and F(z) be the z-transform of ftng, that is

F(z) =

1X

k=�1

tkz
�k:

If jF(z)j does not have any zero on the unit circle, T�1n converges to C�1n in the strong sense for

�nite boundary quadratic form.

Refer to [12] for proof details.

3.2 The ML Channel Estimator

Following the �nite boundary strong sense convergence theorem, we exam if our problem �ts the

condition to apply this theorem. First, if r(t) is the raised cosine shaping pulse, the DFTF of r(kTs)

has no cross-zero points in its passband. One question comes out naturally, if r(t) is over-sampled,

Fr(z) will have zeros on the unit circle, does this theorem still apply? The answer is positive.

Actually it is a classical question related to building the likelihood function when over-sampling is

applied. If r(t) is over-sampled, as n large, Tn is singular, which means some rows are the linear

combination of other rows (through interpolation) and T�1n does not exist at all. To prevent this

situation from happening, the technique mentioned in [6] (p.289) can be applied to get around this

problem and guarantee that our operation will be meaningful. Second, my that is the mean of y

satis�es the �nite boundary condition in our model. The physical explanation of large K is that in

ideal case the observation of y includes both training portion and the tail of all the response.
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We can use C�1 to approximate Q after carefully checking the convergence condition, then we get,

Q � C�1 = UH
KD

�1UK (14)

as K large enough, which means N +R large enough

�n;K ! Fr[k] (15)

where Fr is the power spectral density (PSD) of the colored noise process fNkg, which is expressed

Fr[k] =
1

Ts

1X

l=�1

R

�
k

KTs
�

l

Ts

�
(16)

The ML estimate of channel response fh; �g is

(h; �) = argmax
h;�

l(yjh; �) (17)

Because all the information related to channel response is in my, therefore

(h; �) = argmax
h;�

�
�

1

No

�
�yHQmy �mH

y Qy +mH
y Qmy

��
(18)

After some arithmetic,

UH
Kmy =

r
Es

K
� (19)

where � is a K by 1 vector with mth element equal to (as K large enough, and sampling rate
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satis�es Nyquist sampling theroem)

�[m] =

K=2�1X

k=�K=2

L�1X

l=0

N=2�1X

n=�N=2

hlanr(kTs � nT � �lT )e
�j(2�mk=K)

�
L�1X

l=0

N=2�1X

n=�N=2

hlanFr[m]e�j(2�m(n+�l)=(N+R))

=

L�1X

l=0

Fr[m]A[m]hle
�j(2�m�l=(N+R))

= Fr[m]A[m]H[m]

(20)

where A[m] (A[m] =
PN=2�1

n=�N=2 ane
�j(2�mn=(N+R))) is N +R point DFT of training sequence fang,

H[m] =
PL�1

l=0 hle
�j(2�m�l=(N+R)) that is the DFT of sampled channel response.

Similarly, we can get

yHQmy =

p
Es

K

K=2�1X

m=�K=2

Fy[m]�Fr[m]A[m]H[m]

Fr[m]

=

p
Es

K

K=2�1X

m=�K=2

Fy[m]�A[m]H[m]

(21)

where Fy[m] is the K-point DFT of y, i.e.,

Fy[m] =

K=2�1X

k=�K=2

y(kTs)e
�j(2�mk=K) (22)

Also we can get

mH
y Qmy =

Es

K

K=2�1X

m=�K=2

Fr[m]jA[m]j2jH[m]j2 (23)
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Therefore, the ML estimate of channel response is given by

(h; �) = arg max
h;�

f
p
Es

N0K

K=2�1X

m=�K=2

[Fy[m]A[m]�H[m]� + Fy[m]�A[m]H[m]

�
p
EsFr[m]jA[m]j2jH[m]j2]g

(24)

The content in the parenthesis on the RHS of eq. (24) can be reorganized as

RHS =

K=2�1X
m=�K=2

[Fy[m]A[m]�H[m]� + Fy[m]�A[m]H[m]

�
p
EsFr[m]jA[m]j2jH[m]j2 � jFy[m]j2p

EsFr[m]
+

jFy[m]j2p
EsFr[m]

]

=

K=2�1X
m=�K=2

"
jFy[m]j2p
EsFr[m]

�
 
E1=4
s

p
Fr[m]A[m]H[m]� Fy[m]

E
1=4
s

p
Fr[m]

!
�

 
E1=4
s

p
Fr[m]A[m]�H[m]� � Fy[m]�

E
1=4
s

p
Fr[m]

!#

=

K=2�1X
m=�K=2

2
4 jFy[m]j2p

EsFr[m]
�
�����E1=4

s

p
Fr[m]A[m]H[m]� Fy[m]

E
1=4
s

p
Fr[m]

�����
2
3
5

(25)

Because Fy[m] and Fr[m] do not contain fh; �g, therefore, the ML estimate of channel response

becomes

(h; �) = arg min
h;�

K=2�1X
m=�K=2

�����E1=4
s

p
Fr[m]A[m]H[m]� Fy[m]

E
1=4
s

p
Fr[m]

�����
2

= arg min
h;�

K=2�1X
m=�K=2

�����
p
EsFr[m]A[m]H[m]�Fy[m]

E
1=4
s

p
Fr[m]

�����
2

(26)

Thing becomes clear now, the ML estimate of fh; �g is the fh; �g that has the following DFT

H[m] =

8>>>><
>>>>:
Fy[m]=(

p
EsFr[m]A[m]) if Fr[m] 6= 0;

0 if Fr[m] = 0:

(27)

Remarks:
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� Clearly, we are only interested in the channel response within the pass-band of shaping func-

tion, we just need to calculate those when Fr[m] 6= 0, (27) follows.

� If there is no noise, i.e., N0 = 0, it is straightforward to verify that the real channel response

H[m] is exactly equal to (27). The channel estimator (27) is unbiased.

� Because H[m] is just the DTFT of h and � , there are a lot of possible h and � that has

the same H[m]. If the time domain response is of more interest, H[m] can be treated as an

intermediate result. With the help of some physical modeling on h and � , we can get the

time domain response from H[m] .

� According to the �nite boundary strong sense convergence theorem, when K ! 1, the

inverse matrix Q approaches to a circular matrix. How to handle it in reality? We have two

observations based on (27): �rst, if the sampling rateM is larger than Nyquist sampling rate,

all the information about the channel response is preserved. Second, the variable Fy[m] (22)

is the DFT of y, yk can be treated as zero with negligible leakage as jkj large enough when

calculating (22), and Fy[m] obtained this way contains most of useful information. In real

engineering implementation, when N is not large enough to make y contain most information

about h, � noise N , R can be chosen to cover the tail of shaping pulse; when N is suÆciently

large (according to speci�c application), then R can be dropped. From simulation we observe

that the performance loss due to this simpli�cation is negligible.

� If the PSD of N has no cross zero points within the frequency band of interest, the ML channel

estimator is given by (27). Compared with other frequency domain estimation methods
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mentioned in [3], higher sampling rate is adopted in our algorithm, and the color noise is

compensated in the denominator in (27). Also we observe that the training sequence length

N has to be large enough to apply the old estimation methods.

4 An Example and Simulation Results

The substitution of Q by C�1K simpli�es the channel estimation problems a lot, and gives us all the

advantages of frequency domain approaches.

4.1 The Data-Aided ML Joint Phase and Timing O�set Estimator

As a special case, let us consider the following problem: L = 1 which means there is only one

path, and h = ej�, which means that the frequency-selective fading channel estimation problem is

simpli�ed to joint carrier phase and timing o�sets estimation problem. Timing and phase recovery

is a very important synchronization function in coherent demodulation. The variables � and � are

used to model the carrier phase and timing o�sets between the transmitted and received signals

respectively.

The channel response H[m] is equal to ej�e�j(2��m=(N+R)), the following holds

e�j(2��m=(N+R)+�) =
Fy[m]p

EsFr[m]A[m]
(28)

The RHS of (28) is equal to an exponential wave, our objective is to estimate the frequency and

phase of this exponential wave. Therefore the timing estimation problem becomes a frequency
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estimation problem, which has been studied for many years. For example, based on the RHS of

(28), the linear regression on the phase of the RHS is proportional to � [9].

Another estimator can be derived from (18). After some arithmetic, it is easy to verify that the

ML estimator is equivalent to the following

(�; �) = arg max
�;�

�
1

N0

Re(yHQmy)

�

= arg max
�;�

8<
:
p
Es

N0K
Re

0
@ej�

K=2�1X
k=�K=2

Fy[k]�A[k]e�j(2�k�=(N+R))

1
A
9=
;

(29)

As we mentioned before, as the training sequence length N large enough N +R � N . De�ne �(�)

�(�) =

K=2�1X
k=�K=2

Fy[k]�A[k]e�j(2�k�=N) (30)

two-dimension maximization can be downsized to one-dimension search

(�; �) = arg max
�;�

n
j�(�)jRe

�
ej(�+arg(�(�)))

�o
(31)

From (30), we can see that �(�) is the cross-correlation between y and the training sequence a in

the frequency domain. The Parsevel relation serves a bridge to connect the time domain and the

frequency domain. As a result of dropping R, K �MN for large N , (30) is equal to the following

equation:

�(�) =

N=2�1X
l=�N=2

y(lTs � �T )�al (32)

Therefore the ML estimate of � is the argument that maximizes the magnitude of the cross-

correlation between the received samples and training sequence in either frequency domain or

time domain. Actually the ML estimator with the de�nition of �(�) (32) is the same as that in [1],

which is derived based on other techniques.
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From this example, we can see that frequency domain approaches give people a lot of advantages

to analyze problems in both time and frequency domains, especially in colored Gaussian noise

environment.

4.2 Simulation Results

Computer simulations were conducted to test the ML channel estimator and the ML data-aided

joint timing and phase estimator.

An M-sequence with length 63 was used in our slow frequency-selective fading channel estimator

simulation. M sequence is good for channel magnitude response estimation, because its PSD (i.e.

jA[m]j) is a constant except for DC component. For more information on training sequence design,

refer to [3]. Square root raised-cosine shaping pulse with rollo� factor 0.75 was adopted in both

transmitter and receiver. In our case, K = 63M , from simulation we can see that this K is

reasonably large to apply our theorem. A 800 MHz carrier was assumed, and we used a 6-ray

typical urban (TU) channel model. Di�erent sampling rates (M) were tested.

Computer simulation results are shown in Figure 2, 3 and 4, where the X-the is the frequency with

63M equal to 2�, the Y-axis is the joint normalized magnitude response of H[m]Fr[m]. Figure

2 shows the averaged estimation result (over 500 tests) at 0dB and M = 4, it is clearly that the

estimator is unbiased. Figure 3 shows similar result with lower sampling rate (M = 2). We can see

that higher sampling rate does not provide extra information when it is larger than the Nyquist

sampling rate. Figure 4 shows one test result at 0dB.
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Figure 2: Channel Estimation Result Averaged over 500 Tests, 4 Samples Per Symbol
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Figure 3: Channel Estimation Result Averaged over 500 Tests, 2 Samples Per Symbol

We also ran computer simulations for the ML joint timing and phase estimator derived here.

Actually a simpli�ed algorithm that used curve-�tting technique based on (32) was used in our

simulation [14]. The following conditions were applied: 4 samples per symbol, N = 48, rollo�-

factor � was equal to 0.5. Two kind of training sequences were tested in our timing recover test
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Figure 5: The RMS Timing O�set Estimation Error with � = 0:50

because the performance of timing o�set estimation is closely related to the data pattern [13]. One

data pattern is alternating one-zero pattern; the other is pseudo-random data patter. Figure 5

shows the root mean square (RMS) timing o�set estimation error versus the Cramer-Rao lower

bound (CRB) derived by us in [13]. Figure 6 shows that of the phase estimation. From these two
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Figure 6: The RMS Phase O�set Estimation Error with � = 0:5

�gures, we can see that the performance of our estimation algorithms meets the CRB.

5 Conclusions

In this paper, we derived the frequency domain ML channel estimator with the general Gaussian

noise and over-sampling assumption. The derivation is based on the �nite boundary strong sense

convergence theorem for the inverse of Toeplitz matrices. With the help of this theorem, many

good algorithms that take advantages of transform domain can be derived. As a special case,

the ML joint carrier phase and timing o�sets estimator is presented. Simulations show that the

performance of our algorithm meet the CRB at low signal to noise ratio (SNR).
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